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PREFACE

Choice of Topics

In putting together the outline of topics for this CSO text, we used many sources. We
looked at course catalogue descriptions and book outlines, and we administered a
questionnaire designed to find out what you, our colleagues, thought should be included in
such a course. We asked you and ourselves to do the following:

m Please list four topics that you feel students should master in a CSO course if this is
the only computer science course they will take during their college experience.

m Please list four topics that you would like students entering your CS1 course to have
mastered.

m DPlease list four additional topics that you would like your CS1 students to be

familiar with.

The strong consensus that emerged from the intersections of these sources formed the
working outline for this book. Students who master this material before taking CS1 have a
strong foundation upon which to build their knowledge of computer science. Although our
intention was to write a CSO text, our reviewers have pointed out that the material also
forms a strong breadth-first background that can also serve as a companion to a
programming-language introduction to computer science.

Rationale for Organization

This book begins with the history of hardware and software, showing how a computer
system is like an onion. The processor and its machine language form the heart of the
onion, and layers of software and more sophisticated hardware have been added around this
heart, layer by layer. At the next layer, higher-level languages such as FORTRAN, Lisp,
Pascal, C, C++, and Java were introduced parallel to the ever-increasing exploration of the
programming process, using such tools as top-down design and object-oriented design.
Over time, our understanding of the role of abstract data types and their implementations
matured. The operating system, with its resource-management techniques—including files
on ever-larger, faster secondary storage media—developed to surround and manage these
programs.

The next layer of the computer system “onion” is composed of sophisticated general-
purpose and special-purpose software systems that overlay the operating system.
Development of these powerful programs was stimulated by theoretical work in computer
science, which makes such programs possible. The final layer comprises networks and
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network software—that is, the tools needed for computers to communicate with one
another. The Internet and the World Wide Web put the finishing touches to this layer, and
this text culminates with a discussion of security issues affecting our interaction online.

Information Layer

Hardware Layer

Programming Layer
Dperation Systerns Layer
Applicatiors Layer
Communications Layer

As these layers have grown over the years, the user has become increasingly insulated
from the computer system’s hardware. Each of these layers provides an abstraction of the
computing system beneath it. As each layer has evolved, users of the new layer have joined
with users of inner layers to create a very large workforce in the high-tech sector of the
global economy. This book is designed to provide an overview of the layers, introducing the
underlying hardware and software technologies, in order to give students an appreciation
and understanding of all aspects of computing systems.

Having used history to describe the formation of the onion from the inside out, we
were faced with a design choice: We could look at each layer in depth from the inside out
or the outside in. The outside-in approach was very tempting. We could peel the layers oft
one at a time, moving from the most abstract layer to the concrete machine. However,
research has shown that students understand concrete examples more easily than abstract
ones, even when the students themselves are abstract thinkers. Thus, we have chosen to
begin with the concrete machine and examine the layers in the order in which they were
created, trusting that a thorough understanding of one layer makes the transition to the
next abstraction easier for the students.

Changes in the Sixth Edition

As always when planning a revision, we asked our colleagues, including many current users
of the text, to give us feedback. We appreciate the many thoughtful and insightful

20



responses we received.

Updates in the Sixth Edition include a considerable overhaul of Chapters 15 and 16,
which are about networks and the World Wide Web. We include new information about
wireless networks, as well as updates to the top-level domains (TLDs) that are now
available. In light of recent developments in U.S. oversight, we added a discussion about
who controls the Internet. Screenshots and discussions of ping and traceroute utilities are
now included, as well as an enhanced discussion about mobile computing. We completely
rewrote the section on HTML in Chapter 16 to reflect the most up-to-date practices and
the use of Cascading Style Sheets (CSS). We updated the section on social networks and
added a new discussion of web-based analytics.

In addition to these and other updates, the common features throughout the book have
been completely revised and augmented. The “Ethical Issues” sections at the end of each
chapter have been brought up to date. The “Did You Know?” sidebars have been updated
throughout the book as well, with the addition of several more that reflect new and novel
topics. Finally, the biographical sections throughout have been updated.

The Sixth Edition features a brand new design and layout, with all figures redrawn and
photos updated throughout.

Of course, we also made minor revisions throughout the book to improve and update
the coverage, presentation, and examples.

Synopsis

Chapter 1 lays the groundwork, as described in the “Rationale for This Book’s
Organization” section above. Chapters 2 and 3 step back and examine a layer that is
embodied in the physical hardware. We call this the “information layer” because it reflects
how data is represented in the computer. Chapter 2 covers the binary number system and
its relationship to other number systems such as decimal (the one we humans use on a daily
basis). Chapter 3 investigates how we take the myriad types of data we manage—numbers,
text, images, audio, and video—and represent them in a computer in binary format.

Chapters 4 and 5 discuss the hardware layer. Computer hardware includes devices such
as transistors, gates, and circuits, all of which control the flow of electricity in fundamental
ways. This core electronic circuitry gives rise to specialized hardware components such as
the computer’s central processing unit (CPU) and memory. Chapter 4 covers gates and
electronic circuits; Chapter 5 focuses on the hardware components of a computer and how
they interact within a von Neumann architecture.

Chapters 6 through 9 examine aspects of the programming layer. Chapter 6 explores
the concepts of both machine language and assembly language programming using Pep/8, a
simulated computer. We discuss the functionality of pseudocode as a way to write
algorithms. The concepts of looping and selection are introduced here, expressed in
pseudocode, and implemented in Pep/8.

Chapter 7 examines the problem-solving process as it relates to both humans and
computers. George Polya’s human problem-solving strategies guide the discussion. Top-
down design is presented as a way to design simple algorithms. We choose classic searching
and sorting algorithms as the context for the discussion of algorithms. Because algorithms
operate on data, we examine ways to structure data so that it can be more efficiently
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processed. We also introduce subalgorithm (subprogram) statements.

Chapter 8 takes a step further toward abstraction, exploring abstract data types and
containers: composite structures for which we know only properties or behaviors. Lists,
sorted lists, stacks, queues, binary search trees, and graphs are discussed. The section on
subalgorithms is expanded to include reference and value parameters and parameter
passing.

Chapter 9 covers the concepts of high-level programming languages. Because many
prominent high-level languages include functionality associated with object-oriented
programming, we detour and first present this design process. Language paradigms and the
compilation process are discussed. Pseudocode concepts are illustrated in brief examples
from four programming languages: Python, Visual Basic .NET, C++, and Java.

Chapters 10 and 11 cover the operating system layer. Chapter 10 discusses the resource
management responsibilities of the operating system and presents some of the basic
algorithms used to implement these tasks. Chapter 11 focuses on file systems, including
what they are and how they are managed by the operating system.

Chapters 12 through 14 cover the application layer. This layer is made up of the
general-purpose and specialized application programs that are available to the public for
solving programs. We divide this layer into the sub-disciplines of computer science upon
which these programs are based. Chapter 12 examines information systems, Chapter 13
examines artificial intelligence, and Chapter 14 examines simulation, graphics, gaming, and
other applications.

Chapters 15 through 17 cover the communication layer. Chapter 15 presents the
theoretical and practical aspects of computers communicating with each other. Chapter 16
discusses the World Wide Web and the various technologies involved. Chapter 17
examines computer security and keeping information protected in the modern information
age.

Chapters 2 through 17 are about what a computer can do and how. Chapter 18
concludes the text with a discussion of the inherent limitations of computer hardware and
software, including the problems that can and cannot be solved using a computer. We
present Big-O notation as a way to talk about the efficiency of algorithms so that the
categories of algorithms can be discussed, and we use the Halting problem to show that
some problems are unsolvable.

The first and last chapters form bookends: Chapter 1 describes what a computing
system is and Chapter 18 cautions about what computing systems cannot do. The chapters
between take an in-depth look at the layers that make up a computing system.

Why Not a Language?

The original outline for this book included an “Introduction to Java” chapter. Some of our
reviewers were ambivalent about including a language at all; others wondered why Java
would be included and not C++. We decided to leave the choice to the user. Introductory
chapters, formatted in a manner consistent with the design of this book, are available for
Java, C++, JavaScript, Visual Basic. NET, Python, SQL, Ruby, Perl, Alice, and Pascal on
the book’s website and in hard copy through Jones & Bartlett Learning.

If the students have enough knowledge and experience to master the introductory
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syntax and semantics of a language in addition to the background material in this book,
simply have the students download the appropriate chapter. As an alternative, one or all of
these chapters can be used to enrich the studies of those who have stronger backgrounds.
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Special Features

We have included three special features in this text in order to emphasize the history and
breadth of computing as well as the moral obligations that come with new technology.

Virtual games and national security

U.S. and British spies have infiltrated the fantasy world of virtual games. A 2008 National Security Agency (NSA)
document declared that virtual games provide a “target-rich communication network” that allows intelligence

suspects a way to communicate and “hide in plain sight.”*

Biographies

Each chapter includes a short biography of someone who has made a significant
contribution to computing as we know it. The people honored in these sections range from
those who contributed to the data layer, such as George Boole and Ada Lovelace, to those
who have contributed to the communication layer, such as Doug Engelbart and Tim
Berners-Lee. These biographies give students a taste of history and introduce them to the
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men and women who are pioneers in the world of computing.

Did You Know

Our second feature (the “Did You Know?” sections indicated by a question mark)
comprises sidebars that include interesting tidbits of information from the past, present,
and future. They are garnered from history, current events, and the authors’ personal
experiences. These little vignettes are designed to amuse, inspire, intrigue, and, of course,
educate.

Ethical Issues

Our third feature is an “Ethical Issues” section that is included in each chapter. These
sections illustrate the fact that along with the advantages of computing come
responsibilities for and consequences of its use. Privacy, hacking, viruses, and free speech
are among the topics discussed. Following the exercises in each chapter, a “Thought
Questions” section asks stimulating questions about these ethical issues as well as chapter
content.
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Color and Typography Are Signposts

The layers into which the book is divided are color coded within the text. The opening
spread for each chapter shows an image of the onion in which the outermost color
corresponds to the current layer. This color is repeated in header bars and section numbers
throughout the layer. Each opening spread also visually indicates where the chapter is
within the layer and the book.

We have said that the first and last chapters form bookends. Although they are not part
of the layers of the computing onion, these chapters are color coded like the others. Open
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the book anywhere and you can immediately tell where you are within the layers of
computing.

To visually separate the abstract from the concrete in the programming layer, we use
different fonts for algorithms, including identifiers in running text, and program code. You
know at a glance whether the discussion is at the logical (algorithmic) level or at the
programming-language level. In order to distinguish visually between an address and the
contents of an address, we color addresses in orange.

Color is especially useful in Chapter 6, “Low-Level Programming Languages and
Pseudocode.” Instructions are color coded to differentiate the parts of an instruction. The
operation code is blue, the register designation is clear, and the addressing mode specifier is
green. Operands are shaded gray. As in other chapters, addresses are in orange.

Instructor Resources

For the instructor, slides in PowerPoint format, a test bank, and answers to the book’s end-
of-chapter exercises are available for free download at http://go.jblearning.com/CSI6e.
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1 THE BIG PICTURE

This book is a tour through the world of computing. We explore how computers work—
what they do and how they do it, from bottom to top, inside and out. Like an orchestra, a
computer system is a collection of many different elements, which combine to form a
whole that is far more than the sum of its parts. This chapter provides the big picture,
giving an overview of the pieces that we slowly dissect throughout the book and putting
those pieces into historical perspective.

Hardware, software, programming, web surfing, and email are probably familiar terms to
you. Some of you can define these and many more computer-related terms explicitly,
whereas others may have only a vague, intuitive understanding of them. This chapter gets
everyone on relatively equal footing by establishing common terminology and creating the
platform from which we will dive into our exploration of computing.

GOALS
After studying this chapter, you should be able to:

describe the layers of a computer system.
describe the concept of abstraction and its relationship to computing.

describe the changing role of the computer user.

|

|

W describe the history of computer hardware and software.

|

m distinguish between systems programmers and applications programmers.
u

distinguish between computing as a tool and computing as a discipline.

1.1 Computing Systems

In this book we explore various aspects of computing systems. Note that we use the term
computing system, not just computer. A computer is a device. A computing system, by
contrast, is a dynamic entity, used to solve problems and interact with its environment. A
computing system is composed of hardware, software, and the data that they manage.
Computer hardware is the collection of physical elements that make up the machine and
its related pieces: boxes, circuit boards, chips, wires, disk drives, keyboards, monitors,
printers, and so on. Computer software is the collection of programs that provide the
instructions that a computer carries out. And at the very heart of a computer system is the
information that it manages. Without data, the hardware and software are essentially
useless.
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Computing system Computer hardware, software, and data, which interact to solve problems
Computer hardware The physical elements of a computing system

Computer software The programs that provide the instructions that a computer executes

The general goals of this book are threefold:

m To give you a solid, broad understanding of how a computing system works

m To develop an appreciation for and understanding of the evolution of modern
computing systems

m To give you enough information about computing so that you can decide whether

you wish to pursue the subject further

The rest of this section explains how computer systems can be divided into abstract
layers and how each layer plays a role. The next section puts the development of computing
hardware and software into historical context. This chapter concludes with a discussion
about computing as both a tool and a discipline of study.

Layers of a Computing System

A computing system is like an onion, made up of many layers. Each layer plays a specific
role in the overall design of the system. These layers are depicted in FIGURE 1.1 and form
the general organization of this book. This is the “big picture” that we will continually
return to as we explore different aspects of computing systems.

You rarely, if ever, take a bite out of an onion as you would an apple. Rather, you
separate the onion into concentric rings. Likewise, in this book we explore aspects of
computing one layer at a time. We peel each layer separately and explore it by itself. Each
layer, in itself, is not that complicated. In fact, a computer actually does only very simple
tasks—it just does them so blindingly fast that many simple tasks can be combined to
accomplish larger, more complicated tasks. When the various computer layers are all
brought together, each playing its own role, amazing things result from the combination of
these basic ideas.

Let’s discuss each of these layers briefly and identify where in this book these ideas are
explored in more detail. We essentially work our way from the inside out, which is
sometimes referred to as a bottom-up approach.
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Communications

FIGURE 1.1 The layers of a computing system

The innermost layer, information, reflects the way we represent information on a
computer. In many ways this is a purely conceptual level. Information on a computer is
managed using binary digits, 1 and 0. So to understand computer processing, we must first
understand the binary number system and its relationship to other number systems (such as
the decimal system, the one humans use on a daily basis). Then we can turn our attention
to how we take the myriad types of information we manage—numbers, text, images, audio,
and video—and represent them in a binary format. Chapters 2 and 3 explore these issues.

The next layer, hardware, consists of the physical hardware of a computer system.
Computer hardware includes devices such as gates and circuits, which control the flow of
electricity in fundamental ways. This core electronic circuitry gives rise to specialized
hardware components such as the computer’s central processing unit (CPU) and memory.
Chapters 4 and 5 of the book discuss these topics in detail.

The programming layer deals with software, the instructions used to accomplish
computations and manage data. Programs can take many forms, be performed at many
levels, and be implemented in many languages. Yet, despite the enormous variety of
programming issues, the goal remains the same: to solve problems. Chapters 6 through 9
explore many issues related to programming and the management of data.

Every computer has an operating system (OS) to help manage the computer’s resources.
Operating systems, such as Windows XP, Linux, or Mac OS, help us interact with the
computer system and manage the way hardware devices, programs, and data interact.
Knowing what an operating system does is key to understanding the computer in general.
These issues are discussed in Chapters 10 and 11.

The previous (inner) layers focus on making a computer system work. The applications
layer, by contrast, focuses on using the computer to solve specific real-world problems. We
run application programs to take advantage of the computer’s abilities in other areas, such
as helping us design a building or play a game. The spectrum of area-specific computer
software tools is far-reaching and involves specific subdisciplines of computing, such as
information systems, artificial intelligence, and simulation. Application systems are
discussed in Chapters 12, 13, and 14.

Computers no longer exist in isolation on someone’s desktop. We use computer
technology to communicate, and that communication is a fundamental layer at which
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computing systems operate. Computers are connected into networks so that they can share
information and resources. The Internet, for example, evolved into a global network, so
there is now almost no place on Earth that you cannot communicate with via computing
technology. The World Wide Web makes that communication relatively easy; it has
revolutionized computer use and made it accessible to the general public. Chapters 15 and
16 discuss these important issues of computing communication.

The use of computing technology can result in increased security hazards. Some issues
of security are dealt with at low levels throughout a computer system. Many of them,
though, involve keeping our personal information secure. Chapter 17 discusses several of
these issues.

Most of this book focuses on what a computer can do and how it does it. We conclude
with a discussion of what a computer cannor do, or at least cannot do well. Computers have
inherent limitations on their ability to represent information, and they are only as good as
their programming makes them. Furthermore, it turns out that some problems cannot be
solved at all. Chapter 18 examines these limitations of computers.

Sometimes it is easy to get so caught up in the details that we lose perspective on the
big picture. Try to keep that in mind as you progress through the information in this book.
Each chapter’s opening page reminds you of where we are in the various layers of a
computing system. The details all contribute a specific part to a larger whole. Take each
step in turn and you will be amazed at how well it all falls into place.

Abstraction

The levels of a computing system that we just examined are examples of abstraction. An
abstraction is a mental model, a way to think about something, that removes or hides
complex details. An abstraction leaves only the information necessary to accomplish our
goal. When we are dealing with a computer on one layer, we don’t need to be thinking
about the details of the other layers. For example, when we are writing a program, we don’t
have to concern ourselves with how the hardware carries out the instructions. Likewise,
when we are running an application program, we don’t have to be concerned with how that
program was written.

Abstraction A mental model that removes complex details

Numerous experiments have shown that a human being can actively manage about
seven (plus or minus two, depending on the person) pieces of information in short-term
memory at one time. This is called Miller’s Law, based on the psychologist who first
investigated it.! Other pieces of information are available to us when we need them, but
when we focus on a new piece, something else falls back into secondary status.

This concept is similar to the number of balls a juggler can keep in the air at one time.
Human beings can mentally juggle about seven balls at once, and when we pick up a new
one, we have to drop another. Seven may seem like a small number, but the key is that each
ball can represent an abstraction, or a chunk of information. That is, each ball we are
juggling can represent a complex topic as long as we can think about it as one idea.

We rely on abstractions every day of our lives. For example, we don’t need to know
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how a car works to drive one to the store. That is, we don’t really need to know how the
engine works in detail. We need to know only some basics about how to interact with the
car: how the pedals and knobs and steering wheel work. And we don’t even have to be
thinking about all of those things at the same time. See FIGURE 1.2.

FIGURE 1.2 A car engine and the abstraction that allows us to use it
© aospan/Shutterstock, Inc.; © Syda Productions/Shutterstock, Inc.

Even if we do know how an engine works, we don’t have to think about it while
driving. Imagine if, while driving, we had to constantly think about how the spark plugs
ignite the fuel that drives the pistons that turn the crankshaft. We’d never get anywhere! A
car is much too complicated for us to deal with all at once. All the technical details would
be too many balls to juggle at the same time. But once we’ve abstracted the car down to the
way we interact with it, we can deal with it as one entity. The irrelevant details are ignored,
at least for the moment.

Information hiding is a concept related to abstraction. A computer programmer often
tries to eliminate the need or ability of one part of a program to access information located
in another part. This technique keeps the pieces of the program isolated from each other,
which reduces errors and makes each piece easier to understand. Abstraction focuses on the
external view—the way something behaves and the way we interact with it. Information
hiding is a design feature that gives rise to the abstractions that make something easier to
work with. Information hiding and abstraction are two sides of the same coin.

Information hiding A technique for isolating program pieces by eliminating the ability for one piece to access the
information in another

Abstract art, as the name implies, is another example of abstraction. An abstract
painting represents something but doesn’t get bogged down in the details of reality.
Consider the painting shown in FIGURE 1.3, entitled Nude Descending a Staircase. You
can see only the basic hint of the woman and the staircase, because the artist is not
interested in the details of exactly how the woman or the staircase looks. Those details are
irrelevant to the effect the artist is trying to create. In fact, the realistic details would get in
the way of the issues that the artist thinks are important.

Abstraction is the key to computing. The layers of a computing system embody the idea
of abstraction. And abstractions keep appearing within individual layers in various ways as
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well. In fact, abstraction can be seen throughout the entire evolution of computing systems,
which we explore in the next section.

FIGURE 1.3 Marcel Duchamp discussing his abstract painting Nude Descending a Staircase
© CBS/Landov

1.2 The History of Computing

The historical foundation of computing goes a long way toward explaining why computing
systems today are designed as they are. Think of this section as a story whose characters and
events have led to the place we are now and form the foundation of the exciting future to
come. We examine the history of computing hardware and software separately because each
has its own impact on how computing systems evolved into the layered model we use as the
outline for this book.

This history is written as a narrative, with no intent to formally define the concepts
discussed. In subsequent chapters, we return to these concepts and explore them in more
detail.

A Brief History of Computing Hardware

The devices that assist humans in various forms of computation have their roots in the
ancient past and have continued to evolve until the present day. Let’s take a brief tour
through the history of computing hardware.
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Early History

Many people believe that Stonehenge, the famous collection of rock monoliths in Great
Britain, is an early form of a calendar or astrological calculator. The abacus, which appeared
in the sixteenth century BC, was developed as an instrument to record numeric values and
on which a human can perform basic arithmetic.

In the middle of the seventeenth century, Blaise Pascal, a French mathematician, built
and sold gear-driven mechanical machines, which performed whole-number addition and
subtraction. Later in the seventeenth century, a German mathematician, Gottfried Wilhelm
von Leibniz, built the first mechanical device designed to do all four whole-number
operations: addition, subtraction, multiplication, and division. Unfortunately, the state of
mechanical gears and levers at that time was such that the Leibniz machine was not very
reliable.

In the late eighteenth century, Joseph Jacquard developed what became known as
Jacquard’s loom, used for weaving cloth. The loom used a series of cards with holes punched
in them to specify the use of specific colored thread and therefore dictate the design that
was woven into the cloth. Although not a computing device, Jacquard’s loom was the first
to make use of an important form of input: the punched card.

4

Beyond all dreams

“Who can foresee the consequences of such an invention? The Analytical Engine weaves algebraic patterns just as
the Jacquard loom weaves flowers and leaves. The engine might compose elaborate and scientific pieces of music of
any degree of complexity or extent.”

—Ada, Countess of Lovelace, 18432

Stonehenge Is Still a Mystical Place

© vencavolrab/iStock/Thinkstock

Stonehenge, a Neolithic stone structure that rises majestically out of the Salisbury Plain
in England, has fascinated humans for centuries. It is believed that Stonehenge was
erected over several centuries beginning in about 2180 BC. Its purpose is still a mystery,
although theories abound. At the summer solstice, the rising sun appears behind one of
the main stones, giving the illusion that the sun is balancing on the stone. This has led
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to the early theory that Stonehenge was a temple. Another theory, first suggested in the
middle of the twentieth century, is that Stonehenge could have been used as an
astronomical calendar, marking lunar and solar alignments. Yet a third theory is that
Stonehenge was used to predict eclipses. The latest research now shows that Stonehenge
was intended for and used as a cemetery.”> Human remains, from about 3000 BC until
2500 BC when the first large stones were raised, have been found. Regardless of why it
was built, there is a mystical quality about the place that defies explanation.

It wasn’t until the nineteenth century that the next major step was taken, this time by a
British mathematician. Charles Babbage designed what he called his analytical engine. His
design was too complex for him to build with the technology of his day, so it was never
implemented. His vision, however, included many of the important components of today’s
computers. Babbage’s design was the first to include a memory so that intermediate values
did not have to be reentered. His design also included the input of both numbers and
mechanical steps, making use of punched cards similar to those used in Jacquard’s loom.

Ada Augusta, Countess of Lovelace, was a very romantic figure in the history of
computing. Ada, the daughter of Lord Byron (the English poet), was a skilled
mathematician. She became interested in Babbage’s work on the analytical engine and
extended his ideas (as well as correcting some of his errors). Ada is credited with being the
first programmer. The concept of the loop—a series of instructions that repeat—is
attributed to her. The programming language Ada, used largely by the U.S. Department of
Defense, is named for her.

During the later part of the nineteenth century and the beginning of the twentieth
century, computing advances were made rapidly. William Burroughs produced and sold a
mechanical adding machine. Dr. Herman Hollerith developed the first electro-mechanical
tabulator, which read information from a punched card. His device revolutionized the
census taken every ten years in the United States. Hollerith later formed a company known
today as IBM.

In 1936, a theoretical development took place that had nothing to do with hardware
per se but profoundly influenced the field of computer science. Alan M. Turing, another
British mathematician, invented an abstract mathematical model called a Turing machine,
laying the foundation for a major area of computing theory. The most prestigious award
given in computer science (equivalent to the Fielding Medal in mathematics or a Nobel
Prize in other sciences) is the Turing Award, named for Alan Turing. A recent Broadway
play deals with his life. Analysis of the capabilities of Turing machines is a part of the
theoretical studies of all computer science students.

In the mid to late 1930s, work on building a computing machine continued around the
world. In 1937, George Stibitz constructed a 1-bit binary adder using relays. (See Chapter
4.) Later that year, Claude E. Shannon published a paper about implementing symbolic
logic using relays. In 1938, Konrad Zuse of Berlin built the first mechanical binary
programmable computer. (See biography of Konrad Zuse in Chapter 6.)

By the outbreak of World War II, several general-purpose computers were under design
and construction. In London in 1943, Thomas Flowers built the Colossus, considered by
many to be the first all-programmable electronic digital computer (FIGURE 1.4). In 1944,
the IBM Automatic Sequence Controlled Calculator was given to Harvard; it was
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subsequently known as the Harvard Mark I. The ENIAC, pictured in FIGURE 1.5, was
unveiled in 1946. John von Neumann, who had served as a consultant on the ENIAC
project, started work on another machine known as EDVAC, which was completed in
1950. In 1951, the first commercial computer, UNIVAC I, was delivered to the U.S.
Bureau of the Census. The UNIVAC I was the first computer used to predict the outcome
of a presidential election.*

The early history that began with the abacus ended with the delivery of the UNIVAC 1.
With the building of that machine, the dream of a device that could rapidly manipulate
numbers was realized; the search was ended. Or was it? Some experts predicted at that time
that a small number of computers would be able to handle the computational needs of
mankind. What they didn’t realize was that the ability to perform fast calculations on large
amounts of data would radically change the very nature of fields such as mathematics,
physics, engineering, and economics. That is, computers made those experts’ assessments of
what needed to be calculated entirely invalid.®

FIGURE 1.4 The Colossus, the first all-programmable digital computer
© Pictorial Press Ltd/Alamy Images
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FIGURE 1.5 The ENIAC, a World War II-era computer
Courtesy of U.S. Army.

After 1951, the story becomes one of the ever-expanding use of computers to solve
problems in all areas. From that point, the search has focused not only on building faster,
bigger devices, but also on developing tools that allow us to use these devices more
productively. The history of computing hardware from this point on is categorized into
several “generations” based on the technology they employed.

Counting Precedes Writing

It took about 4000 years to fully reduce three-dimensional tokens to written signs. It all
began about 7500 BC, when farmers made counters of clay in a dozen shapes to help
keep track of their goods. For example, a cone stood for a small measure of grain, a
sphere for a large measure of grain, and a cylinder for an animal. Four small measures of
grain were represented by four cones. Approximately 8000 of these tokens have been
found from Palestine, Anatolia, Syria, Mesopotamia, and Iran.

Approximately 3500 BC, after the rise of the city-states, administrators started using
clay balls as envelopes to hold the tokens. Some of these envelopes bore impressions of
the tokens they contained. The next step occurred between 3300 and 3200 BC, when
record keepers started just using the impression of the tokens on clay balls, dispensing
with the tokens themselves. Thus it took approximately 4000 years to reduce three-
dimensional tokens to written signs.

Around 3100 BC, styluses were used to draw the tokens rather than impressing the
tokens on the tables. This change led to the breaking of the one-to-one correspondence
between symbol and object. Ten jars of oil were represented by a jar of oil and a symbol
for ten. New signs were not created to express abstract numbers, but old signs took on
new meaning. For example, the cone sign, formerly representing a small measure of
grain, became the symbol for “1,” and the sphere (a large measure of grain) came to
mean “10.” Now 33 jars of oil could be represented by 10 + 10 + 10 + 1 + 1 + 1 and the
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symbol for “oil.”
Once abstract numerals were created, the signs for goods and the signs for numbers
could evolve in different ways. Thus writing was derived from counting.®

First Generation (1951-1959)

Commercial computers in the first generation (from approximately 1951 to 1959) were
built using vacuum tubes to store information. A vacuum tube, shown in FIGURE 1.6,
generated a great deal of heat and was not very reliable. The machines that used them
required heavy-duty air conditioning and frequent maintenance. They also required very
large, specially built rooms.

FIGURE 1.6 A vacuum tube
© SPbPhoto/Shutterstock, Inc.

The primary memory device of this first generation of computers was a magnetic drum
that rotated under a read/write head. When the memory cell that was being accessed
rotated under the read/write head, the data was written to or read from that place.

The input device was a card reader that read the holes punched in an IBM card (a
descendant of the Hollerith card). The output device was either a punched card or a line
printer. By the end of this generation, magnetic tape drives had been developed that were
much faster than card readers. Magnetic tapes are sequential storage devices, meaning that
the data on the tape must be accessed one after another in a linear fashion.

Storage devices external to the computer memory are called awuxiliary storage devices.
The magnetic tape was the first of these devices. Collectively, input devices, output devices,
and auxiliary storage devices became known as peripheral devices.

Second Generation (1959-1965)

The advent of the transistor (for which John Bardeen, Walter H. Brattain, and William B.
Shockley won a Nobel Prize) ushered in the second generation of commercial computers.
The transistor replaced the vacuum tube as the main component in the hardware. The
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transistor, as shown in FIGURE 1.7, was smaller, more reliable, faster, more durable, and
cheaper.

The second generation also witnessed the advent of immediate-access memory. When
accessing information from a drum, the CPU had to wait for the proper place to rotate
under the read/write head. The second generation used memory made from magnetic cores,
tiny doughnut-shaped devices, each capable of storing one bit of information. These cores
were strung together with wires to form cells, and cells were combined into a memory unit.
Because the device was motionless and was accessed electronically, information was
available instantly.

FIGURE 1.7 A transistor, which replaced the vacuum tube
Courtesy of Dr. Andrew Wylie

Ada Lovelace, the First Programmer’

On December 10, 1815 (the same year that George Boole was born), a daughter—
Augusta Ada Byron—was born to Anna Isabella (Annabella) Byron and George
Gordon, Lord Byron. At that time in England, Byron’s fame derived not only from his
poetry but also from his wild and scandalous behavior. The marriage was strained from
the beginning, and Annabella left Byron shortly after Ada’s birth. By April of 1816, the
two had signed separation papers. Byron left England, never to return. Throughout the
rest of his life he regretted that he was unable to see his daughter. At one point he wrote

of her,

1 see thee not. I hear thee not.
But none can be so wrapt in thee.

Before he died in Greece, at age 36, he exclaimed,
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Oh my poor dear child! My dear Ada!
My God, could I but have seen her!

Meanwhile, Annabella, who eventually was to become a baroness in her own right,
and who was educated as both a mathematician and a poet, carried on with Ada’s
upbringing and education. Annabella gave Ada her first instruction in mathematics, but
it soon became clear that Ada was gifted in the subject and should receive more
extensive tutoring. Ada received further training from Augustus DeMorgan, today
famous for one of the basic theorems of Boolean algebra. By age eight, Ada had
demonstrated an interest in mechanical devices and was building detailed model boats.

When she was 18, Ada visited the Mechanics Institute to hear Dr. Dionysius
Lardner’s lectures on the Difference Engine, a mechanical calculating machine being
built by Charles Babbage. She became so interested in the device that she arranged to be
introduced to Babbage. It was said that, upon seeing Babbage’s machine, Ada was the
only person in the room to understand immediately how it worked and to recognize its
significance. Ada and Charles Babbage became lifelong friends. She worked with him,
helping to document his designs, translating writings about his work, and developing
programs for his machines. In fact, Ada today is recognized as the first computer
programmer in history.

When Babbage designed his Analytical Engine, Ada foresaw that it could go beyond
arithmetic computations and become a general manipulator of symbols, thus having far-
reaching capabilities. She even suggested that such a device eventually could be
programmed with rules of harmony and composition so that it could produce
“scientific” music. In effect, Ada foresaw the field of artificial intelligence more than 150
years ago.

In 1842, Babbage gave a series of lectures in Turin, Italy, on his Analytical Engine.
One of the attendees was Luigi Menabrea, who was so impressed that he wrote an
account of Babbage’s lectures. At age 27, Ada decided to translate the account into
English, with the intent to add a few of her own notes about the machine. In the end,
her notes were twice as long as the original material, and the document, “The Sketch of
the Analytical Engine,” became the definitive work on the subject.

It is obvious from Ada’s letters that her “notes” were entirely her own and that
Babbage was acting as a sometimes unappreciated editor. At one point, Ada wrote to
him,

I am much annoyed at your having altered my Note. You know I am always willing
to make any required alterations myself, but that I cannot endure another person to
meddle with my sentences.

Ada gained the title “Countess of Lovelace” when she married Lord William
Lovelace. The couple had three children, whose upbringing was left to Ada’s mother
while Ada pursued her work in mathematics. Her husband was supportive of her work,
but for a woman of that day such behavior was considered almost as scandalous as some
of her father’s exploits.

Ada died in 1852, just one year before a working Difference Engine was built in
Sweden from one of Babbage’s designs. Like her father, Ada lived only to age 36, and
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even though they led very different lives, she undoubtedly admired him and took
inspiration from his unconventional and rebellious nature. In the end, Ada asked to be
buried beside him at the family’s estate.

The magnetic disk, a new auxiliary storage device, was also developed during the second
computer hardware generation. The magnetic disk is faster than magnetic tape because each
data item can be accessed directly by referring to its location on the disk. Unlike a tape,
which cannot access a piece of data without accessing everything on the tape that comes
before it, a disk is organized so that each piece of data has its own location identifier, called
an address. The read/write heads of a magnetic disk can be sent directly to the specific
location on the disk where the desired information is stored.

Third Generation (1965-1971)

In the second generation, transistors and other components for the computer were
assembled by hand on printed circuit boards. The third generation was characterized by
integrated circuits (ICs), solid pieces of silicon that contained the transistors, other
components, and their connections. Integrated circuits were much smaller, cheaper, faster,
and more reliable than printed circuit boards. Gordon Moore, one of the co-founders of
Intel, noted that from the time of the invention of the IC, the number of circuits that could
be placed on a single integrated circuit was doubling each year. This observation became
known as Moore’s law.®

Transistors also were used for memory construction, where each transistor represented
one bit of information. Integrated-circuit technology allowed memory boards to be built
using transistors. Auxiliary storage devices were still needed because transistor memory was
volatile; that is, the information went away when the power was turned off.

The terminal, an input/output device with a keyboard and screen, was introduced
during this generation. The keyboard gave the user direct access to the computer, and the
screen provided an immediate response.

2

Scientists build first nanotube computer

Scientists are examining the possibility of using carbon nanotubes, seamless cylinders of ultrapure carbon, as a basis
for future computers. As electrical conduction speeds of conventional silicon transistors begin to reach the limits of
the technology, the search is on for replacements that are faster than silicon. In 2013, scientists at Stanford
University built a working, although primitive, prototype of a computer using nanotube transistors made with these

unusual carbon fibers.”

Fourth Generation (1971-?)

Large-scale integration characterizes the fourth generation. From several thousand transistors
on a silicon chip in the early 1970s, we had moved to a whole microcomputer on a chip by
the middle of this decade. Main memory devices are still made almost exclusively out of
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chip technology. Over the previous 40 years, each generation of computer hardware had
become more powerful in a smaller package at lower cost. Moore’s law was modified to say
that chip density was doubling every 18 months.

By the late 1970s, the phrase personal computer (PC) had entered the vocabulary.
Microcomputers had become so cheap that almost anyone could have one, and a
generation of kids grew up playing Pac-Man.

The fourth generation found some new names entering the commercial market. Apple,
Tandy/Radio Shack, Atari, Commodore, and Sun joined the big companies of earlier
generations—IBM, Remington Rand, NCR, DEC (Digital Equipment Corporation),
Hewlett-Packard, Control Data, and Burroughs. The best-known success story of the
personal computer revolution is that of Apple. Steve Wozniak, an engineer, and Steve Jobs,
a high school student, created a personal computer kit and marketed it out of a garage. This
was the beginning of Apple Computer, a multibillion-dollar company.

The IBM PC was introduced in 1981 and was soon followed by compatible machines
manufactured by many other companies. For example, Dell and Compaq were successful in
making PCs that were compatible with IBM PCs. Apple introduced its very popular
Macintosh microcomputer line in 1984.

In the mid-1980s, larger, more powerful machines were created; they were referred to
as workstations. Workstations were generally meant for business, not personal, use. The idea
was for each employee to have his or her own workstation on the desktop. These
workstations were connected by cables, or nerworked, so that they could interact with one
another. Workstations were made more powerful by the introduction of the RISC
(reduced-instruction-set computer) architecture. Each computer was designed to
understand a set of instructions, called its machine language. Conventional machines such as
the IBM 370/168 had an instruction set containing more than 200 instructions.
Instructions were fast and memory access was slow, so specialized instructions made sense.
As memory access got increasingly faster, using a reduced set of instructions became
attractive. Sun Microsystems introduced a workstation with a RISC chip in 1987. Its
enduring popularity proved the feasibility of the RISC chip. These workstations were often
called UNIX workstations because they used the UNIX operating system.

¢

From a garage to the Fortune 500

Boyhood friends Steve Jobs and Steve Wozniak sold their Volkswagen van and programmable calculator,
respectively, to raise the money to finance their new computer company. Their first sale was 50 Apple Is, the
computer that they had designed and built in a garage.

In six short years Apple was listed in the Fortune 500.

Because computers are still being made using circuit boards, we cannot mark the end of
this generation. However, several things have occurred that so dramatically affected how we
use machines that they certainly have ushered in a new era. Moore’s law was once again
restated in the following form: “Computers will either double in power at the same price or
halve in cost for the same power every 18 months.”"°
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Parallel Computing

Although computers that use a single primary processing unit continue to flourish, radically
new machine architectures began appearing in the late 1980s. Computers that use these
parallel architectures rely on a set of interconnected central processing units.

One class of parallel machines is organized so that the processors all share the same
memory unit. In another class of machines, each central processor has its own local
memory and communicates with the others over a very fast internal network.

Parallel architectures offer several ways to increase the speed of execution. For example,
a given step in a program can be separated into multiple pieces, and those pieces can be
executed simultaneously on several individual processors. These machines are called SIMD
(single-instruction, multiple-data-stream) computers. A second class of machines can work
on different parts of a program simultaneously. These machines are called MIMD
(multiple-instruction, multiple-data-stream) computers.

The potential of hundreds or even thousands of processors combined in one machine is
enormous, and the challenge of programming for such machines is equally daunting.
Software designed for parallel machines is different from software designed for sequential
machines. Programmers have to rethink the ways in which they approach problem solving
and programming to exploit parallelism.

2

Jobs and Wozniak can’t give it away

“So we went to Atari and said, ‘Hey, we’ve got this amazing thing, even built with some of your parts, and what do
you think about funding us? Or we'll give it to you. We just want to do it. Pay our salary, we’ll come work for you.”
And they said, ‘No.” So then we went to Hewlett-Packard, and they said, ‘Hey, we don’t need you. You haven’t got

through college yet.” ”!!

Networking

In the 1980s, the concept of a large machine with many users gave way to a network of
smaller machines connected so that they can share resources such as printers, software, and
data. Ethernet, invented by Robert Metcalfe and David Boggs in 1973, used a cheap coaxial
cable to connect the machines and a set of protocols to allow the machines to communicate
with one another. By 1979, DEC, Intel, and Xerox joined to establish Ethernet as a
standard.

Workstations were designed for networking, but networking personal computers didn’t
become practical until a more advanced Intel chip was introduced in 1985. By 1989,
Novell’s Netware connected PCs together with a file server, a PC with generous mass
storage and good input/output capability. Placing data and office automation software on
the server rather than each PC having its own copy allowed for a measure of central control
while giving each machine a measure of autonomy. Workstations or personal computers
networked together became known as LANs (local area networks).

The Internet as we know it today is descended from the ARPANET, a government-
sponsored network begun in the late 1960s, which originally consisted of 11 nodes
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concentrated mainly in the Los Angeles and Boston areas. Like ARPANET and LANS, the
Internet uses packet switching, a way for messages to share lines. The Internet, however, is
made up of many different networks across the world that communicate by using a
common protocol, TCP/IP (Transmission Control Protocol/Internet Protocol).

Paul E. Ceruzzi, in A History of Modern Computing, comments on the relationship
between Ethernet and the Internet:

If the Internet of the 1990s became the Information Superhighway, then Ethernet
became the equally important network of local roads to feed it. As a descendent of
ARPA research, the global networks we now call the Internet came into existence
before the local Ethernet was invented at Xerox. But Ethernet transformed the

nature of office and personal computing before the Internet had a significant
effect.”?

A Brief History of Computing Software

The hardware of a computer can be turned on, but it does nothing until it is directed to do
so by the programs that make up the computer’s software. The manner in which software
evolved is crucial to understanding how software works in a modern computing system.

2

Computer History Museum

The first computer museum opened in 1979, located in the corporate headquarters of Digital Equipment
Corporation (DEC) in Marlborough, Massachusetts. After several incarnations, in 2005 the Computer History

Museum moved into a permanent home in Mountain View, California, in the heart of Silicon Valley.'?

First-Generation Software (1951-1959)

The first programs were written using machine language, the instructions built into the
electrical circuitry of a particular computer. Even the small task of adding two numbers
together used three instructions written in binary (1s and 0Os), and the programmer had to
remember which combination of binary digits meant what. Programmers using machine
language had to be very good with numbers and very detail oriented. It’s not surprising that
the first programmers were mathematicians and engineers. Nevertheless, programming in
machine language is both time-consuming and prone to errors.

Because writing in machine code is so tedious, some programmers took the time to
develop tools to help with the programming process. Thus the first artificial programming
languages were developed. These languages, called assembly languages, used mnemonic
codes to represent each machine-language instruction.

Because every program that is executed on a computer eventually must be in the form
of the computer’s machine language, the developers of assembly language also created
software zranslators to translate programs written in assembly language into machine code.
A program called an assembler reads each of the program’s instructions in mnemonic form
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and translates it into the machine-language equivalent. These mnemonics are abbreviated
and sometimes difficult to read, but they are much easier to use than long strings of binary
digits.

The programmers who wrote these tools to make programming easier for others were
the first systems programmers. So, even in first-generation software, there was the division
between those programmers who wrote tools and those programmers who used the tools.
The assembly language acted as a buffer between the programmer and the machine
hardware. See FIGURE 1.8. Sometimes, when efficient code is essential, programs today
may be written in assembly language. Chapter 6 explores an example of machine code and
a corresponding assembly language in detail.

Assembly
| language Machine language

FIGURE 1.8 Layers of languages at the end of the first generation

Second-Generation Software (1959-1965)

As hardware became more powerful, more powerful tools were needed to use it effectively.
Assembly languages certainly presented a step in the right direction, but the programmer
still was forced to think in terms of individual machine instructions. The second generation
saw more powerful languages developed. These high-level languages allowed the
programmer to write instructions using more English-like statements.

Two of the languages developed during the second generation are still used today:
FORTRAN (a language designed for numerical applications) and COBOL (a language
designed for business applications). FORTRAN and COBOL developed quite differently.
FORTRAN started out as a simple language and grew as additional features were added to
it over the years. In contrast, COBOL was designed first and then implemented. It has
changed little over time.

Another language that was designed during this period that remains in use today is
Lisp. Lisp differs markedly from FORTRAN and COBOL and was not widely accepted. It
was used mainly in artificial intelligence applications and research. Indeed, dialects of Lisp
are among the languages of choice today in artificial intelligence. Scheme, a dialect of Lisp,
is used at some schools as an introductory programming language.

The introduction of high-level languages provided a vehicle for running the same
program on more than one computer. Each high-level language has a translating program
that goes with it, a program that takes statements written in the high-level language and
converts them to the equivalent machine-code instructions. In the earliest days, the high-
level language statements were often translated into an assembly language, and then the
assembly-language statements were translated into machine code. A program written in
FORTRAN or COBOL can be translated and run on any machine that has a translating
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program called a compiler.

At the end of the second generation, the role of the systems programmer was becoming
more well-defined. Systems programmers wrote tools like assemblers and compilers; those
people who used the tools to write programs were called applications programmers. The
applications programmer was becoming even more insulated from the computer hardware
as the software surrounding the hardware became more sophisticated. See FIGURE 1.9.

High-level language

Assembly
language | Machine language

FIGURE 1.9 Layers of language at the end of the second generation

Third-Generation Software (1965-1971)

During the third generation of commercial computers, it became apparent that the human
was slowing down the computing process. Computers were sitting idle while waiting for the
computer operator to prepare the next job. The solution was to put the computer resources
under the control of the computer—that is, to write a program that would determine
which programs were run when. This kind of program is called an operating system.

During the first two computer software generations, utility programs had been written
to handle often-needed tasks. Loaders loaded programs into memory and /inkers linked
pieces of large programs together. In the third generation, these utility programs were
refined and put under the direction of the operating system. This group of utility programs,
the operating system, and the language translators (assemblers and compilers) became
known as systems software.

The introduction of computer terminals as input/output devices gave users ready access
to computers, and advances in systems software gave machines the ability to work much
faster. However, inputting and outputting data from keyboards and screens was a slow
process, much slower than carrying out instructions in memory. The problem was how to
make better use of the machine’s greater capabilities and speed. The solution was time
sharing—many different users, each at a terminal, communicating (inputting and
outputting) with a single computer all at the same time. Controlling this process was an
operating system that organized and scheduled the different jobs.

For the user, time sharing is much like having his or her own machine. Each user is
assigned a small slice of central processing time and then is put on hold while another user
is serviced. Users generally aren’t even aware that there are other users. However, if too
many people try to use the system at the same time, there can be a noticeable wait for a job
to be completed.

As part of the third generation, general-purpose application programs were being
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written. One example was the Statistical Package for the Social Sciences (SPSS), which was
written in FORTRAN. SPSS had a special language, and users wrote instructions in that
language as input to the program. This language allowed the user, who was often not a
programmer, to describe some data and the statistics to be computed on that data.

At the beginning of the computer era, the computer user and the programmer were the
same person. By the end of the first generation, programmers had emerged who wrote tools
for other programmers to use, giving rise to the distinction between systems programmers
and applications programmers. However, the programmer was still the user. In the third
generation, systems programmers were writing programs—software tools—for others to
use. Suddenly, there were computer users who were not programmers in the traditional
sense.

The separation between the user and the hardware was growing wider. The hardware
had become an even smaller part of the picture. A computer system—a combination of
hardware, software, and the data managed by them—had emerged. See FIGURE 1.10.
Although the layers of languages kept getting deeper, programmers continued (and still
continue) to use some of the very inner layers. If a small segment of code must run as
quickly as possible and take up as few memory locations as possible, it may still be
programmed in an assembly language or even machine code.

Fourth Generation (1971-1989)

The 1970s saw the introduction of better programming techniques called structured
programming, a logical, disciplined approach to programming. The languages Pascal and
Modula-2 were built on the principles of structured programming. BASIC, a language
introduced for third-generation machines, was refined and upgraded to more structured
versions. C, a language that allows the user to intersperse assembly-language statements in a
high-level program, was also introduced. C++, a structured language that allows the user
access to low-level statements as well, became the language of choice in the industry.

Application packages

Systems
software

High-level languages

" Assembly

languages | Machine language

FIGURE 1.10 The layers of software surrounding the hardware continue to grow
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Better and more powerful operating systems were being developed, too. UNIX,
developed at AT&T™ as a research tool, has become standard in many university settings.
PC-DOS, developed for the IBM PC, and MS-DOS, developed for PC compatibles,
became standards for personal computers. Apple capitalized on research done at Xerox
PARC by incorporating a mouse and point-and-click graphical interface into the operating
system for the Macintosh, which ushered in an important change to computer—user
interaction on personal computers.

High-quality, reasonably priced applications software packages became available at
neighborhood stores. These programs allow the user with no computer experience to
perform a specific task. Three typical kinds of application packages are spreadsheets, word
processors, and database management systems. Lotus 1-2-3 was the first commercially
successful spreadsheet that allowed a novice user to enter and analyze all kinds of data.
WordPerfect was one of the first word processors, and dBase IV was a system that let the
user store, organize, and retrieve data.

2

From computers to books

Former Microsoft executive John Wood left his job to start a nonprofit that builds schools and libraries in
developing countries. He said, “Education is the ticket out of poverty, and it produces better family health and
better treatment of women. Every day, 250 million kids worldwide wake up with no school to go to. Two-thirds of

them are girls.” By 2013, Room to Read had built 1752 schools and 16,060 libraries.! 1>

Fifth Generation (1990—Present)

The fifth generation is notable for three major events: the rise of Microsoft® as a dominant
player in computer software, object-oriented design and programming, and the World
Wide Web.

Microsoft’s Windows operating system emerged as a major force in the PC market
during this period. Although WordPerfect continued to improve, Microsoft Word became
the most used word processing program. In the mid-1990s, word processors, spreadsheet
programs, database programs, and other application programs were bundled together into
super packages called office suites.

Object-oriented design became the design of choice for large programming projects.
Whereas structured design is based on a hierarchy of tasks, object-oriented design is based
on a hierarchy of data objects. Java™, a language designed by Sun Microsystems for object-
oriented programming, began to rival C++.

In 1990, Tim Berners-Lee, a British researcher at the CERN physics lab in Geneva,
Switzerland, created a set of technical rules for what he hoped would be a universal Internet
document center called the World Wide Web. Along with these rules, he created HTML, a
language for formatting documents, and a rudimentary, text-only browser, a program that
allows a user to access information from websites worldwide. In 1993, Marc Andreesen and
Eric Bina released Mosaic, the first graphics-capable browser. To quote Newsweek: “Mosaic
just may have been the most important computer application ever.”'®

There were now two giants in the browser market: Netscape Navigator (derived from
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Mosaic) and Microsoft’s Internet Explorer (IE). Microsoft bundled IE with its Windows
operating system, which made IE the winner in the browser wars. This bundling led to a
monopoly lawsuit filed by the U.S. government, the 2001 settlement of which required
Microsoft to be more open with its competitors. Netscape’s future became uncertain after
America Online purchased it in 1998. AOL stopped supporting Netscape products ten
years later. Mozilla Firefox, a web browser that retained some of the flavor of Mosaic, was
released in November 2004. As of 2014, Firefox had captured 25% of the browser market.

Although the Internet had been around for decades, the World Wide Web made it easy
to use the Internet to share information around the world (see FIGURE 1.11). Around
2002, the Web began changing. Social networking sites such as Facebook and Twitter have
become wildly popular. Online blogging has turned anyone and everyone into an author or
social critic. User-generated and -edited content characterizes these new websites. For
example, Wikipedia is an online encyclopedia for which anyone can enter or edit content.
The term Web 2.0 has been used by some to describe these emerging sites and uses.

The fifth generation must be characterized most of all by the changing profile of the
user. The first user was the programmer who wrote programs to solve specific problems—
his or her own or someone else’s. Then the systems programmer emerged, who wrote more
and more complex tools for other programmers. By the early 1970s, applications
programmers were using these complex tools to write applications programs for non-
programmers to use. With the advent of the personal computer, computer games,
educational programs, and user-friendly software packages, many people became computer
users. With the birth and expansion of the World Wide Web, web surfing has become the
recreation of choice, so even more people have become computer users. The user is a first-
grade child learning to read, a teenager downloading music, a college student writing a
paper, a homemaker planning a budget, and a banker looking up a customer’s loan record.

The user is all of us.
'
ey

[

FIGURE 1.11 Sharing information on the World Wide Web
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In our brief history of hardware and software, we have focused our attention on
traditional computers and computing systems. Paralleling this history is the growing use of
integrated circuits, or chips, to run or regulate everything from toasters to cars to intensive
care monitors to satellites. Such computing technology is called an embedded system.
Although these chips are not actually computers in the sense that we are going to study in
this book, they are certainly a product of the technology revolution of the last 55 years.

Predictions

We end this brief history of computing with a few predictions about computers that didn’t
come true:'”~"?

“I think there is a world market for maybe five computers.”—Thomas Watson,

chair of IBM, 1943.

“Where ... the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tons,
computers in the future may have only 1,000 vacuum tubes and weigh only 1.5
tons.”—Popular Mechanics, 1949.

“I have traveled the length and breadth of this country and talked with the best
people, and I can assure you that data processing is a fad that won’t last out the
year.”—The editor in charge of business books for Prentice Hall, 1957.

“But what ... is it good for?”—Engineer at the Advanced Computing Systems
division of IBM, commenting on the microchip, 1968.

“There is no reason anyone would want a computer in their home.”—Ken Olsen,
president, chairman, and founder of Digital Equipment Corporation, 1977.

“$100 million is way too much to pay for Microsoft.”—IBM, 1982.

“I predict the Internet ... will go spectacularly supernova and in 1996
catastrophically collapse.”—Bob Metcalfe, 3Com founder and inventor, 1995.

“Folks, the Mac platform is through—totally.”—John C. Dvorak, PC Magazine,
1998.

1.3 Computing as a Tool and a Discipline

In the previous section on the history of computer software, we pointed out the ever-
changing role of the user. At the end of the first generation, users were split into two
groups: systems programmers, who developed tools to make programming easier, and
applications programmers, who used those tools. Later, applications programmers built
large domain-specific programs such as statistical packages, word processors, spreadsheets,
intelligent browsers, virtual environments, and medical diagnosis applications on top of the
traditional language tools. These application programs were, in turn, used by practitioners
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with no computer background.

So who is using the computer as a tool? Everyone, except for those people who are
creating the tools for others. For these toolmakers, either computing is a discipline (low-
level tools) or the discipline of computing has made their tools possible (applications built
upon applications).

A discipline is defined as a field of study. Peter Denning defines the discipline of
computer science as “the body of knowledge and practices used by computing professionals
in their work.... This discipline is also called computer science and engineering,
computing, and informatics.”?® He continues, “The body of knowledge of computing is
frequently described as the systematic study of algorithmic processes that describe and
transform information: their theory, analysis, design, efficiency, implementation, and
application. The fundamental question underlying all of computing is, What can be
(efficiently) automated?”

Denning states that each practitioner must be skilled in four areas:

m Algorithmic thinking, in which one is able to express problems in terms of step-by-

step procedures to solve them

m Representation, in which one is able to store data in a way that it can be processed
efficiently

m Programming, in which one is able to combine algorithmic thinking and
representation into computer software

m Design, in which the software serves a useful purpose

A debate has long raged about whether computing is a mathematical discipline, a
scientific discipline, or an engineering discipline. Computing certainly has strong roots in
mathematical logic. The theorems of Turing tell us that certain problems cannot be solved,
Boolean algebra describes computer circuits, and numerical analysis plays an important role
in scientific computing. Scientific disciplines attempt to understand how their systems
work. The natural sciences exist to “fill in the instruction book that God forgot to leave
us.”?! Thus computing is a scientific discipline, as we use them to build and test models of
natural phenomena. As we design and build larger and larger computing systems, we are
using techniques from engineering.

In 1989, a task force of computer science educators proposed a curriculum model that
covered the subareas of computing from the three perspectives represented in our history:
theory (mathematics); experimentation, called abstraction by computer scientists (sciences);
and design (engineering).”> Theory refers to the building of conceptual frameworks and
notations for understanding relationships among objects in a domain. Experimentation
(abstraction) refers to exploring models of systems and architectures within different
application domains and determining whether the models predict new behaviors. Design
refers to constructing computer systems that support work in different application
domains.

TABLE 1.1 shows the topic areas outlined by the task force. Of the nine subject topic
areas, six relate to understanding and building computing tools in general: Algorithms and
Data Structures, Programming Languages, (Computer) Architecture, Operating Systems,
Software Methodology and Engineering, and Human—Computer Communication. Not
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surprisingly, these are called systems areas. Three of the subareas relate to the computer’s use
as a tool: Database and Information Retrieval, Artificial Intelligence and Robotics, and
Graphics. These areas are called applications areas.

TABLE 1.1 Topic Areas of the Computing Discipline, 1989

Algorithms and Data Structures

Programming Languages

Architecture

Operating Systems

Software Methodology and Engineering

Database and Information Retrieval

Artificial Intelligence and Robotics

Human—Computer Communication

Graphics

4

Computers go to college

The first departments of computer science were established in 1962 at Purdue and Stanford Universities. The first
PhD in computer science was awarded by the University of Pennsylvania in 1965. The first curriculum effort in
computer science was published by the ACM in 1968.%

Revised curriculum documents, published in 2001, reorganized and expanded the topic
areas to a total of 14. Algorithms and Data Structures has been expanded and put under the
title “Programming Fundamentals.” With the rise of the Web, networks get their own
category: Net-Centric Computing. Artificial Intelligence and Robotics has been expanded
to include all Intelligent Systems. Databases and Information Retrieval are now called
Information Management.

The new topics include Discrete Structures, an area of mathematics that is important to
computing, and Algorithms and Complexity, the formal study of algorithms rather than
the study of how to write them. These would be systems areas. Computational Science
includes the application of numerical techniques and simulation to fields such as molecular
dynamics, celestial mechanics, economic forecasting, and bioinformatics. The last new
topic is Social and Professional Issues, which relates to professionals in both systems and
applications areas. This area is now called the Tenth Strand. We have more to say about this
in the Ethical Issues section. TABLE 1.2 shows a listing of the topic areas as of 2001. The
report “Computer Science Curriculum 2008: An Interim Revision of CS 2001,” published
in December 2008, leaves these 14 topic areas unchanged.

TABLE 1.2 Topic Areas of the Computing Discipline, 2001

Discrete Structures

Programming Fundamentals
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Algorithms and Complexity

Architecture and Organization

Operating Systems

Net-Centric Computing

Programming Languages

Human-Computer Interaction

Graphics and Visual Computing

Intelligent Systems

Information Management

Social and Professional Issues

Software Engineering

Computational Science

Research is ongoing in both systems and applications. Systems research produces better
general tools; applications research produces better tools for the domain-specific
applications. There is no doubt that the relationships between the people who investigate
computing topics as a discipline directly affect those who use computers as a tool.
Computing research fuels the applications people use daily, and the turnaround for the
technology is amazingly fast. This symbiotic relationship is more dynamic in computing
than in any other discipline.

In this book we explain, at an introductory level, the ideas underlying computing as a
discipline. This book does not aim to make you a better user of a computer, although it
should undoubtedly have that side effect. Instead, we want you to walk away with a
thorough knowledge of how computer systems work, where they are now, and where they
may go in the future. For this reason, we examine both systems and applications.

SUMMARY

This book is a broad study of computer systems, including the hardware that makes up the
devices, the software programs executed by the machine, and the data managed and
manipulated by both. Computing systems can be divided into layers, and our organization
of this book follows those layers from the inside out.

The history of computing reveals the roots from which modern computing systems
grew. This history spans four generations, each characterized by the components used to
build the hardware and the software tools developed to allow the programmer to make
more productive use of the hardware. These tools have formed layers of software around
the hardware.

Throughout the rest of this book, we examine the different layers that make up a
computing system, beginning with the information layer and ending with the
communication layer. Our goal is to give you an appreciation and understanding of all
aspects of computing systems.
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You may go on to study computer science in depth and contribute to the future of
computing systems. Or you may go on to be an application specialist within other
disciplines, using the computer as a tool. Whatever your future holds, given how prevalent
computing systems are, a fundamental understanding of how they work is imperative.

ETHICAL ISSUES
Digital Divide

Over the past three decades, the dependence of U.S. society on computer technology
has increased dramatically. At the beginning of the 21st century, it was estimated that
51% of U.S. households had a personal computer and 42% had Internet access.”* By
2011, 75.6% of households had a computer and 71.7% had Internet access. These
statistics also show that 24.4% still did 7ot have a computer and 28.3% did not have
Internet access. The term digital divide has come to represent this disparity between
Information Age haves and have nots.

Although this gap is narrowing, it is still of social concern. As groups, rural
communities, minority households, low-income families, and people with disabilities do
not have the same levels of Internet access as more advantaged people. In educational
settings, Web connections and the quantity and quality of computers vary greatly across
demographic regions. Programs such as the federally supported E-Rate Program,
established in 1996 and funded by fees charged to companies that provide interstate
and/or international telecommunications services, respond to these inequalities by
providing financial discounts to schools and libraries in need.

In 2005, Nicholas Negroponte, in collaboration with MIT, launched the One
Laptop per Child (OLPC) program. Working from the philosophy that every child—
even those in the most remote regions of the world—should have access to a computer,
OLPC set out to produce a low-cost laptop for children who otherwise could not afford
one. OLPC designed a basic laptop that sells for less than $200 and has a battery that
can be charged by human power. By 2011, more than two million children and teachers
in 42 countries were using these XO laptops.”

The digital divide encompasses an additional challenge that developing nations must
face. Without the necessary telecommunication infrastructures to support Internet
access, emerging countries are at a serious disadvantage. This is reflected in statistics that
show how Internet access varies throughout the world. In 2012, the percentages of
people who have Internet access per continent or region were 15.6% in Africa, 27.5% in
Asia, 40.2% in the Middle East, 42.9% in South America, 63.2% in Europe, 67.6% in
Australia, and 78.6% in North America. The world figure is 34.3%; that is, 34.3% of
people worldwide have Internet access.?

With the advent of smartphones, computer usage and Internet access no longer
parallel each other. You no longer need a computer to be an Internet user.

A thought to ponder: Those without Internet access do not know what is happening
around the world, and the world has no access to what they are thinking. They are
invisible to the rest of the world, and the rest of the world is invisible to them.
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KEY TERMS

Abstraction

Computer hardware

Computer software

Computing system

EXERCISES

For Exercises 1-10, choose from the following list of people.

b

® N OV

9.

10

A. Leibniz
Pascal
Babbage
. Lovelace
Hollerith
Byron

. Turing
. Jacquard

T OTmmEOOw

. What French mathematician built and sold the first gear-driven mechanical

machine that did addition and subtraction?

Who built the first mechanical machine that did addition, subtraction,
multiplication, and division?

Who designed the first mechanical machine that included memory?
Who was considered the first programmer?

Who proposed that a punched card be used for counting the census?
Who edited Babbage’s work?

Who was Ada Lovelace’s father?

Who would have been mentioned in the book the Code Breakers?
Who developed the concept of punched holes used in weaving cloth?
Who is associated with IBM?

For Exercises 11-23, match the hardware listed to the appropriate generation.

11.
12.
13.
14.
15.
16.

A. First

B. Second

C. Third

D. Fourth

E. Fifth

Circuit boards
Transistor
Magnetic core memory
Card input/output
Parallel computing
Magnetic drum
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17.
18.
19.
20.
21.

22
23

Magnetic tape drives
Integrated circuits
Personal computer
Vacuum tube
Large-scale integration

. Magnetic disk

Networking

For Exercises 24—38, match the software or software concepts listed to the appropriate
generation.

24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

A. First

B. Second

C. Third

D. Fourth

E. Fifth

Assemblers

FORTRAN

Operating systems
Structured programming
Time sharing

HTML (for the Web)
Loaders

Spreadsheets

Word processors

Lisp

PC-DOS
Loaders/linkers bundled into an operating system
Java

SPSS
C++

Exercises 39-59 are short-answer questions.

39

40.
41.
42.
43.

44,
45.
406.
47.

48.
49.

What do we mean by the statement that “the 1980s and 1990s must be
characterized by the changing profile of the user”?

Why was Mosaic important?

Discuss the browser wars.

Describe how the Web changed after 2002.

Of the predictions listed in this chapter on page 25, which do you consider the
biggest error in judgment? Explain.

Name the four areas in which the practitioner must be skilled.

Distinguish between computing as a tool and computing as a discipline.

Is computing a mathematical discipline, a scientific discipline, or an engineering
discipline? Explain.

Distinguish between systems areas and applications areas in computing as a
discipline.

Define the word abstraction and relate it to the drawing in Figure 1.2.
Compare Tables 1.1 and 1.2. Which trends do you see?
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50.
51.
52.
53.

54.
55.
56.
57.
58.

59.

Define the word protocol and explain how it is used in computing.
Distinguish between machine language and assembly language.

Distinguish between assembly language and high-level languages.
FORTRAN and COBOL were two high-level languages defined during the
second generation of computer software. Compare and contrast these languages in
terms of their history and their purpose.
Distinguish between an assembler and a compiler.

Distinguish between a systems programmer and an applications programmer.
What was the rationale behind the development of operating systems?

What constitutes systems software?

What do the following pieces of software do?

a. Loader

b. Linker

c. Editor

How was the program SPSS different from the programs that came before it?

THOUGHT QUESTIONS

1.

Identify five abstractions in your school environment. Indicate which details are
hidden by the abstraction and how the abstraction helps manage complexity.

2. Discuss the role of abstraction in the history of computer software.
3. Did you have a computer in your home when you were growing up? If so, did it

have Internet access? Did you use it for any of your high school classwork?

4. Do you know anyone today who does not have Internet access?
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THE INFORMATION LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits

5 Computing Components
The Programming Layer

6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages
The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer

15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion

18 Limitations of Computing
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2  BINARY VALUES AND NUMBER
SYSTEMS

Now that we've established history and some common terminology in Chapter 1, our
exploration of computing technology can begin in earnest. This chapter describes binary
values—the way in which computer hardware represents and manages information. This
chapter also puts binary values in the context of all number systems, reminding us of grade
school concepts that we now take for granted. You probably already know many of the
concepts about binary numbers described in this chapter, but you might not realize that
you know them! The rules of all number systems are the same; it’s just a matter of going
back to those underlying concepts and applying them in a new base. By making sure we
have an understanding of binary values, we pave the way to understanding how computing
systems use the binary number system to accomplish their tasks.

GOALS
After studying this chapter, you should be able to:

distinguish among categories of numbers.

describe positional notation.

convert numbers in other bases to base 10.

convert base-10 numbers to numbers in other bases.
describe the relationship between bases 2, 8, and 16.

explain the importance to computing of bases that are powers of 2.

2.1 Numbers and Computing

Numbers are crucial to computing. In addition to using a computer to execute numeric
computations, all types of information that we store and manage using a computer are
ultimately stored as numbers. At the lowest level, computers store all information using just
the digits 0 and 1. So to begin our exploration of computers, we need to first begin by
exploring numbers.

First, let’s recall that numbers can be classified into all sorts of categories. There are
natural numbers, negative numbers, rational numbers, irrational numbers, and many others
that are important in mathematics but not to the understanding of computing. Let’s review
the relevant category definitions briefly.

First, let’s define the general concept of a number: A number is a unit belonging to an
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abstract mathematical system and is subject to specified laws of succession, addition, and
multiplication. That is, a number is a representation of a value, and certain arithmetic
operations can be consistently applied to such values.

Number A unit of an abstract mathematical system subject to the laws of arithmetic

Now let’s separate numbers into categories. A natural number is the number 0 or any
number obtained by repeatedly adding 1 to this number. Natural numbers are the ones we
use in counting. A negative number is less than zero and is opposite in sign to a positive
number. An integer is any of the natural numbers or any of the negatives of these numbers.
A rational number is an integer or the quotient of two integers—that is, any value that can
be expressed as a fraction.

Natural number The number 0 and any number obtained by repeatedly adding 1 to it
Negative number A value less than 0, with a sign opposite to its positive counterpart
Integer A natural number, a negative of a natural number, or zero

Rational number An integer or the quotient of two integers (division by zero excluded)

In this chapter, we focus on natural numbers and the ways that they are represented in
various number systems. As part of our discussion, we establish how all number systems
relate to each other. In Chapter 3, we examine the computer representation of negative and
rational numbers, as well as how we use numbers to represent other forms of data such as
characters and images.

Some of the material in this chapter may already be familiar to you. Certainly some of
the underlying ideas should be. You probably take for granted some basic principles of
numbers and arithmetic because you’ve become so used to them. Part of our goal in this
chapter is to remind you of those underlying principles and to show you that they apply to
all number systems. Then the idea that a computer uses binary values—that is, 1s and 0s—
to represent information should be less mysterious.

2.2 Positional Notation

How many ones are there in 943? That is, how many actual things does the number 943
represent? Well, in grade school terms, you might say there are 9 hundreds plus 4 tens plus
3 ones. Or, said another way, there are 900 ones plus 40 ones plus 3 ones. So how many
ones are there in 754? 700 ones plus 50 ones plus 4 ones. Right? Well, maybe. The answer
depends on the base of the number system you are using. This answer is correct in the base-
10, or decimal, number system, which is the number system humans use every day. But
that answer is not correct in other number systems.

The base of a number system specifies the number of digits used in the system. The
digits always begin with 0 and continue through one less than the base. For example, there
are 2 digits in base 2: 0 and 1. There are 8 digits in base 8: 0 through 7. There are 10 digits
in base 10: 0 through 9. The base also determines what the positions of digits mean. When
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you add 1 to the last digit in the number system, you have a carry to the digit position to
the left.

Base The foundational value of a number system, which dictates the number of digits and the value of digit
positions

Numbers are written using positional notation. The rightmost digit represents its value
multiplied by the base to the zeroth power. The digit to the left of that one represents its
value multiplied by the base to the first power. The next digit represents its value
multiplied by the base to the second power. The next digit represents its value multiplied
by the base to the third power, and so on. You are so familiar with positional notation that
you probably don’t think about it. We used it instinctively to calculate the number of ones

in 943.

Positional notation A system of expressing numbers in which the digits are arranged in succession, the position of
cach digit has a place value, and the number is equal to the sum of the products of each digit by its place value'

9% 10 = 9*100 = 900
+4*10' =4* 10 = 40
+3*10°=3* 1=_3

943
4

The importance of zero

Positional notation is possible only because of the concept of zero. Zero was the fundamental concept at the
intersection of all branches of modern mathematics. As Georges Ifrah noted in his book 7he Universal History of

Computing: “To sum up, the vital discovery of zero gave the human mind an extraordinarily powerful potential. No

other human creation has exercised such an influence on the development of mankind’s intelligence.”*

A more formal way of defining positional notation is to say that the value is represented
as a polynomial in the base of the number system. But what is a polynomial? A polynomial
is a sum of two or more algebraic terms, each of which consists of a constant multiplied by
one or more variables raised to a nonnegative integral power. When defining positional
notation, the variable is the base of the number system. Thus 943 is represented as a
polynomial as follows, with x acting as the base:

e R T o O R

Let’s express this idea formally. If a number in the base-R number system has 7 digits, it
is represented as follows, where 4, represents the digit in the 7th position in the number:

f’f._- # -l 4 Lf:_- : L~ Lo T S | c,!'_1I *R+ :fl

Look complicated? Let’s look at a concrete example: 63578 in base 10. Here 7 is 5 (the
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number has five digits), and R is 10 (the base). The formula says that the fifth digit (last
digit on the left) is multiplied by the base to the fourth power; the fourth digit is multiplied
by the base to the third power; the third digit is multiplied by the base to the second power;
the second digit is multiplied by the base to the first power; and the first digit is not
multiplied by anything.

6 * I{},;+3*]D¥+aﬁ. I[:IJ_I_?-;- l{'_}'-+8'

In the previous calculation, we assumed that the number base is 10. This is a logical
assumption because our number system is base 10. However, there is no reason why the
number 943 couldn’t represent a value in base 13. If so, to determine the number of ones,
we would have to convert it to base 10.

g *]32 =09 %150 = ]52]
+4*%]13'=4%* ]13= 52
+3*]3% = 3 * 1 = 3

1576

Therefore, 943 in base 13 is equal to 1576 in base 10. Keep in mind that these two
numbers have an equivalent value. That is, both represent the same number of things. If
one bag contains 943 (base 13) beans and a second bag contains 1576 (base 10) beans, then
both bags contain the exact same number of beans. Number systems just allow us to
represent values in various ways.

Note that in base 10, the rightmost digit is the “ones” position. In base 13, the
rightmost digit is also the “ones” position. In fact, this is true for any base, because
anything raised to the power 0 is 1.

Why would anyone want to represent values in base 13? It isn’t done very often,
granted, but it is sometimes helpful to understand how it works. For example, a computing
technique called hashing takes numbers and scrambles them, and one way to scramble
numbers is to interpret them in a different base.

Other bases, such as base 2 (binary), are particularly important in computer processing.
Let’s explore these bases in more detail.

Binary, Octal, and Hexadecimal

The base-2 (binary) number system is particularly important in computing. It is also
helpful to be familiar with number systems that are powers of 2, such as base 8 (octal) and
base 16 (hexadecimal). Recall that the base value specifies the number of digits in the
number system. Base 10 has ten digits (0-9), base 2 has two digits (0-1), and base 8 has
eight digits (0—7). Therefore, the number 943 could not represent a value in any base less
than base 10, because the digit 9 doesn’t exist in those bases. It is, however, a valid number
in base 10 or any base higher than that. Likewise, the number 2074 is a valid number in
base 8 or higher, but it simply does not exist (because it uses the digit 7) in any base lower
than that.

What are the digits in bases higher than 102 We need symbols to represent the digits
that correspond to the decimal values 10 and beyond. In bases higher than 10, we use
letters as digits. We use the letter A to represent the number 10, B to represent 11, C to
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represent 12, and so forth. Therefore, the 16 digits in base 16 are:
0.1, 2 3. 4.5 6,789 A B, C,DEF

Let’s look at values in octal, hexadecimal, and binary to see what they represent in base
10. For example, let’s calculate the decimal equivalent of 754 in octal (base 8). As before,
we just expand the number in its polynomial form and add up the numbers.

7*8 = 7*64 =448

+5*8 =5* 8= 40
+4*8 =4* 1= _4
492

Let’s convert the hexadecimal number ABC to decimal:

A*16% = 10 * 256 = 2560
+B*le'=11* le= 176
+C*le" =12 % l= .. 12

2748

Note that we perform the exact same calculation to convert the number to base 10. We
just use a base value of 16 this time, and we have to remember what the letter digits
represent. After a little practice you won’t find the use of letters as digits that strange.

Finally, let’s convert a binary (base-2) number 1010110 to decimal. Once again, we
perform the same steps—only the base value changes:

1*#2°=1%*64 = 64
+D* =0*32 = {
+1*28=]1*16 = 16
+0*2*=0* 8= 0
+1*22=1* 4= 4
] Qb= | F J= I
+0*2°=0* 1=_40

86

The Abacus

In our brief history of computing in Chapter 1, we mentioned the abacus as an early
computing device. More specifically, the abacus is a device that uses positional notation
to represent a decimal number. The beads in any one column represent the digit in that
column. All columns combined represent a complete number.

PR ETTT T
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Courtesy of Theresa DiDonato

The beads above the middle bar represent units of 5 and the beads below the bar each
represent 1. Beads pushed away from the middle bar do not contribute to the number.
The following diagram shows the number 27,091 represented on an abacus:

Courtesy of Theresa DiDonato

The user performs calculations by moving the beads in specific ways to reflect the basic
arithmetic operations of addition, subtraction, multiplication, and division.

Though ancient, the abacus is still used today in many Asian cultures. In stores, a
checkout clerk might use an abacus instead of an electronic cash register. Although
lacking some of the advantages of electronic devices, the abacus is more than sufficient
for the kinds of calculations needed for basic business transactions. Skilled users of an
abacus can rival anyone with a calculator in terms of both speed and accuracy.

Children in these cultures learn rote operations on the abacus, much as you were
drilled in your multiplication tables. To perform an operation on a number, the user
executes a series of movements using only the thumb, pointing finger, and middle finger
of one hand. These movements correspond to individual digits and depend on the
operation being performed. For example, to add the digit 7 to the digit 5 already
showing on the abacus, the user clears the five marker (pushes it to the top), pushes 2
onto the bar from below, and increments 1 in the next column. Though this move
corresponds to the basic addition operation we do on paper, the abacus user is not
thinking about the mathematics. The user is conditioned to execute a specific
movement when specific digits are encountered for a specific operation. When the
calculation is complete, the user reads the result as shown on the abacus.

Recall that the digits in any number system go up to one less than the base value. To
represent the base value in any base, you need two digits. A 0 in the rightmost position and
a 1 in the second position represent the value of the base itself. Thus 10 is ten in base 10,
10 is eight in base 8, and 10 is sixteen in base 16. Think about it. The consistency of
number systems is actually quite elegant.

Bi-quinary Number Representation

The console of the IBM 650, a popular commercial computer in the late 1950s, allowed
the operator to read the contents of memory using the bi-quinary system. This number
representation system uses seven lights to represent the 10 decimal digits.
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Courtesy of IBM Corporate Archives, © International Business Machines Corporation

Each digit is represented by two lights, one of the top two and one of the bottom five. If
the upper-left light is on, the five other lights represent 0, 1, 2, 3, and 4, respectively,
from top to bottom. If the upper-right light is on, the five other lights represent 5, 6, 7,
8, and 9. The following configuration represents the number 7:

© O

00000

The IBM 650 was called the Ford Tri-Motor of computers: Like the Ford Tri-
Motor, old IBM 650s were shipped to Latin America where they enjoyed an extended
life.

Addition and subtraction of numbers in other bases are performed exactly like they are
on decimal numbers.

Arithmetic in Other Bases

Recall the basic idea of arithmetic in decimal: 0 + 1is 1, 1 + 1 is 2, 2 + 1 is 3, and so on.
Things get interesting when you try to add two numbers whose sum is equal to or larger
than the base value—for example, 1 + 9. Because there isn’t a symbol for 10, we reuse the
same digits and rely on position. The rightmost digit reverts to 0, and there is a carry into
the next position to the left. Thus 1 + 9 equals 10 in base 10.

The rules of binary arithmetic are analogous, but we run out of digits much sooner.
That is, 0 + 1is 1, and 1 + 1 is O with a carry. Then the same rule is applied to every
column in a larger number, and the process continues until we have no more digits to add.
The example below adds the binary values 101110 and 11011. The carry value is marked
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above each column in color.

111 — Carry
101110
+ 11011
1001001

We can convince ourselves that this answer is correct by converting both operands to
base 10, adding them, and comparing the result: 101110 is 46, 11011 is 27, and the sum is
73. Of course, 1001001 is 73 in base 10.

The subtraction facts that you learned in grade school were that 9 — 1is 8, 8 - 1 is 7,
and so on, until you try to subtract a larger digit from a smaller one, such as 0 — 1. To
accomplish this feat, you have to “borrow one” from the next left digit of the number from
which you are subtracting. More precisely, you borrow one power of the base. So, in base
10, when you borrow, you borrow 10. The same logic applies to binary subtraction. Every
time you borrow in a binary subtraction, you borrow 2. Here are two examples with the
borrowed values marked above.

172« borrow 2 «— borrow
111001 111101
- 110 - 110
110011 110111

Once again, you can check the calculation by converting all values to base 10 and
subtracting to see if the answers correspond.

Power-of-2 Number Systems

Binary and octal numbers share a very special relationship: Given a number in binary, you
can read it off in octal; given a number in octal, you can read it off in binary. For example,
take the octal number 754. If you replace each digit with the binary representation of that
digit, you have 754 in binary. That is, 7 in octal is 111 in binary, 5 in octal is 101 in
binary, and 4 in octal is 100 in binary, so 754 in octal is 111101100 in binary.

To facilitate this type of conversion, the table below shows counting in binary from 0
through 10 with their octal and decimal equivalents.

BINARY OCTAL DECIMAL
0 0 0
1 1 1
10 2 2
11 3 3
100 4 4
101 5 5
110 6 6
111 7 7
1000 10 8
1001 11 9
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1010 12 10

4

Can you count to three?

Not instinctively! Cognitive psychologists have demonstrated that preschool children do not identify more than
three sets: a set of one object, two objects, and three or more objects (also called many). Until some two centuries
ago, numerous languages had only two or three number words: words for single, pair, and many. We still have such

words in English: gang, pile, bunch, flock, herd, school, fleet, pride, pack, and gagg/e.3

To convert from binary to octal, you start at the rightmost binary digit and mark the
digits in groups of threes. Then you convert each group of three to its octal value.

111 101 100
7 5 4

Let’s convert the binary number 1010110 to octal, and then convert that octal value to
decimal. The answer should be the equivalent of 1010110 in decimal, or 86.

1 010 10

| 2 §]

1 * 82 = 1% 64 = G4
g% B 3% = Ik
+6* B =86% 1= 6

80

The reason that binary can be immediately converted to octal and octal to binary is that
8 is a power of 2. There is a similar relationship between binary and hexadecimal. Every
hexadecimal digit can be represented in four binary digits. Let’s take the binary number
1010110 and convert it to hexadecimal by marking the digits from right to left in groups of
four.

101 0110

5 (5]
S*1a' = 5*16 = 80
+6*16" =6* 1= 6
86

Now let’s convert ABC in hexadecimal to binary. It takes four binary digits to represent
each hex digit. A in hexadecimal is 10 in decimal and therefore is 1010 in binary. Likewise,
B in hexadecimal is 1011 in binary, and C in hexadecimal is 1100 in binary. Therefore,
ABC in hexadecimal is 101010111100 in binary.

Rather than confirming that 101010111100 is 2748 in decimal directly, let’s mark it
off in octal and convert the octal.
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101 010 111 100
3 2 Fi 4

Thus 5274 in octal is 2748 in decimal.
In the next section, we show how to convert base-10 numbers to the equivalent number
in another base.

Converting from Base 10 to Other Bases

The rules for converting base-10 numbers involve dividing by the base into which you are
converting the number. From this division, you get a quotient and a remainder. The
remainder becomes the next digit in the new number (going from right to left), and the
quotient replaces the number to be converted. The process continues until the quotient is
zero. Let’s write the rules in a different form.

WHILE (the quotient is not zero)
Divide the decimal number by the new base
Make the remainder the next digit to the left in the answer
Replace the decimal number with the quotient

These rules form an algorithm for converting from base 10 to another base. An
algorithm is a logical sequence of steps that solves a problem. We have much more to say
about algorithms in later chapters. Here we show one way of describing an algorithm and
then apply it to perform the conversions.

The first line of the algorithm tells us to repeat the next three lines until the quotient
from our division becomes zero. Let’s convert the decimal number 2748 to hexadecimal. As
we've seen in previous examples, the answer should be ABC.

171 & quaotiernt
16)2748

16
114
112

28

16

12 «— remainder

The remainder (12) is the first digit in the hexadecimal answer, represented by the digit
C. So the answer so far is C. Since the quotient is not zero, we divide it (171) by the new
base.

1 « quotient

16)171
16

11 «— remainder

The remainder (11) is the next digit to the left in the answer, which is represented by
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the digit B. Now the answer so far is BC. Since the quotient is not zero, we divide it (10)
by the new base.

0 ¢« quotient
16110

0

10 « remainder

The remainder (10) is the next digit to the left in the answer, which is represented by
the digit A. Now the answer is ABC. The quotient is zero, so we are finished, and the final
answer is ABC.

Binary Values and Computers

Although some of the early computers were decimal machines, modern computers are
binary machines. That is, numbers within the computer are represented in binary form. In
fact, all information is somehow represented using binary values. The reason is that each
storage location within a computer contains either a low-voltage signal or a high-voltage
signal. Because each location can have only one of two states, it is logical to equate those
states to 0 and 1. A low-voltage signal is equated with a 0, and a high-voltage signal is
equated with a 1. In fact, you can forget about voltages and think of each storage location
as containing either a 0 or a 1. Note that a storage location cannot be empty: It must
contain eithera 0 ora 1.

Grace Murray Hopper

© Cynthia Johnson/Getty Images

From 1943 until her death on New Year’s Day in 1992, Admiral Grace Murray Hopper
was intimately involved with computing. In 1991, she was awarded the National Medal
of Technology “for her pioneering accomplishments in the development of computer
programming languages that simplified computer technology and opened the door to a
significantly larger universe of users.”

Admiral Hopper was born Grace Brewster Murray in New York City on December
9, 1906. She attended Vassar and received a PhD in mathematics from Yale. For the
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next 10 years, she taught mathematics at Vassar.

In 1943, Admiral Hopper joined the U.S. Navy and was assigned to the Bureau of
Ordnance Computation Project at Harvard University as a programmer on the Mark 1.
After the war, she remained at Harvard as a faculty member and continued work on the
Navy’s Mark II and Mark III computers. She loved to tell the story of how, while she
was working on the Mark II, one of the operators discovered the first computer “bug”™—
a moth caught in one of the relays. In 1949, she joined Eckert-Mauchly Computer
Corporation and worked on the UNIVAC L.

Admiral Hopper had a working compiler in 1952, a time when the conventional
wisdom was that computers could do only arithmetic. Although not on the committee
that designed the computer language COBOL, she was active in its design,
implementation, and use. COBOL (which stands for Common Business-Oriented
Language) was developed in the early 1960s and is still widely used in business data
processing.

Admiral Hopper retired from the Navy in 1966, only to be recalled within a year to
full-time active duty. Her mission was to oversee the Navy’s efforts to maintain
uniformity in programming languages. It has been said that just as Admiral Hyman
Rickover was the father of the nuclear navy, Rear Admiral Hopper was the mother of
computerized data automation in the Navy. She served with the Naval Data
Automation Command until she retired again in 1986 with the rank of Rear Admiral.
At the time of her death, she was a senior consultant at Digital Equipment Corporation.

Admiral Hopper loved young people and enjoyed giving talks on college and
university campuses. She often handed out colored wires, which she called nanoseconds
because they were cut to a length of about one foot—the distance that light travels in a
nanosecond (billionth of a second). Her advice to the young was, “You manage things,
you lead people. We went overboard on management and forgot about the leadership.”

During her lifetime, Admiral Hopper received honorary degrees from more than 40
colleges and universities. She was honored by her peers on several occasions, including
the first Computer Sciences Man of the Year award given by the Data Processing
Management Association, and the Contributors to Computer Science Education Award
given by the Special Interest Group for Computer Science Education (SIGCSE), which
is part of the ACM (Association for Computing Machinery).

Nell Dale, when notifying Admiral Hopper of the SIGCSE award, asked of which
of her many accomplishments she was most proud. She answered, “All the young people
I have trained over the years.”

Each storage unit is called a binary digit, or bit for short. Bits are grouped together into
bytes (8 bits), and bytes are grouped together into units called words. The number of bits
in a word is known as the word length of the computer. For example, IBM 370
architecture in the late 1970s had half words (2 bytes or 16 bits), full words (4 bytes), and
double words (8 bytes).

Binary digit A digit in the binary number system; a0 ora 1
Bit Binary digit
Byte Eight binary digits
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Word A group of one or more bytes; the number of bits in a word is the word length of the computer

Modern computers are often 32-bit machines (such as Intel’s Pentium IV processor) or
64-bit machines (such as Hewlett-Packard’s Alpha processors and Intel’s Itanium 2
processor). However, some microprocessors that are used in applications such as pagers are
8-bit machines. The computing machine you are using—whatever it is—is ultimately
supported by the binary number system.

We have much more to explore about the relationship between computers and binary
numbers. In the next chapter, we examine many kinds of data and see how they are
represented in a computer. In Chapter 4, we see how to control electrical signals that
represent binary values. In Chapter 6, we see how binary numbers are used to represent
program commands that the computer executes.

SUMMARY

Numbers are written using positional notation, in which the digits are arranged in
succession, the position of each digit has a place value, and the number is equal to the sum
of the products of each digit by its place value. The place values are powers of the base of
the number system. Thus, in the decimal number system, the place values are powers of 10;
in the binary number system, the place values are powers of 2.

Arithmetic can be performed on numbers in any base represented in positional
notation. The same operational rules apply to other bases as they do to base 10. Adding 1
to the largest digit in the base causes a carry into the next position.

Base 2, base 8, and base 16 are all related because these bases are powers of 2. This
relationship provides a quick way to convert between numbers in these bases. Computer
hardware is designed using numbers in base 2. A low-voltage signal is equated with 0, and a
high-voltage signal is equated with 1.

ETHICAL ISSUES
The FISA Court

The United States Foreign Intelligence Surveillance Court is a U.S. federal court that
was established under the Foreign Intelligence Surveillance Act of 1978 (FISA). The
Court handles requests by federal law enforcement agencies for surveillance warrants
against suspected foreign intelligence agents operating inside the United States.*

Before 2013, when Edward Snowden leaked that the Court had ordered a subsidiary
of Verizon to provide detailed call records to the National Security Agency (NSA), most
people had never heard of the FISA Court. The next chapter examines the controversy
surrounding it.

The FISA Court comprises 11 judges who sit for 7-year terms. The Chief Justice of
the Supreme Court appoints the judges, without confirmation. An application for an
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electronic surveillance warrant is made before one of the judges. The court may amend
this application before granting the warrant. If the application is denied, the government
may not take the same request to another judge. If the U.S. Attorney General
determines that an emergency exists, he or she may authorize the electronic surveillance
but must notify a Court judge not more than 72 hours after the authorization. The USA
PATRIOT Act of 2001 expanded the time periods during which surveillance may be
authorized.’

In December 2012, President Obama signed the FISA Amendments Act
Reauthorization Act of 2012, which extends Title VII of FISA until December 31,
2017.

Title VII of FISA, added by the FISA Amendments Act of 2008, created separate
procedures for targeting suspected foreign intelligence agents, including non-U.S.
persons and U.S. persons reasonably believed to be outside the United States.®

Note that the stated intent of the FISA Court is to protect the United States as well
as the rights of U.S. citizens.

KEY TERMS

Base

Binary digit

Bit

Byte

Integer

Natural number
Negative number
Number

Positional notation

Rational number

Word

EXERCISES

For Exercises 1-5, match the following numbers with their definition.

A. Number

B. Natural number

C. Integer number

D. Negative number

E. Rational number

A unit of an abstract mathematical system subject to the laws of arithmetic
A natural number, a negative of a natural number, or zero

The number zero and any number obtained by repeatedly adding one to it
An integer or the quotient of two integers (division by zero excluded)

B =
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5.

A value less than zero, with a sign opposite to its positive counterpart

For Exercises 6-11, match the solution with the problem.

e NY NS

1
1

10001100

10011110

1101010

1100000

1010001

F. 1111000

1110011 + 11001 (binary addition)
1010101 + 10101 (binary addition)
1111111 + 11111 (binary addition)
1111111 — 111 (binary subtraction)
1100111 — 111 (binary subtraction)
1010110 — 101 (binary subtraction)

moOw >

For Exercises 12—17, mark the answers true or false as follows:

12.

13.
14.

15.
16.
17.

A. True

B. False

Binary numbers are important in computing because a binary number can be
converted into every other base.

Binary numbers can be read off in hexadecimal but not in octal.

Starting from left to right, every grouping of four binary digits can be read as one
hexadecimal digit.

A byte is made up of six binary digits.

Two hexadecimal digits cannot be stored in one byte.

Reading octal digits off as binary produces the same result whether read from right
to left or from left to right.

Exercises 18—47 are problems or short-answer questions.

18.
19.
20.

21.

22.
23.

Distinguish between a natural number and a negative number.

Distinguish between a natural number and a rational number.

Label the following numbers as natural, negative, or rational.

1.333333

. =1/3

1066

. 2/5

6.2

. 7 (pi)

How many ones are there in 891 if it is a number in each of the following bases?
a. Base 10
b. Base 8
c. Base 12
d
e

S a0 o

. Base 13

. Base 16
Express 891 as a polynomial in each of the bases in Exercise 21.
Convert the following numbers from the base shown to base 10.
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24.
25.
20.
27.
28.

29.

30.

31.

32.

33.

34

111 (base 2)

777 (base 8)

FEC (base 16)

777 (base 16)

. 111 (base 8)

Explain how base 2 and base 8 are related.
Explain how base 8 and base 16 are related.

o oo o

Convert the following binary numbers to octal.

a. 111110110

b. 1000001

c. 10000010

d. 1100010

Convert the following binary numbers to hexadecimal.
a. 10101001

b. 11100111

c. 01101110

d. 01121111

Convert the following hexadecimal numbers to octal.
a. A9

b. E7

c. 6E

Convert the following octal numbers to hexadecimal.
a. 777

b. 605

c. 443

d. 521

e. 1

Convert the following decimal numbers to octal.

a. 901

b. 321

c. 1492

d. 1066

e. 2001

Convert the following decimal numbers to binary.

a. 45

b. 69

c. 1066

d. 99

e. 1

. Convert the following decimal numbers to hexadecimal.
a. 1066

b. 1939

c. 1

d. 998
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35.

36.

37.

38.

39.

40.

41.
42.
43.
44,
45.
406.
47.

e. 43

If you were going to represent numbers in base 18, which symbols might you use
to represent the decimal numbers 10 through 17 other than letters?
Convert the following decimal numbers to base 18 using the symbols you
suggested in Exercise 35.

a. 1066

b. 99099

c. 1

Perform the following octal additions.

a. 770 + 665

b. 101 + 707

c. 202 + 667

Perform the following hexadecimal additions.

a. 19ABG6 + 43

b. AE9 + F

c. 1066 + ABCD

Perform the following octal subtractions.

a. 1066 — 776

b. 1234 -765

c. 7766 — 5544

Perform the following hexadecimal subtractions.

a. ABC-111

b. 9988 — AB

c. A9F8 — 1492

Why are binary numbers important in computing?

How many bits does a byte contain?

How many bytes are there in a 64-bit machine?

Why do microprocessors such as pagers have only 8-bit words?
Why is it important to study how to manipulate fixed-size numbers?
How many ones are there in the number AB98 in base 13?
Describe how a bi-quinary number representation works.

THOUGHT QUESTIONS

1.

Exercise 20 asked you to classify 7 as one of the options. 7 does not belong in any
of the categories named; 7 (and e) are transcendental numbers. Look up
transcendental numbers in the dictionary or in an old math book and give the
definition in your own words.

Complex numbers are another category of numbers that are not discussed in this
chapter. Look up complex numbers in a dictionary or an old math book and give
the definition in your own words.

Many everyday occurrences can be represented as a binary bit. For example, a door
is open or closed, the stove is on or off, and the dog is asleep or awake. Could
relationships be represented as a binary value? Discuss the question, giving
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examples.
4. Had you heard of the FISA Court before reading this chapter? Do you now have a
better understanding of what it is?
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3 DATA REPRESENTATION

When you go on a trip, you might make use of a road map—either the old-fashioned, fold-
out kind or an electronic version presented by a navigation system. Whatever form it takes,
the map is not the land over which you travel, but rather a representation of that land. The
map has captured some of the information needed to accomplish the goal of getting from
one place to another.

Likewise, the data we need to store and manage on a computer must be represented in a
way that captures the essence of the information we care about, and it must do so in a form
convenient for computer processing. Building on the fundamental concepts of the binary
number system established in Chapter 2, this chapter explores how we represent and store
the various kinds of data a computer manages.

GOALS
After studying this chapter, you should be able to:

distinguish between analog and digital data.

explain data compression and calculate compression ratios.

explain the binary formats for negative and floating-point values.
describe the characteristics of the ASCII and Unicode character sets.
petform various types of text compression.

explain the nature of sound and its representation.

explain how RGB values define a color.

distinguish between raster and vector graphics.

explain temporal and spatial video compression.

3.1 Data and Computers

Without data, computers would be useless. Every task a computer undertakes deals with
managing data in some way. Therefore, our need to represent and organize data in
appropriate ways is paramount.

Let’s start by distinguishing the terms data and information. Although these terms are
often used interchangeably, making the distinction is sometimes useful, especially in
computing. Data is basic values or facts, whereas information is data that has been
organized and/or processed in a way that is useful in solving some kind of problem. Data
can be unstructured and lack context. Information helps us answer questions (it “informs”).
This distinction, of course, is relative to the needs of the user, but it captures the essence of
the role that computers play in helping us solve problems.
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Data Basic values or facts

Information Data that has been organized or processed in a useful manner

In this chapter, we focus on representing different types of data. In later chapters, we
discuss the various ways to organize data so as to solve particular types of problems.

In the not-so-distant past, computers dealt almost exclusively with numeric and textual
data. Today, however, computers are truly multimedia devices, dealing with a vast array of
information categories. Computers store, present, and help us modify many different types
of data:

Multimedia Several different media types

m Numbers

m Text

m Audio

m Images and graphics
m Video

Ultimately, all of this data is stored as binary digits. Each document, picture, and sound
bite is somehow represented as strings of 1s and 0Os. This chapter explores each of these
types of data in turn and discusses the basic ideas behind the ways in which we represent
these types of data on a computer.

We can’t discuss data representation without also talking about data compression—
reducing the amount of space needed to store a piece of data. In the past, we needed to
keep data small because of storage limitations. Today, computer storage is relatively cheap
—but now we have an even more pressing reason to shrink our data: the need to share it
with others. The Web and its underlying networks have inherent bandwidth restrictions
that define the maximum number of bits or bytes that can be transmitted from one place to
another in a fixed amount of time.

Data compression Reducing the amount of space needed to store a piece of data

Bandwidth The number of bits or bytes that can be transmitted from one place to another in a fixed amount of
time

The compression ratio gives an indication of how much compression occurs. The
compression ratio is the size of the compressed data divided by the size of the original data.
The values could be in bits or characters (or whatever is appropriate), as long as both values
measure the same thing. The ratio should result in a number between 0 and 1. The closer
the ratio is to zero, the tighter the compression.

Compression ratio The size of the compressed data divided by the size of the uncompressed data
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A data compression technique can be lossless, which means the data can be retrieved
without losing any of the original information, or it can be lossy, in which case some
information is lost in the process of compaction. Although we never want to lose
information, in some cases this loss is acceptable. When dealing with data representation
and compression, we always face a tradeoff between accuracy and size.

Lossless compression A data compression technique in which there is no loss of information

Lossy compression A data compression technique in which there is loss of information

Analog and Digital Data

The natural world, for the most part, is continuous and infinite. A number line is
continuous, with values growing infinitely large and small. That is, you can always come up
with a number that is larger or smaller than any given number. Likewise, the numeric space
between two integers is infinite. For instance, any number can be divided in half. But the
world is not just infinite in a mathematical sense. The spectrum of colors is a continuous
rainbow of infinite shades. Objects in the real world move through continuous and infinite
space. Theoretically, you could always close the distance between you and a wall by half,
and you would never actually reach the wall.

Computers, by contrast, are finite. Computer memory and other hardware devices have
only so much room to store and manipulate a certain amount of data. We always fail in our
attempt to represent an infinite world on a finite machine. The goal, then, is to represent
enough of the world to satisfy our computational needs and our senses of sight and sound.
We want to make our representations good enough to get the job done, whatever that job
might be.

Data can be represented in one of two ways: analog or digital. Analog data is a
continuous representation, analogous to the actual information it represents. Digital data is
a discrete representation, breaking the information up into separate elements.

Analog data A continuous representation of data

Digital data A discrete representation of data

A mercury thermometer is an analog device. The mercury rises in a continuous flow in
the tube in direct proportion to the temperature. We calibrate and mark the tube so that
we can read the current temperature, usually as an integer such as 75 degrees Fahrenheit.
However, the mercury in such a thermometer is actually rising in a continuous manner
between degrees. At some point in time, the temperature is actually 74.568 degrees
Fahrenheit, and the mercury is accurately indicating that, even if our markings are not
detailed enough to note such small changes. See FIGURE 3.1.
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FIGURE 3.1 A mercury thermo meter continually rises in direct proportion to the
temperature

Analog data is directly proportional to the continuous, infinite world around us.
Computers, therefore, cannot work well with analog data. Instead, we digitize data by
breaking it into pieces and representing those pieces separately. Each of the representations
discussed in this chapter takes a continuous entity and separates it into discrete elements.
Those discrete elements are then individually represented using binary digits.

Digitize The act of breaking information down into discrete pieces

But why do we use the binary system? We know from Chapter 2 that binary is just one
of many equivalent number systems. Couldn’t we use, say, the decimal number system,
with which we are already more familiar? We could. In fact, it’s been done. Computers
have been built that are based on other number systems. However, modern computers are
designed to use and manage binary values because the devices that store and manage the
data are far less expensive and far more reliable if they have to represent only one of two
possible values.

Also, electronic signals are far easier to maintain if they transfer only binary data. An
analog signal continually fluctuates up and down in voltage, but a digital signal has only a
high or low state, corresponding to the two binary digits. See FIGURE 3.2.

All electronic signals (both analog and digital) degrade as they move down a line. That
is, the voltage of the signal fluctuates due to environmental effects. The trouble is that as
soon as an analog signal degrades, information is lost. Because any voltage level within the
range is valid, it’s impossible to know what the original signal state was or even that it
changed at all.

Digital signals, by contrast, jump sharply between two extremes—a behavior referred to
as pulse-code modulation (PCM). A digital signal can become degraded by quite a bit
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before any information is lost, because any voltage value above a certain threshold is
considered a high value, and any value below that threshold is considered a low value.
Periodically, a digital signal is reclocked to regain its original shape. As long as it is
reclocked before too much degradation occurs, no information is lost. FIGURE 3.3 shows
the degradation effects of analog and digital signals.

Pulse-code modulation Variation in a signal that jumps sharply between two extremes

Reclock The act of reasserting an original digital signal before too much degradation occurs

FIGURE 3.2 An analog signal and a digital signal

Threshold
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FIGURE 3.3 Degradation of analog and digital signals

Binary Representations

As we investigate the details of representing particular types of data, it’s important to
remember the inherent nature of using binary. One bit can be either 0 or 1. There are no
other possibilities. Therefore, one bit can represent only two things. For example, if we
wanted to classify a food as being either sweet or sour, we would need only one bit to do it.
We could say that if the bit is 0, the food is sweet, and if the bit is 1, the food is sour. But if
we want to have additional classifications (such as spicy), one bit is not sufficient.

To represent more than two things, we need multiple bits. Two bits can represent four
things because four combinations of 0 and 1 can be made from two bits: 00, 01, 10, and
11. For instance, if we want to represent which of four possible gears a car is in (park, drive,
reverse, or neutral), we need only two bits: Park could be represented by 00, drive by 01,
reverse by 10, and neutral by 11. The actual mapping between bit combinations and the
thing each combination represents is sometimes irrelevant (00 could be used to represent
reverse, if you prefer), although sometimes the mapping can be meaningful and important,
as we discuss in later sections of this chapter.

If we want to represent more than four things, we need more than two bits. For
example, three bits can represent eight things because eight combinations of 0 and 1 can be
made from three bits. Likewise, four bits can represent 16 things, five bits can represent 32
things, and so on. See FIGURE 3.4. In the figure, note that the bit combinations are
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simply counting in binary as you move down a column.

In general, 7 bits can represent 2” things because 2" combinations of 0 and 1 can be
made from 7 bits. Every time we increase the number of available bits by 1, we double the
number of things we can represent.

Let’s turn the question around. How many bits do you need to represent, say, 25
unique things? Well, four bits wouldn’t be enough because four bits can represent only 16
things. We would have to use at least five bits, which would allow us to represent 32 things.
Given that we need to represent only 25 things, some of the bit combinations would not
have a valid interpretation.
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1 Bit 2 Bits 3 Bits 4 Bits 5 Bits

Q 00 000 0000 00000
1 01 0o 0001 0000
10 010 0010 00010
11 011 0011 00011
100 0100 00100

101 0101 00101

110 0110 00110

111 0111 00111

1000 01000

1001 01001

1010 01010

1011 01011

1100 01100

1101 011

1110 01110

1111 01111

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111

FIGURE 3.4 Bit combinations

Keep in mind that even though we may technically need only a certain minimum
number of bits to represent a set of items, we may allocate more than that for the storage of
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data. There is a minimum number of bits that a computer architecture can address and
move around at one time, and it is usually a power of 2, such as 8, 16, or 32 bits.
Therefore, the minimum amount of storage given to any type of data is allocated in
multiples of that value.

3.2 Representing Numeric Data

Numeric values are the most prevalent type of data used in a computer system. Unlike with
other types of data, there may seem to be no need to come up with a clever mapping
between binary codes and numeric data. Because binary is a number system, a natural
relationship exists between the numeric data and the binary values that we store to
represent them. This is true, in general, for positive integer data. The basic issues regarding
integer conversions were covered in Chapter 2 in the general discussion of the binary
system and its equivalence to other bases. However, we have other issues regarding the
representation of numeric data to consider at this point. Integers are just the beginning in
terms of numeric data. This section discusses the representation of negative and noninteger
values.

Representing Negative Values

Aren’t negative numbers just numbers with a minus sign in front? Perhaps. That is certainly
one valid way to think about them. Let’s explore the issue of negative numbers and discuss
appropriate ways to represent them on a computer.

Signed-Magnitude Representation

You have used the signed-magnitude representation of numbers since you first learned
about negative numbers in grade school. In the traditional decimal system, a sign (+ or —) is
placed before a number’s value, although the positive sign is often assumed. The sign
represents the ordering, and the digits represent the magnitude of the number. The classic
number line looks something like this, in which a negative sign means that the number is to
the left of zero and the positive number is to the right of zero:

Signed-magnitude representation Number representation in which the sign represents the ordering of the number
(negative and positive) and the value represents the magnitude

< 4 3 2 1 0 1 2 3 4 5 &

- Megative + Positive (sign usually omitted)

Performing addition and subtraction with signed integer numbers can be described as
moving a certain number of units in one direction or another. To add two numbers, you
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find the first number on the scale and move in the direction of the sign of the second as
many units as specified. Subtraction is done in a similar way, moving along the number line
as dictated by the sign and the operation. In grade school, you soon graduated to doing
addition and subtraction without using the number line.

There is a problem with the signed-magnitude representation: There are two
representations of zero—plus zero and minus zero. The idea of a negative zero doesn’t
necessarily bother us; we just ignore it. However, two representations of zero within a
computer can cause unnecessary complexity, so other representations of negative numbers
are used. Let’s examine another alternative.

Fixed-Sized Numbers

If we allow only a fixed number of values, we can represent numbers as just integer values,
where half of them represent negative numbers. The sign is determined by the magnitude
of the number. For example, if the maximum number of decimal digits we can represent is
two, we can let 1 through 49 be the positive numbers 1 through 49 and let 50 through 99
represent the negative numbers =50 through —1. Let’s take the number line and number
the negative values on the top according to this scheme:

80 51 97 98 99 0 1 2 3 = 48 49
l ] ] ] | | | ] | ] |
I | | | | | | | | | 1

) =49 3 2 1 0 1 2 3 48 49

To perform addition within this scheme, you just add the numbers together and discard
any carry. Adding positive numbers should be okay. Let’s try adding a positive number and
a negative number, a negative number and a positive number, and two negative numbers.
These are shown in the following table in signed-magnitude and in this scheme (the carries
are discarded):

Signed-Magnitude New Scheme

5 5
+=-6 + 94
-1 99
-4 96
+ 6 + 6
2 2
-2 98
+ —d + 96
-6 94

What about subtraction, using this scheme for representing negative numbers? The key is
in the relationship between addition and subtraction: A — B = A + (-B). We can subtract
one number from another by adding the negative of the second to the first:
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Signed-Magnitude  Mew Scheme Add Negative

-5 95 95
- 3 = 8 et %7
-8 92

In this example, we have assumed a fixed size of 100 values and kept our numbers small
enough to use the number line to calculate the negative representation of a number.
However, you can also use a formula to compute the negative representation:

Negative(/) = 10* — 7, where 4 is the number of digits
Let’s apply this formula to —3 in our two-digit representation:
—(3)=100-3=97
What about a three-digit representation?

—(3)=10"-3 =997

This representation of negative numbers is called the ten’s complement. Although humans
tend to think in terms of sign and magnitude to represent numbers, the complement
strategy is actually easier in some ways when it comes to electronic calculations. Because we
store everything in a modern computer in binary, we use the binary equivalent of the ten’s
complement, called the zwo’s complement.

Ten’s complement A representation of negative numbers such that the negative of /is 10 raised to # minus /

Two’s Complement

Let’s assume that a number must be represented in eight bits, seven for the number and one
for the sign. To make it easier to look at long binary numbers, we make the number line
vertical:
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00000000 —— 0

Would the ten’s complement formula work with the 10 replaced by 2? That is, could
we compute the negative binary representation of a number using the formula negative(/) =
2% — I? LeC’s try it and see:

-(2)=2"-2=128-2=-126

Decimal 126 is octal 176, which is 1111110 in binary—but the number line has one more
1 digit to the left. What's wrong? Nothing. This is a negative number. The leftmost digit
determines whether the number is negative or positive. A 0 bit in the leftmost digit says
that the number is positive; a 1 bit says the number is negative. Thus, —(2) is 11111110.
There is an easier way to calculate the two’s complement: invert the bits and add 1.

That is, take the positive value and change all the 1 bits to 0 and all the 0 bits to 1, and
then add 1.

+2 = 00000010
invert 11111101
add 1 00000001
-2 =11111110

Addition and subtraction are accomplished the same way as in ten’s complement
arithmetic:

- 127 10000001
+ 1 00000001
- 126 10000010

With this representation, the leftmost bit in a negative number is always a 1. Therefore,
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you can tell immediately whether a binary number in two’s complement is negative or
positive.

Number Overflow

Overflow occurs when the value that we compute cannot fit into the number of bits we
have allocated for the result. For example, if each value is stored using eight bits, adding
127 to 3 would produce an overflow:

Overflow A situation where a calculated value cannot fit into the number of digits reserved for it

01111111
+ 00000011
10000010

In our scheme 10000010 represents —126, not +130. If we were not representing negative
numbers, however, the result would be correct.

Overflow is a classic example of the type of problems we encounter by mapping an
infinite world onto a finite machine. No matter how many bits we allocate for a number,
there is always the potential need to represent a number that doesn’t fit. How overflow
problems are handled varies by computer hardware and by the differences in programming
languages.

Representing Real Numbers

In computing, we call all noninteger values (that can be represented) rea/ values. For our
purposes here, we define a real number as a value with a potential fractional part. That is,
real numbers have a whole part and a fractional part, either of which may be zero. For
example, some real numbers in base 10 are 104.32, 0.999999, 357.0, and 3.14159.

As we explored in Chapter 2, the digits represent values according to their position, and
those position values are relative to the base. To the left of the decimal point, in base 10, we
have the ones position, the tens position, the hundreds position, and so forth. These
position values come from raising the base value to increasing powers (moving from the
decimal point to the left). The positions to the right of the decimal point work the same
way, except that the powers are negative. So the positions to the right of the decimal point
are the tenths position (10! or one tenth), the hundredths position (102 or one
hundredth), and so forth.

In binary, the same rules apply but the base value is 2. Since we are not working in base
10, the decimal point is referred to as a radix point, a term that can be used in any base.
The positions to the right of the radix point in binary are the halves position (27! or one
half), the quarters position (2% or one quarter), and so forth.

Radix point The dot that separates the whole part from the fractional part in a real number in any base
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How do we represent a real value in a computer? We store the value as an integer and
include information showing where the radix point is. That is, any real value can be
described by three properties: the sign (positive or negative; the mantissa, which is made up
of the digits in the value with the radix point assumed to be to the right; and the exponent,
which determines how the radix point is shifted relative to the mantissa. A real value in base
10 can, therefore, be defined by the following formula:

sign * mantissa * 10

The representation is called floating point because the number of digits is fixed but the
radix point floats. When a value is in floating-point form, a positive exponent shifts the
decimal point to the right, and a negative exponent shifts the decimal point to the left.

Floating point A representation of a real number that keeps track of the sign, mantissa, and exponent

Let’s look at how to convert a real number expressed in our usual decimal notation into
floating-point notation. As an example, consider the number 148.69. The sign is positive,
and two digits appear to the right of the decimal point. Thus the exponent is -2, giving us
14869 * 102 TABLE 3.1 shows other examples. For the sake of this discussion, we assume
that only five digits can be represented.

How do we convert a value in floating-point form back into decimal notation? The
exponent on the base tells us how many positions to move the radix point. If the exponent
is negative, we move the radix point to the left. If the exponent is positive, we move the
radix point to the right. Apply this scheme to the floating-point values in Table 3.1.

Notice that in the last example in Table 3.1, we lose information. Because we are
storing only five digits to represent the significant digits (the mantissa), the whole part of
the value is not accurately represented in floating-point notation.

TABLE 3.1 Values in decimal notation and floating-point notation (five

digits)

Real Value Floating-Point Value
12001.00 12001 *10°
~120.01 ~12001 * 1072
0.12000 12000 * 10
~123.10 ~12310* 1072

155555000.00 15555 * 104

Likewise, a binary floating-point value is defined by the following formula:
sign * mantissa * 2P

Note that only the base value has changed. Of course, in this scheme the mantissa would
contain only binary digits. To store a floating-point number in binary on a computer, we
can store the three values that define it. For example, according to one common standard, if
we devote 64 bits to the storage of a floating-point value, we use 1 bit for the sign, 11 bits
for the exponent, and 52 bits for the mantissa. Internally, this format is taken into account
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whenever the value is used in a calculation or is displayed.

But how do we get the correct value for the mantissa if the value is not a whole
number? In Chapter 2, we discussed how to change a natural number from one base to
another. Here we have shown how real numbers are represented in a computer, using
decimal examples. We know that all values are represented in binary in the computer. How
do we change the fractional part of a decimal value to binary?

To convert a whole value from base 10 to another base, we divide by the new base,
recording the remainder as the next digit to the left in the result and continuing to divide
the quotient by the new base until the quotient becomes zero. Converting the fractional
part is similar, but we multiply by the new base rather than dividing. The carry from the
multiplication becomes the next digit to the right in the answer. The fractional part of the
result is then multiplied by the new base. The process continues until the fractional part of
the result is zero. Let’s convert .75 to binary.

75*2=1.50
S50*2=1.00

Thus, .75 in decimal is .11 in binary. Let’s try another example.

435*2=0.870.870

*2=1.740 .740
*2 =1.480 .480
*2=0.960.960
*2=1.920.920
*2=1.840

Thus, 435 is 011011 ... in binary. Will the fractional part ever become zero? Keep
multiplying it out and see.

Now let’s go through the entire conversion process by converting 20.25 in decimal to
binary. First we convert 20.
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20 in binary is 10100. Now we convert the fractional part:

25*2=0.50
S50*2=1.00

Thus 20.25 in decimal is 10100.01 in binary.

Scientific notation is a term with which you may already be familiar, so we mention it
here. Scientific notation is a form of floating-point representation in which the decimal
point is kept to the right of the leftmost digit. That is, there is one whole number. In many
programming languages, if you print out a large real value without specifying how to print
it, the value is printed in scientific notation. Because exponents could not be printed in
early machines, an “E” was used instead. For example, “12001.32708” would be written as
“1.200132708E+4” in scientific notation.

Scientific notation An alternative floating-point representation

3.3 Representing Text

A text document can be decomposed into paragraphs, sentences, words, and ultimately
individual characters. To represent a text document in digital form, we simply need to be
able to represent every possible character that may appear. The document is the continuous
(analog) entity, and the separate characters are the discrete (digital) elements that we need
to represent and store in computer memory.
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At this point, we should distinguish between the basic idea of representing text and the
more involved concept of word processing. When we create a document in a word
processing program such as Microsoft® Word, we can specify all kinds of formatting: fonts,
margins, tabs, color, and so on. Many word processors also let us add art, equations, and
other elements. This extra information is stored along with the rest of the text so that the
document can be displayed and printed the way you want it. The core issue, however, is the
way we represent the characters themselves; therefore, those techniques remain our focus at
this point.

There are a finite number of characters to represent. The general approach for
representing characters is to list all of them and then assign a binary string to each
character. For example, to store a particular letter, we store the appropriate bit string.

So which characters do we need to represent? The English language includes 26 letters.
But uppercase and lowercase letters have to be treated separately, so that’s really 52 unique
characters. Punctuation characters also have to be represented, as do the numeric digits (the
actual characters ‘0’, ‘1°, through ‘9’). Even the space character must have a representation.
And what about languages other than English? The list of characters we may want to
represent starts to grow quickly once you begin to think about it. Keep in mind that, as we
discussed earlier in this chapter, the number of unique things (characters, in this case) we
want to represent determines how many bits we’ll need to represent any one of them.

A character set is simply a list of characters and the codes used to represent each one.
Several character sets have been used over the years, though a few have dominated. By
agreeing to use a particular character set, computer manufacturers have made the processing
of text data easier. We explore two character sets in the following sections: ASCII and

Unicode.

Character set A list of the characters and the codes used to represent each one

Character set maze

In 1960, an article in Communications of the ACM reported on a survey of character sets in use. Sixty distinct sets
were described. Nine character sets, with differences in both content and ordering, existed in IBM’s line of

computers.l

The ASCII Character Set

ASCII stands for American Standard Code for Information Interchange. The ASCII character
set originally used seven bits to represent each character, allowing for 128 unique
characters. The eighth bit in each character byte was originally used as a check bit, which
helped ensure proper data transmission. Later ASCII evolved so that all eight bits were used
to represent a character. This eight-bit version is formally called the Latin-1 Extended ASCII
character set. The extended ASCII set allows for 256 characters and includes accented letters
as well as several other special symbols. FIGURE 3.5 shows the ASCII character set.
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Right ASCIHT

Left Digit 0 1 2 3 4 3 (] 7 8 9

Digit(s)
0 NUL S0OH STX ETX EOT ENG ACK BEL BS HT
1 LF VT FF CR S0 sl DLE DC1 DC2 DC3
2 DC4 NAK SYN ETB CAN EM SUB ESC F5 GS
3 RS us O § = # 5 % & :
4 { ) * + . = : f 0 1
5 2 3 4 5 & 7 8 9 : H
6 < = > ? @ A B C ()] E
7 F G H | I K L M N 0
8 P Q R 5 T u v W X Y
9 Z | \ ] M 3 a b C
10 d € f g h i i k | m
11 n 0 p q r 5 t u ¥ w
12 X v z { | b - DEL

FIGURE 3.5 The ASCII character set

The codes in Figure 3.5 are expressed as decimal numbers, but these values get
translated to their binary equivalent for storage in the computer. Note that the ASCII
characters have a distinct order based on the codes used to store them. Each character has a
relative position (before or after) every other character. This property is helpful in several
different ways. For example, note that both the uppercase and lowercase letters are in order.
Therefore, we can use the character codes to help us put a list of words into alphabetical
order.

The first 32 characters in the ASCII character chart do not have a simple character
representation that you could print to the screen. These characters are reserved for special
purposes, such as carriage return and tab. They are usually interpreted in special ways by
whatever program is processing the data.

The Unicode Character Set

The extended version of the ASCII character set provides 256 characters, which is enough
for English but not enough for international use. This limitation gave rise to the Unicode
character set, which has a much stronger international influence.

The goal of the people who created Unicode is nothing less than to represent every
character in every language used in the entire world, including all of the Asian ideograms. It
also represents many special-purpose characters such as scientific symbols.

The Unicode character set is used by many programming languages and computer
systems today. In general, the encoding uses 16 bits per character, but is flexible so that it
can use more space per character if needed to represent additional characters. One
convenient aspect of Unicode is that it has the ASCII characters as a subset with the same
numeric values. FIGURE 3.6 shows a few characters from the non-ASCII portion of the
Unicode character set.
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Code (Hex) Character Source

0041 A English (Latin}
042F A Russian (Cyrillic)
OE09 W Thai

13EA i Cherokee
211E R Letterlike symbaols
21CC — Arrows

282F Braille

345F i Chinese/lapanese/

Korean (commaon)

FIGURE 3.6 A few characters in the Unicode character set

For consistency, Unicode was designed to be a superset of ASCII. That is, the first 256
characters in the Unicode character set correspond exactly to the extended ASCII character
set, including the codes used to represent them. Therefore, programs that assume ASCII
values are unaffected even if the underlying system embraces the Unicode approach.

Text Compression

Alphabetic information (text) is a fundamental type of data. Therefore, it is important that
we find ways to store and transmit text efficiently between one computer and another. The
following sections examine three types of text compression:

m Keyword encoding
m Run-length encoding

m Huffman encoding

As we discuss later in this chapter, some of the ideas underlying these text compression
techniques come into play when dealing with other types of data as well.

Keyword Encoding

Consider how often you use words such as “the,” “and,” “which,” “that,” and “what.” If
these words took up less space (that is, had fewer characters), our documents would shrink
in size. Even though the savings for each word would be small, they are used so often in a
typical document that the combined savings would add up quickly.

One fairly straightforward method of text compression is keyword encoding, in which
frequently used words are replaced with a single character. To decompress the document,
you reverse the process: You replace the single characters with the appropriate full word.
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Keyword encoding Replacing a frequently used word with a single character

For example, suppose we used the following chart to encode a few words:

WORD SYMBOL

as A
the -
and +
that $
must &
well %
these #

Let’s encode the following paragraph:

The human body is composed of many independent systems, such as the
circulatory system, the respiratory system, and the reproductive system. Not only
must all systems work independently, but they must interact and cooperate as well.
Overall health is a function of the well-being of separate systems, as well as how
these separate systems work in concert.

The encoded paragraph is:

The human body is composed of many independent systems, such A ~ circulatory
system, ~ respiratory system, + ~ reproductive system. Not only & each system
work independently, but they & interact + cooperate A %. Overall health is a
function of - %-being of separate systems, * % ” how # separate systems work in
concert.

There are a total of 352 characters in the original paragraph, including spaces and
punctuation. The encoded paragraph contains 317 characters, resulting in a savings of 35
characters. The compression ratio for this example is 317/352 or approximately 0.9.

There are several limitations to keyword encoding. First, note that the characters we use
to encode the keywords cannot be part of the original text. If, for example, the ‘¢’ were part
of the original paragraph, the resulting encoding would be ambiguous. We wouldn’t know
whether ‘$’ represented the word “that” or if it was the actual dollar-sign character. This
limits the number of words we can encode as well as the nature of the text that we are
encoding.

4

Expensive night

If you stayed at a Holiday Inn, Holiday Inn Express, or Crowne Plaza hotel and checked out between October 24
and 26, 2002, you were likely to have been one of 26,000 people who were charged 100 times what they owed,
such as $6,500 to $21,000 per night. A credit-processing error resulted in the decimal points being dropped.
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Also, note that the word “The” in the example is not encoded by the ‘~" character
because the word “The” and the word “the” contain different letters. Remember, the
uppercase and lowercase versions of the same letter are different characters when it comes to
storing them on a computer. We would have to use a separate symbol for “The” if we
wanted to encode it—or employ a more sophisticated substitution scheme.

Finally, note that we would not gain anything by encoding words such as “a” and “I”
because that would simply be replacing one character for another. The longer the word, the
more compression we get per word. Unfortunately, the most frequently used words are
often short. Of course, some documents use certain words more frequently than others
depending on the subject matter. For example, we would have realized some nice savings if
we had chosen to encode the word “system” in our example, but it might not be worth
encoding in a general situation.

An extension of keyword encoding is to replace specific patterns of text with special
characters. The encoded patterns are generally not complete words, but rather parts of
words such as common prefixes and suffixes—%“ex,” “ing,” and “tion,” for instance. An
advantage of this approach is that patterns being encoded generally appear more often than
whole words (because they occur in many different words). A disadvantage is that they are
generally short patterns and, therefore, the replacement savings per word is small.

Run-Length Encoding

In some situations, a single character may be repeated over and over again in a long
sequence. This type of repetition doesn’t generally take place in English text, but often
occurs in large data streams, such as DNA sequences. A text compression technique called
run-length encoding capitalizes on these situations. Run-length encoding is sometimes
called recurrence coding.

Run-length encoding Replacing a long series of a repeated character with a count of the repetition

In run-length encoding, a sequence of repeated characters is replaced by a flag character,
followed by the repeated character, followed by a single digit that indicates how many times
the character is repeated. For example, consider the following string of seven repeated ‘A’
characters:

AAAAAAA

k3

If we use the *’ character as our flag, this string would be encoded as

The flag character indicates that the series of three characters (including the flag) should be
decoded into the appropriate repetitious string. All other text is treated regularly. Therefore,
the encoded string

*n5*x9ccc*h6 some other text *k8eee
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would be decoded into the following original text:
nnnnnxxxxxxxxxccchhhhhh some other text kkkkkkkkeee

The original text contains 51 characters and the encoded string contains 35 characters,
giving us a compression ratio in this example of 35/51, or approximately 0.68.

In this example the three repeated ‘c’ characters and the three repeated ‘e’ characters are
not encoded. Because it takes three characters to encode a repetition sequence, it is not
worth it to encode strings of two or three. In fact, in the case of two repeated characters,
encoding would actually make the string longer!

Given that we are using one character for the repetition count, it seems that we can’t
encode repetition lengths greater than nine. But keep in mind that each character is
represented by a series of bits based on some character set. For example, the character ‘5’ is
represented as ASCII value 53, which in an eight-bit binary string is 00110101. So, instead
of interpreting the count character as an ASCII digit, we could interpret it as a binary
number. We can then have repetition counts between 0 and 255, or even between 4 and
259, because runs of three or less are not represented.

Huffman Encoding

Another text compression technique, called Huffman encoding, is named after its creator,
Dr. David Huffman. Why should the character °X’, which is seldom used in text, take up
the same number of bits as the blank, which is used very frequently? Huffman codes
address this question by using variable-length bit strings to represent each character. That
is, a few characters may be represented by five bits, another few by six bits, yet another few
by seven bits, and so forth. This approach is contrary to the idea of a character set, in which
each character is represented by a fixed-length bit string (such as 8 or 16).

Huffman encoding Using a variable-length binary string to represent a character so that frequently used characters
have short codes

The idea behind this approach is that if we use only a few bits to represent characters
that appear often and reserve longer bit strings for characters that don’t appear often, the
overall size of the document being represented is small.

For example, suppose we use the following Huffman encoding to represent a few
characters:

Huffman Code Character

00 A

01 E

100 L

110 (@]

111 R

1010 B

1011 D

102



Then the word “DOORBELL” would be encoded in binary as

1011110110111101001100100

If we used a fixed-size bit string to represent each character (say, 8 bits), then the binary
form of the original string would be 8 characters times 8 bits, or 64 bits. The Huffman
encoding for that string is 25 bits long, giving a compression ratio of 25/64, or
approximately 0.39.

What about the decoding process? When we use character sets, we just take the bits in
chunks of 8 or 16 bits to see what character the chunk represents. In Huffman encoding,
with its variable-length codes, it seems as if we might get confused when trying to decode a
string because we don’t know how many bits we should include for each character. In fact,
that potential source of confusion has been eliminated by the way the codes are created.

An important characteristic of any Huffman encoding is that no bit string used to
represent a character is the prefix of any other bit string used to represent a character.
Therefore, as we scan from left to right across a bit string, when we find a string that
corresponds to a character, that must be the character it represents. It can’t be part of a
larger bit string.

For example, if the bit string

1010110001111011

is created with the previous table, it must be decoded into the word “BOARD?”. There is no
other possibility.

So how is a particular set of Huffman codes created? The details of that process are a bit
beyond the scope of this book, but let’s discuss the underlying issue. Because Huffman
codes use the shortest bit strings for the most common characters, we start with a table that
lists the frequency of the characters we want to encode. Frequencies may come from
counting characters in a particular document (352 E’s, 248 S’s, and so on) or from
counting characters in a sample of text from a particular content area. A frequency table
may also come from a general idea of how frequently letters occur in a particular language
such as English. Using those values, we can construct a structure from which the binary
codes can be read. The way the structure is created ensures that the most frequently used
characters get the shortest bit strings.

3.4 Representing Audio Data

We perceive sound when a series of air compressions vibrate a membrane in our ear, which
sends signals to our brain. Thus a sound is defined in nature by the wave of air that
interacts with our eardrum. See FIGURE 3.7. To represent a sound, we must somehow
represent the appropriate sound wave.

A stereo sends an electrical signal to a speaker to produce sound. This signal is an
analog representation of the sound wave. The voltage in the signal varies in direct
proportion to the sound wave. The speaker receives the signal and causes a membrane to
vibrate, which in turn vibrates the air (creating a sound wave), which in turn vibrates the
eardrum. The created sound wave should ideally be identical to the one that was captured
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initially, or at least good enough to please the listener.

)

FIGURE 3.7 A sound wave vibrates our eardrums

To represent audio data on a computer, we must digitize the sound wave, somehow
breaking it into discrete, manageable pieces. One way to accomplish this task is to actually
digitize the analog representation of the sound. That is, we can take the electric signal that
represents the sound wave and represent it as a series of discrete numeric values.

An analog signal varies in voltage continuously. To digitize the signal, we periodically
measure the voltage of the signal and record the appropriate numeric value. This process is
called sampling. Instead of a continuous signal, we end up with a series of numbers
representing distinct voltage levels.

To reproduce the sound, we use the stored voltage values to create a new continuous
electronic signal. The assumption is that the voltage levels in the original signal changed
evenly between one stored voltage value and the next. If we take enough samples in a short
period of time, that assumption is reasonable. But certainly the process of sampling can lose
information, as shown in FIGURE 3.8.

In general, a sampling rate of around 40,000 times per second is enough to create a
reasonable sound reproduction. If the sampling rate is much lower than that, the human
ear begins to hear distortions. A higher sampling rate produces better-quality sound, but
after a certain point the extra data is irrelevant because the human ear can’t hear the
difference. The overall result is affected by many factors, including the quality of the
equipment, the type of sound, and the human listener.
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FIGURE 3.8 Sampling an audio signal

A vinyl record album is an analog representation of the sound wave. The needle of a
record player (turntable) rides up and down in the spiral groove of the album. The rise and
fall of the needle is analogous to the voltage changes of the signal that represents the sound.

In contrast, a compact disk (CD) stores audio information digitally. On the surface of
the CD are microscopic pits that represent binary digits. A low-intensity laser is pointed at
the disk. The laser light reflects strongly if the surface is smooth and reflects poorly if the
surface is pitted. A receptor analyzes the reflection and produces the appropriate string of
binary data, which represents the numeric voltage values that were stored when the signal
was digitized. The signal is reproduced and sent to the speaker. See FIGURE 3.9.

- e

CD surface

Laser Receptor

1.7
)} =

FIGURE 3.9 A CD player reading binary data

4

Japan phone-answering competition

For more than fifty years, office workers across Japan have competed for the title of Japan’s best phone answerer.
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Women dominate the competition, using the high-pitched voices preferred by many Japanese businessmen. They
are judged on their manners and business etiquette as well as their voices. Could the United States have a
competition for digital voices?

Audio Formats

Over the past few years, several formats for audio data have become popular, including
WAV, AU, AIFF, VQF, and MP3. All of these formats are based on the storage of voltage
values sampled from analog signals, but all recognize the details of the data in different ways
and all use various compression techniques to one extent or another.

Currently, the dominant format for compressing audio data is MP3. The popularity of
MP3 resulted mostly because it offered a stronger compression ratio than other formats
available at the time. Other formats may prove more efficient in the future, but for now
MP3 is the general favorite. In mid-1999, the term “MP3” was searched for more than any
other term, and it is still going strong today. Let’s look at the details of the MP3 format a
little more closely.

The MP3 Audio Format

MP3 is short for MPEG-2, audio layer 3 file. MPEG is an acronym for the Moving Picture
Experts Group, which is an international committee that develops standards for digital audio
and video compression.

MP3 employs both lossy and lossless compression. First, it analyzes the frequency
spread and compares it to mathematical models of human psychoacoustics (the study of the
interrelation between the ear and the brain). Then, it discards information that can’t be
heard by humans. Finally, the bit stream is compressed using a form of Huffman encoding
to achieve additional compression.

Many software tools are available on the Web to help you create MP3 files. These tools
generally require that the recording be stored in some other common format, such as
WAV, before that data is converted into MP3 format, significantly reducing the file size.

A variety of MP3 players interpret and play MP3 files. An MP3 player can be purely
software for an existing computer, or it can be a dedicated hardware device that stores and
plays the files, such as the popular Apple iPod. Most MP3 players allow users to organize
their files in several different ways and to display corresponding information and graphics
during playback.

3.5 Representing Images and Graphics

Images such as photographs and graphics such as line drawings have common issues when
it comes to their representation and compression. We first look at the general idea of
representing color, then turn to the various techniques for digitizing and representing visual
information.

Representing Color
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Color is our perception of the various frequencies of light that reach the retinas of our eyes.
Our retinas have three types of color photoreceptor cone cells that respond to different sets
of frequencies. These photoreceptor categories correspond to the colors of red, green, and
blue. All other colors perceptible by the human eye can be made by combining various
amounts of these three colors.

In a computer, color is often expressed as an RGB (red-green-blue) value, which is
actually three numbers that indicate the relative contribution of each of these three primary
colors. If each number in the triple is given on a scale of 0 to 255, then 0 means no
contribution of that color and 255 means full contribution of that color. For example, an
RGB value of (255, 255, 0) maximizes the contribution of red and green and minimizes
the contribution of blue, which results in a bright yellow.

The concept of RGB values gives rise to a three-dimensional color space. FIGURE 3.10

shows one way to display such a color space.

Red

Magenta

Black

| Yellow White
|

Green Cyan

FIGURE 3.10 A three-dimensional color space

The amount of data that is used to represent a color is called the color depth. It is usually
expressed in terms of the number of bits that are used to represent the color. High Color
indicates a 16-bit color depth. With this scheme, 5 bits are used for each number in an
RGB value and the extra bit is sometimes used to represent transparency. Z7ue Color
indicates a 24-bit color depth. With this scheme, each number in an RGB value gets 8 bits,
which gives the range of 0 to 255 for each. This results in the ability to represent more than
16.7 million unique colors.

The following chart shows a few true color RGB values and the colors they represent:
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RGB VALUE

Green

1] a 1] black
255 255 285 white
255 255 0] yellow
255 130 255 pink
146 21 0 brown
157 95 82 purple
140 0 0 maroon

The 24-bit true color values provide more colors than the human eye can distinguish.
Furthermore, the monitors that display colors are restricted to a particular color depth. In
older hardware in which monitor colors are reduced to, say, 256 colors, any color that is
specified by a program is mapped into the closest color in the palette of colors that the
hardware is capable of displaying. FIGURE 3.11 shows such a restricted color palette.
When there are significant differences between the colors desired and the colors that can be
displayed, the results are usually unsatisfactory. Thankfully, most modern monitors provide
enough color range to greatly reduce these problems.

FIGURE 3.11 A restricted color palette

Digitized Images and Graphics

A photograph is an analog representation of an image. It is continuous across its surface,
with shades of one color blending into another. Digitizing a picture is the act of
representing it as a collection of individual dots called pixels, a term that stands for picture
elements. Each pixel is composed of a single color. The number of pixels used to represent a
picture is called the resolution. If enough pixels are used (high resolution) and are then
presented in the proper order side by side, the human eye can be fooled into thinking it’s
viewing a continuous picture. FIGURE 3.12 shows a digitized picture, with a small
portion of it magnified to show the individual pixels.

Pixels Individual dots used to represent a picture; stands for picture elements
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Resolution The number of pixels used to represent a picture

The storage of image information on a pixel-by-pixel basis is called a raster-graphics
format. Several popular raster-graphics file formats are currently in use, including bitmap

(BMP), GIF, and JPEG.

Raster-graphics format Storing image information pixel by pixel

A bitmap file is one of the most straightforward graphic representations. In addition to a
few administrative details, a bitmap file contains the pixel color values of the image from
left to right and from top to bottom. A bitmap file supports 24-bit true color, although
usually the color depth can be specified to reduce the file size. Such a file may be
compressed using run-length encoding,.

FIGURE 3.12 A digitized picture composed of many individual pixels
Courtesy of Amy Rose

Graphics Interchange Format (GIF), which was developed by CompuServe in 1987,
limits the number of available colors in the image to 256. That is, a GIF image can be
made up of only 256 colors, but each GIF image can be made up of a different set of 256
colors. This technique, called indexed color, results in smaller file sizes because there are
fewer colors to reference. If even fewer colors are required, the color depth can usually be
specified with fewer bits. GIF files are best used for graphics and images with few colors,
and are therefore considered optimal for line art. A version of the GIF format allows for
small animations to be defined by storing a series of images that a program such as a
browser displays in succession.

The JPEG format is designed to exploit the nature of our eyes. Humans are more
sensitive to gradual changes of brightness and color over distance than we are to rapid
changes. Therefore, the data that the JPEG format stores averages out the color hues over
short distances. This format is considered superior for photographic color images. A fairly
complicated compression scheme can significantly reduce the resulting file sizes.

PNG (pronounced “ping”) stands for Portable Network Graphics. The designers of the
PNG format wanted to improve upon, and ultimately replace, the GIF format. PNG
images can usually achieve a greater compression than GIFs, while offering a much wider
range of color depths. However, PNG images do not support animation, and they are not

109



yet as widely supported as GIFs.

4

Einstein describes the telegraph

“You see, wire telegraph is a kind of very, very long cat,” explained Albert Einstein. “You pull its tail in New York
and his head is meowing in Los Angeles....And radio operates exactly the same way: You send signals here, they
receive them there. The only difference is that there is no cat.”

How do you think he would describe the Web?

Vector Representation of Graphics

Vector graphics is another technique for representing images. Instead of assigning colors to
pixels as we do in raster graphics, a vector-graphics format describes an image in terms of
lines and geometric shapes. A vector graphic is a series of commands that describe a line’s
direction, thickness, and color. The file sizes produced with these formats tend to be small
because every pixel does not have to be accounted for. The complexity of the image, such as
the number of items in the picture, determines the file size.

Vector graphics Representation of an image in terms of lines and shapes

A raster graphic such as a GIF must be encoded multiple times to account for different
sizes and proportions. By contrast, vector graphics can be resized mathematically, and these
changes can be calculated dynamically as needed.

However, vector graphics images are not good for representing real-world images. JPEG
images are far superior in that regard, but vector graphics images are good for line art and
cartoon-style drawings.

The most popular vector-graphics format used on the Web today is called Flash. Flash
images are stored in a binary format and require a special editor to create. A new vector-
graphics format, called Scalable Vector Graphics (SVG), is under development. SVG is
expressed in plain text. When the SVG format is finalized, it is likely to make vector
graphics a popular approach for web-based imaging.

3.6 Representing Video

Video information is one of the most complex types of information to capture, compress,
and still get a result that makes sense to the human eye. Video clips contain the equivalent
of many still images, each of which must be compressed. The Web is full of video clips with
widely varying levels of quality. Some of the quality issues depend on the sophistication of
video compression techniques, which are referred to as video codecs.

Video Codecs
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Codec stands for COmpressor/DECompressor. A video codec refers to the methods used to
shrink the size of a movie so that it can be played on a computer or over a network. Almost
all video codecs use lossy compression to minimize the huge amounts of data associated
with video. The goal, therefore, is not to lose information that affects the viewer’s senses.

Video codec Methods used to shrink the size of a movie

Most codecs are block oriented, meaning that each frame of a video is divided into
rectangular blocks. The various codecs differ in how the blocks are encoded. Some video
codecs are accomplished completely in software, whereas others require special hardware.

Video codecs employ two types of compression: temporal and spatial. Temporal
compression looks for differences between consecutive frames. If most of an image in two
frames hasn’t changed, why should we waste space by duplicating all of the similar
information? A keyframe is chosen as the basis on which to compare the differences, and its
entire image is stored. For consecutive images, only the changes (called delta frames) are
stored. Temporal compression is effective in video that changes little from frame to frame,
such as a scene that contains little movement.

Temporal compression Movie compression technique based on differences between consecutive frames

Spatial compression removes redundant information within a frame. This problem is
essentially the same as the one we face when compressing still images. Spatial video
compression often groups pixels into blocks (rectangular areas) that have the same color,
such as a portion of a clear blue sky. Instead of storing each pixel, the color and the
coordinates of the area are stored instead. This idea is similar to run-length encoding.

Spatial compression Movie compression technique based on the same compression techniques used for still images

Bob Bemer

Bob Bemer became a fixture in computing circles in 1945. His résumé reads like a list of
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the most influential computing companies of the last half-century. He worked for
Douglas Aircraft, RKO Radio Pictures, the Rand Corporation, Lockheed Aircraft,
Marquardt Aircraft, Lockheed Missiles and Space, IBM, Univac Division of Sperry
Rand, Bull General Electric (Paris), GTE, Honeywell, and finally his own software
company, Bob Bemer Software.

The predominance of aircraft manufacturers on Bemer’s résumé is not surprising
because he studied mathematics and held a Certificate in Aeronautical Engineering from
Curtiss-Wright Technical Institute (1941). In the early days of computing, aircraft
manufacturers were pioneers in using computers in industry.

During his career, Bemer was active in programming language development. He
developed FORTRANTSIT, an early FORTRAN compiler. He was actively involved in
the development of the COBOL language and the CODASYL language, an early
approach to database modeling and management. In addition, he was responsible for
authorizing funding for the development of SIMULA, a simulation language that
introduced many object-oriented features.

Bemer was also an active participant in committees formed to bring universal
standards into the new computing industry. He was U.S. representative on the IFIP
Computer Vocabulary Committee, Chairman of ISO/TC97/SC5 on Common
Programming Languages, and Chairman of X3/SPARC Study Group on Text
Processing.

However, Bemer is best known for his work on the ASCII computer code, which is
the standard internal code for 8-bit PCs today. Early on, Bemer recognized that if
computers were going to communicate with one another, they needed a standard code
for transmitting textual information. Bemer made and published a survey of more than
60 different computer codes, thus demonstrating a need for a standard code. He created
the program of work for the standards committee, forced the U.S. standard code to
correspond to the international code, wrote the bulk of the articles published about the
code, and pushed for a formal registry of ASClI-alternate symbol and control sets to
accommodate other languages.

Perhaps Bemer’s most important contribution is the concept of an escape character.
The escape character alerts the system processing the characters that the character(s)
following the escape character change the standard meaning of the characters to follow.
For example, ESC (N) alerts the system that the following characters are in the Cyrillic
equivalent of ASCIL.

The first version of a 16-bit code called Unicode was published in October 1991.
Two factors drove the need for an enlarged code: 16-bit computer architecture was
becoming popular, and the expansion of the Internet and the World Wide Web drove
the need for a code that could directly include the world’s alphabets. ASCII, however,
has not gone away; it remains a subset of Unicode.

In May 2003, Bemer received the IEEE Computer Society’s Computer Pioneer
Award “for meeting the world’s needs for variant character sets and other symbols, via
ASCII, ASClI-alternate sets, and escape sequences.”

Bob Bemer died on June 22, 2004, at his home on Possum Kingdom Lake in
Texas.?
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Various video codecs are popular today, including Sorenson, Cinepak, MPEG, and
Real Video. The details of how these codecs represent and compress video are beyond the

scope of this book.

SUMMARY

Computers are multimedia devices that manipulate data varying in form from numbers to
graphics to video. Because a computer can manipulate only binary values, all forms of data
must be represented in binary form. Data is classified as being either continuous (analog) or
discrete (digital).

Integer values are represented by their binary equivalent using one of several techniques
for representing negative numbers, such as a signed-magnitude or two’s complement. Real
numbers are represented by a triple made up of the sign, the digits in the number, and an
exponent that specifies the radix point.

A character set is a list of alphanumeric characters and the codes that represent each
character. The most commonly used character set today is Unicode (16 bits for each
character), which has ASCII as a subset. The 8-bit ASCII set is sufficient for English but
not for other (or multiple) languages. There are various ways for compressing text so that it
takes less space to store it or less time to transmit it from one machine to another.

Audio information is represented as digitized sound waves. Color is represented by
three values that represent the contributions of red, blue, and green, respectively. Two basic
techniques are used for representing pictures, bitmaps, and vector graphics. Video is broken
up into a series of still images, each of which is represented as a picture.

ETHICAL ISSUES

The Fallout from Snowden’s Revelations

Edward Snowden worked as a computer specialist for the Central Intelligence Agency
(CIA) and a contractor for the National Security Agency (NSA). In June of 2012, he
leaked a large number of classified documents to several media outlets. These documents
revealed the operational details of a global surveillance program of which NSA was a
partner. This surveillance program collected massive amounts of metadata—that is, data
about data—from leading Internet companies.

James Clapper, the U.S. director of national intelligence, explained that George W.
Bush first authorized this Internet spying just after 9/11. The program was disclosed in
2005 and was replaced by extensions of the Foreign Intelligence Surveillance Act
(FISA), which allowed the FISA Court to grant warrants for the collection of bulk data;
that is, metadata.’

After the public outcry resulting from Snowden’s revelations, a presidential advisory
committee was formed, which submitted 46 recommendations for changes to the NSA’s
operations. President Obama announced in early 2014 that the U.S. government
would scale back its eavesdropping on foreign leaders and its vast collection of
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Americans’ phone data. The numbers and times of phone calls made by every American
will still be collected, but access to the metadata will be more restricted. Gaining access
to the collection will require approval from the FISA Court.”

In August 2013, Edward Snowden was granted one year of asylum in Russia,
renewable annually. In August of 2014, he was granted a three-year extension. He has
been variously called a criminal, a hero, a traitor, and a patriot. This is an ongoing story;
watch the daily news.

KEY TERMS

Analog data
Bandwidth

Character set
Compression ratio
Data

Data compression
Digital data

Digitize

Floating point
Huffman encoding
Information

Keyword encoding
Lossless compression
Lossy compression
Multimedia

Overflow

Pixels

Pulse-code modulation
Radix point
Raster-graphics format
Reclock

Resolution
Run-length encoding
Scientific notation
Signed-magnitude representation
Spatial compression
Temporal compression
Ten’s complement
Vector graphics

Video codec
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EXERCISES

For

N WwN

9.
10.
11.
12.
13.

14

15.
16.
17.

18.
19.
20.

For

21.
22.
23.
24.
25.
20.

Exercises 1-20, mark the answers true or false as follows:
A. True
B. False
Lossless compression means the data can be retrieved without losing any of the
original information.
A computer represents information in an analog form.
A computer must use the binary number system to represent information.
A digital signal represents one of two values at any point in time.
Four bits can be used to represent 32 unique things.
The signed-magnitude representation of numbers has two representations for zero.
Overflow occurs when the value that we compute cannot fit into the number of
bits we have allocated for the result.
In the ASCII character set, no distinction is made between uppercase and
lowercase letters.
The Unicode character set includes all of the characters in the ASCII character set.
Keyword encoding replaces frequently used words with a single character.
Run-length encoding is very good at compressing English text.
Huffman encoding uses variable-length binary strings to represent characters.
An audio signal is digitized by sampling it at regular intervals.
. A CD stores audio information in a binary format.
The MP3 audio format discards information that cannot be heard by humans.
An RGB value represents a color using three numeric values.
Indexed color increases the number of colors that can be used in an image, and
thus increases the file size.
Bitmap, GIF, and JPEG are all examples of raster-graphics formats.
Vector graphics represent images in terms of lines and geometric shapes.
A keyframe is used in temporal compression to represent the changes from one
frame to another.

Exercises 21-26, choose the correct term from the following list.

A. Signed-magnitude representation

B. Radix point

C. Frequency of use

D. Sampling

E. Analog

E. Digital
data is a continuous representation of information.

The representation for numbers you’ve used since grade school is called

If the number base is other than base 10, we call the decimal point the
data is a discrete representation of information.

Huffman codes are created based on the of the character.

An audio signal is digitized by its value at regular intervals.

Exercises 27—79 are problems or short-answer questions.
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27.
28.
29.
30.

31.
32.
33.

34.

35.

36.

37.

38.

Why is data compression an important topic today?

What is the difference between lossless and lossy data compression?

Why do computers have difficulty with analog information?

Is a clock with a sweeping second hand an analog device or a digital device?

Explain.

What does it mean to digitize something?

What is pulse-code modulation?

How many things can be represented with

a. Four bits?

b. Five bits?

c. Six bits?

d. Seven bits?

Although you have been computing simple arithmetic operations since the second

grade, take the following quick test to confirm that you thoroughly understand

operations on signed integers. Evaluate the following expressions where W is 17, X

is 28, Y is —29, and Z is -13.

a. X+Y

b. X+ W

c. Z+W

d Y+Z

e. W-2

f. X-W

g Y-W

h. Z-Y

Use the base-10 number line to prove the solutions to the following operations,

where A is 5 and B is —7.

a. A+B

b. A-B

c. B+A

d B-A

Given a fixed-sized number scheme where 4 in the formula for the ten’s

complement is 6 (see page 63), answer the following questions.

a. How many positive integers can be represented?

b. How many negative integers can be represented?

c. Draw the number line showing the three smallest and largest positive numbers,
the three smallest and largest negative numbers, and zero.

Use the number line in Exercise 36(c) to calculate the following expressions, where

A'is —499999 and B is 3.

a. A+B

b. A-B

c. B+A

d. B-A

Use the formula for the ten’s complement to calculate the following numbers in

the scheme described on page 63.

a. 35768

b. —35768
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39.

40.

41.
42.

43.

44.

45.

46.
47.
48.

49.
50.

c. —444455

d. —123456

In calculating the ten’s complement in Exercise 38, did you have trouble

borrowing from so many zeros? Such calculations are error prone. There is a trick

that you can use that makes the calculation easier and thus less prone to errors:

Subtract from all 9s and then add 1. A number subtracted from all 9s is called the

nine’s complement of the number.

a. Prove that the nine’s complement of a number plus one is equal to the ten’s
complement of the same number.

b. Use the nine’s complement plus one to calculate the values in Exercise 38(b),
(c), and (d).

c. Which did you find easier to use, the direct calculation of the ten’s complement
or the nine’s complement plus one? Justify your answer.

Evaluate the following expressions, where A'is 11111110 and B is 00000010,

using the two’s complement.

a. A+B

b. A-B

c. B—A

d. -B

e. —(-A)

Is the two’s complement of a number always a negative number? Explain.

Devise a number system based on base 11.

a. Draw the number line.

b. Show examples of addition and subtraction.

c. Develop a representation of negative numbers based on the eleven’s
complement.

Convert the rules for subtraction in a signed-magnitude system to the algorithm

format.

Convert the following real numbers to binary (five binary places).

a. 0.50

b. 0.26

c. 0.10

Convert the following real numbers to octal (five octal places).

a. 0.50

b. 0.26

c. 0.10

Can fractional values be visually converted between octal and binary and back?

Explain.

How many bits would be needed to represent a character set containing 45

characters? Why?

How can the decimal number 175.23 be represented as a sign, mantissa, and

exponent?

What is the main difference between the ASCII and Unicode character sets?

Create a keyword encoding table that contains a few simple words. Rewrite a

paragraph of your choosing using this encoding scheme. Compute the compression

ratio you achieve.
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51. How would the following string of characters be represented using run-length
encoding? What is the compression ratio? AAAABBBCCCCCCCCDDDD hi
there EEEEEEEEEFF

52. What does the code *X5*A9 represent using run-length encoding?

53. Given the following Huffman encoding table, decipher the bit strings that follow.

HUFFMAN CODE CHARACTER
00 A
11 E
010 T
0110 C
0111 L
1000 N
1011 R
10010 O
10011 I
101000 N
101001 F
101010 H
101011 D

a. 1101110001011
b. 0110101010100101011111000
c. 101001001010000100010000101 00110110
d. 101000100101010001000111010 00100011

54. How do humans perceive sound?

55. Is a stereo speaker an analog device or a digital device? Explain.

56. What is an RGB value?

57. What does color depth indicate?

58. How does pixel resolution affect the visual impact of an image?

59. Explain temporal video compression.

60. Describe a situation in which spatial video compression would be effective.

61. Define sampling as it relates to digitizing sound waves.

62. Which produces better sound quality, higher sampling rates or lower sampling
rates?

63. What is the sampling rate per second that is enough to create reasonable sound
reproduction?

64. Do vinyl record albums and compact disks record sound in the same way?

65. What does an RGB value of (130, 0, 255) mean?

66. What color does an RGB value of (255, 255, 255) represent?

67. What is resolution?

68. The GIF format uses which technique?

69. What are GIF files best for?

70. How are the various video codecs alike?

71. How are the various video codecs different?

72. Name two types of video compression.

73. What do we call the perception of the various frequencies of light that reach the
retinas of our eyes?

74. What is the best format for photographic color images?
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75. What are the techniques called that shrink the sizes of movies?

76. What is the technique in which an application supports only a certain number of
specific colors, creating a palette from which to choose?

77. What is the format that describes an image in terms of lines and geometric shapes?

78. Which format stores information on a pixel-by-pixel basis?

79. What is the difference between high color and true color?

THOUGHT QUESTIONS

1. What are some advantages of using a common (standardized) character set? What
are some disadvantages?

2. When converting whole numbers from one base to another, we divide by the new
base. When converting fractional parts from one base to another, we multiply by
the new base. Can positional notation be used to explain these algorithms?

3. Technology is changing rapidly. What changes have occurred in data compression
since this book was written?

4. Where is Edward Snowden now?

5. What do you think history will call him?
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4 GATES AND CIRCUITS

Computers are electronic devices; the most fundamental hardware elements of a computer
control the flow of electricity. In a very primitive sense, we use technology to harness the
power of a lightning bolt, bending it to our will so that we can perform calculations and
make decisions. This chapter dances the fine line between computer science and electrical
engineering, examining the most basic hardware elements in a computer.

In Chapter 2, we looked at number systems in general and at the binary number system
in particular. As we saw in Chapter 3, the binary number system is of special interest
because it is used to represent data in a computer. In this chapter, we explore how
computers use electrical signals to represent and manipulate those binary values.

GOALS
After studying this chapter, you should be able to:

identify the basic gates and describe the behavior of each.

describe how gates are implemented using transistors.

combine basic gates into circuits.

describe the behavior of a gate or circuit using Boolean expressions, truth tables, and logic diagrams.
compare and contrast a half adder and a full adder.

describe how a multiplexer works.

explain how an S-R latch operates.

describe the characteristics of the four generations of integrated circuits.

4.1 Computers and Electricity

Any given electronic signal has a level of voltage. As we mentioned in the last chapter, we
distinguish between the two values of interest (binary 0 and 1) by the voltage level of a
signal. In general, a voltage level in the range of 0 to 2 volts is considered “low” and is
interpreted as a binary 0. A signal in the 2- to 5-volt range is considered “high” and is
interpreted as a binary 1. Signals in a computer are constrained to be within one range or
the other.

A gate is a device that performs a basic operation on electrical signals. It accepts one or
more input signals and produces a single output signal. Several types of gates exist; we
examine the six most fundamental types in this chapter. Each type of gate performs a
particular logical function.
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Gate A device that performs a basic operation on electrical signals, accepting one or more input signals and
producing a single output signal

Gates are combined into circuits to perform more complicated tasks. For example,
circuits can be designed to perform arithmetic and to store values. In a circuit, the output
value of one gate often serves as the input value for one or more other gates. The flow of
electricity through a circuit is controlled by the carefully designed logic of the interacting
gates.

Circuit A combination of interacting gates designed to accomplish a specific logical function

Three different, but equally powerful, notational methods are used to describe the
behavior of gates and circuits:

m Boolean expressions
m Logic diagrams

m Truth tables

We examine all three types of representation during our discussion of gates and circuits.

The English mathematician George Boole invented a form of algebra in which variables
and functions take on only one of two possible values (0 and 1). This algebra is
appropriately called Boolean algebra. Expressions in this algebraic notation are an elegant
and powerful way to demonstrate the activity of electrical circuits. Specific operations and
properties in Boolean algebra allow us to define and manipulate circuit logic using a
mathematical notation. Boolean expressions will come up again in our discussions of the

programming layer in Chapters 6 through 9.

Boolean algebra A mathematical notation for expressing two-valued logical functions

A logic diagram is a graphical representation of a circuit. Each type of gate is
represented by a specific graphical symbol. By connecting those symbols in various ways,
we can visually represent the logic of an entire circuit.

Logic diagram A graphical representation of a circuit; each type of gate has its own symbol

A truth table defines the function of a gate by listing all possible input combinations
that the gate could encounter, along with corresponding output. We can design more
complex truth tables with sufficient rows and columns to show how entire circuits perform
for any set of input values.

Truth table A table showing all possible input values and the associated output values
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George Boole!

Boolean algebra is named for its inventor, English mathematician George Boole, born in
1815. His father, a tradesman, began teaching him mathematics at an early age. But
Boole was initially more interested in classical literature, languages, and religion—
interests he maintained through out his life. By the time he was 20, he had taught
himself French, German, and Italian. He was well versed in the writings of Aristotle,
Spinoza, Cicero, and Dante, and wrote several philosophical papers himself.

At 16 he took a position as a teaching assistant in a private school to help support
his family. His work there plus a second teaching job left him little time to study. A few
years later, he opened a school and began to learn higher mathematics on his own. In
spite of his lack of formal training, his first scholarly paper was published in the
Cambridge Mathematical Journal when he was just 24. In 1849, he was appointed
professor of mathematics at Queen’s College in Cork, Ireland. He became chair of
mathematics and spent the rest of his career there. Boole went on to publish more than
50 papers and several major works before he died in 1864, at the peak of his career.

Boole’s The Mathematical Analysis of Logic was published in 1847. It would
eventually form the basis for the development of digital computers. In the book, Boole
set forth the formal axioms of logic (much like the axioms of geometry) on which the
field of symbolic logic is built. Boole drew on the symbols and operations of algebra in
creating his system of logic. He associated the value 1 with the universal set (the set
representing everything in the universe) and the value 0 with the empty set, and
restricted his system to these quantities. He then defined operations that are analogous
to subtraction, addition, and multiplication.

In 1854, Boole published An Investigation of the Laws of Thought; on Which Are
Founded the Mathematical Theories of Logic and Probabilities. This book described
theorems built on his axioms of logic and extended the algebra to show how
probabilities could be computed in a logical system. Five years later, Boole published
Treatise on Differential Equations, followed by Treatise on the Calculus of Finite
Differences. The latter is one of the cornerstones of numerical analysis, which deals with
the accuracy of computations.

Boole received little recognition and few honors for his work. Given the importance
of Boolean algebra in modern technology, it is hard to believe that his system of logic
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was not taken seriously until the early twentieth century. George Boole was truly one of
the founders of computer science.

2

What is nanoscience?

Nanoscience and nanotechnology are the study and application of extremely small things:
* There are 25,400,000 nanometers in an inch.

* A sheet of newspaper is about 100,000 nanometers thick.

e If a marble were a nanometer, one meter would be the size of the Earth.?

4.2 Gates

The gates in a computer are sometimes referred to as logic gates because each performs just
one logical function. That is, each gate accepts one or more input values and produces a
single output value. Because we are dealing with binary information, each input and output
value is either 0, corresponding to a low-voltage signal, or 1, corresponding to a high-
voltage signal. The type of gate and the input values determine the output value.

Let’s examine the processing of the following six types of gates. We then show how they
can be combined into circuits to perform arithmetic operations.

NOT
AND
OR
XOR
NAND
NOR

In this book we have colorized the logic diagram symbols for each gate to help you keep
track of the various types. When we examine full circuits with many gates, the colors will
help you distinguish among them. In the real world, however, logic diagrams are typically
black and white, and the gates are distinguished only by their shape.

NOT Gate

A NOT gate accepts one input value and produces one output value. FIGURE 4.1
shows a NOT gate represented in three ways: as a Boolean expression, as its logical diagram
symbol, and through a truth table. In each representation, the variable A represents the
input signal, which is either 0 or 1. The variable X represents the output signal, whose
value (0 or 1) is determined by the value of A.

By definition, if the input value for a NOT gate is 0, the output value is 1; if the input
value is 1, the output is 0. A NOT gate is sometimes referred to as an inverter because it
inverts the input value.
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Boolean Expression Logic Diagram Symbol Truth Table

A b X X

- A
i 0

X = A'

FIGURE 4.1 Representations of a NOT gate

In Boolean expressions, the NOT operation is represented by the ‘mark after the value
being negated. Sometimes this operation is shown as a horizontal bar over the value being
negated. In the Boolean expression in Figure 4.1, X is assigned the value determined by
applying the NOT operation to input value A. In such an assignment statement, the variable
on the left of the equal sign takes on the value of the expression on the right-hand side.
Assignment statements are discussed further in Chapter 6.

The logic diagram symbol for a NOT gate is a triangle with a small circle (called an
inversion bubble) on the end. The input and output are shown as lines flowing into and out
of the gate. Sometimes these lines are labeled, though not always.

The truth table in Figure 4.1 shows all possible input values for a NOT gate as well as
the corresponding output values. Because there is only one input signal to a NOT gate, and
that signal can be only a 0 or a 1, there are only two possibilities for the column labeled A
in the truth table. The column labeled X shows the output of the gate, which is the inverse
of the input. Note that of the three representations, only the truth table actually defines the
behavior of the gate for all situations.

These three notations are just different ways of representing the same thing. For
example, the result of the Boolean expression

OI
is always 1, and the result of the Boolean expression
1 4

is always 0. This behavior is consistent with the values shown in the truth table.

AND Gate

FIGURE 4.2 depicts an AND gate. Unlike a NOT gate, which accepts one input signal,
an AND gate accepts two input signals. The values of both input signals determine what
the output signal will be. If the two input values for an AND gate are both 1, the output is
1; otherwise, the output is 0.
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Boolean Expression Logic Diagram Symbol Truth Table
A : A B X
X=A«+B — 0 0 0
J 0 1 0
1 0 0
1 1 1

FIGURE 4.2 Representations of an AND gate

The AND operation in Boolean algebra is expressed using a single dot (.). Sometimes
an asterisk (*) is used to represent this operator. Often the operator itself is assumed. For
example, A-B is often written AB.

Because there are two inputs and two possible values for each input, four possible
combinations of 1 and 0 can be provided as input to an AND gate. Therefore, four
situations can occur when the AND operator is used in a Boolean expression:

- 0 equals 0
- 1 equals 0
- 0equals 0
- 1 equals 1

— == O O

Likewise, the truth table showing the behavior of the AND gate has four rows, showing all
four possible input combinations. The output column of the truth table is consistent with
results of these Boolean expressions.

OR Gate

FIGURE 4.3 shows an OR gate. Like the AND gate, the OR gate has two inputs. If both
input values are 0, the output value is 0; otherwise, the output is 1.

The Boolean algebra OR operation is expressed using a plus sign (+). The OR gate has
two inputs, each of which can be one of two values. Thus, as with an AND gate, there are
four input combinations and therefore four rows in the truth table.

XOR Gate

The XOR, or exclusive OR, gate is shown in FIGURE 4.4. An XOR gate produces a 0 if its
two inputs are the same, and a 1 otherwise. Note the difference between the XOR gate and
the OR gate; they differ in only one input situation. When both input signals are 1, the OR
gate produces a 1 and the XOR produces a 0.
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Boolean Expression Logic Diagram Symbol Truth Table
I 5 A B X
X =0 + B — 0 0 0
i< 0 1 1
1 0 1
1 1 1
FIGURE 4.3 Representations of an OR gate
Boolean Expression Logic Diagram Symbol Truth Table
A " A B X
A=A B p— 0 1] 0
- 0 1 1
1 0 1
1 1 0

FIGURE 4.4 Representations of an XOR gate

Sometimes the regular OR gate is referred to as the inclusive OR, because it produces a
1 if either or both of its inputs is a 1. The XOR produces a 1 only if its inputs are mixed
(one 1 and one 0). Think of the XOR gate as saying, “When I say o7, I mean one or the
other, not both.”

The Boolean algebra symbol © is sometimes used to express the XOR operation. In
addition, the XOR operation can be expressed using the other operators; we leave that as an
exercise.

Note that the logic diagram symbol for the XOR gate is just like the symbol for an OR
gate except that it has an extra curved line connecting its input signals.

NAND and NOR Gates

The NAND gate is shown in FIGURE 4.5 and the NOR gate is shown in FIGURE 4.6.
Each accepts two input values. The NAND and NOR gates are essentially the opposites of
the AND and OR gates, respectively. That is, the output of a NAND gate is the same as if
you took the output of an AND gate and put it through an inverter (a NOT gate).
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Boolean Expression Logic Diagram Symbol Truth Table
A_E re -._\- x h E x.
X = (A B) 5 ;" D— 0 0 1
0 1 1
1 0 1
1 1 0
FIGURE 4.5 Representations of a NAND gate
Boolean Expression Logic Diagram Symbaol Truth Table
A : % A X
X =1{A + B)' So— 0 0 1
B 0 1 0
1 0 0
1 1 0

FIGURE 4.6 Representations of a NOR gate

No specific symbols are used to express the NAND and NOR operations in Boolean
algebra. Instead, we rely on their definitions to express the concepts. That is, the Boolean
algebra expression for NAND is the negation of an AND operation. Likewise, the Boolean
algebra expression for NOR is the negation of an OR operation.

The logic diagram symbols for the NAND and NOR gates are the same as those for the
AND and OR gates except that the NAND and NOR symbols use an inversion bubble (to
indicate the negation). Compare the output columns for the truth tables for the AND and
NAND gates. They are opposites, when you look at them row by row. The same is true for
the OR and NOR gates.

4

The tenth strand

Computing Curricula 1991, a report by a joint task force of the Association for Computing Machinery (ACM) and
the Institute of Electrical and Electronics Engineers (IEEE), gave recommendations for the design of bachelor’s
degree curricula in computer science. Although the report had a section entitled “Social and Professional Context,’
which stated that students need “to understand the basic cultural, social, legal, and ethical issues inherent in
computing,” the study of ethics was not one of the nine subject areas, or strands. By 2001, social and professional
issues was included as a topic area in computing education and called the tenth strand.

2]

Review of Gate Processing

We've looked at six specific types of gates. It may seem to be a difficult task to keep them
straight and remember how they all work—Dbut that probably depends on how you think
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about it. We definitely don’t encourage you to try to memorize truth tables. The processing
of these gates can be described briefly in general terms. If you think of them in that way,
you can produce the appropriate truth table any time you need it.

Let’s review the processing of each gate. Some of these descriptions are stated in terms
of which input values cause the gate to produce a 1 as output; in any other case, the gate
produces a 0.

m A NOT gate inverts its single input value.
An AND gate produces 1 if both input values are 1.
An OR gate produces 1 if one or the other or both input values are 1.

]
|
m An XOR gate produces 1 if one or the other (but not both) input values are 1.
m A NAND gate produces the opposite results of an AND gate.

]

A NOR gate produces the opposite results of an OR gate.

Boolean Expression Logic Diagram Symbol Truth Table

X=A«BsC B

el et el el = = = = T -
alalo|lo|=|=|ole|w
wlola|le|=lo|=|lc|o
= | oD o Q|0 | 0| | X

FIGURE 4.7 Representations of a three-input AND gate

With these general processing rules in mind, all that’s left is to remember the Boolean
operators and the logic diagram symbols. Keep in mind that several logic diagram symbols
are variations on other logic diagram symbols. Also, remember that the coloring of the gates
in this book is meant to help you to keep track of the various gate types; traditionally, they
are simply black-and-white diagrams.

Gates with More Inputs

Gates can be designed to accept three or more input values. A three-input AND gate, for
example, produces an output of 1 only if all input values are 1. A three-input OR gate
produces an output of 1 if any input value is 1. These definitions are consistent with the
two-input versions of these gates. FIGURE 4.7 shows an AND gate with three input
signals.

There are 2°, or 8, possible input combinations for a gate with three inputs. Recall from
Chapter 3 that there are 2” combinations of 1 and 0 for 7 distinct input values. This
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number determines how many rows appear in the truth table.

For the logic diagram symbol, we simply add a third input signal to the original
symbol. For a Boolean expression, we repeat the AND operation to represent the third
value.

4.3 Constructing Gates

Before we examine how gates are connected to form circuits, let’s examine, at an even more
basic level, how a gate is constructed to control the flow of electricity.

Transistors

A gate uses one or more transistors to establish how the input values map to the output
value. A transistor is a device that acts, depending on the voltage level of the input signal,
either as a wire that conducts electricity or as a resistor that blocks the flow of electricity. A
transistor has no moving parts, yet it acts like a switch. It is made of a semiconductor
material, which is neither a particularly good conductor of electricity (unlike copper) nor a
particularly good insulator (unlike rubber). Usually silicon is used to create transistors.

Transistor A device that acts either as a wire or a resistor, depending on the voltage level of an input signal

Semiconductor Material such as silicon that is neither a good conductor nor a good insulator

In Chapter 1, we mentioned that the invention of transistors, which occurred in 1947
at Bell Labs, changed the face of technology, ushering in the second generation of computer
hardware. Before the advent of transistors, digital circuits used vacuum tubes, which
dissipated a great deal of heat and often failed, requiring replacement. Transistors are much
smaller than vacuum tubes and require less energy to operate. They can switch states in a
few nanoseconds. Computing, as we know it today, is largely due to the invention of the
transistor.

Before tackling the details of transistors, let’s discuss some basic principles of electricity.
An electrical signal has a source, such as a battery or an outlet in your wall. If the electrical
signal is grounded, it is allowed to flow through an alternative route to the ground (literally),
where it can do no harm. A grounded electrical signal is pulled down, or reduced, to 0
volts.

A transistor has three terminals: a source, a base, and an emitter. The emitter is
typically connected to a ground wire, as shown in FIGURE 4.8. For computers, the source
produces a high voltage value, approximately 5 volts. The base value regulates a gate that
determines whether the connection between the source and ground is made. If the source
signal is grounded, it is pulled down to 0 volts. If the base does not ground the source
signal, it stays high.

An output line is usually connected to the source line. If the source signal is pulled to
the ground by the transistor, the output signal is low, representing a binary 0. If the source
signal remains high, so does the output signal, representing a binary 1.

The transistor is either on, producing a high-output signal, or off, producing a low
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output signal. This output is determined by the base electrical signal. If the base signal is
high (close to a +5 voltage), the source signal is grounded, which turns the transistor off. If
the base signal is low (close to a 0 voltage), the source signal stays high, and the transistor is
on.

Now let’s see how a transistor is used to create various types of gates. It turns out that,
because of the way a transistor works, the easiest gates to create are the NOT, NAND, and
NOR gates. FIGURE 4.9 shows how these gates can be constructed using transistors.

Source
Output
Base
Emitter
Gra-.md
FIGURE 4.8 The connections of a transistor
MOT gate MAMND gate NOR gate
Source
Source Vou Source
Vout V, — l
o 3 II"|II-IZII.,‘1
Vm 1.-"'1 — VQ —
Emitter V, —dy < Emitter Emitter
Ground S— Ground Ground
Grc:u nid

FIGURE 4.9 Constructing gates using transistors

The diagram for the NOT gate is essentially the same as our original transistor diagram.
It takes only one transistor to create a NOT gate. The signal V;, represents the input signal

to the NOT gate. If it is high, the source is grounded and the output signal V,  is low. If

ut

V., is low, the source is not grounded and V, is high. Thus the input signal is inverted,

ut

which is exactly what a NOT gate does.

The NAND gate requires two transistors. The input signals V; and V, represent the
input to the NAND gate. If both input signals are high, the source is grounded and the
output V,  is low. If either input signal is low, however, one transistor or the other keeps

the source signal from being grounded and the output is high. Therefore, if V; or V, or
both carry a low signal (binary 0), the output is a 1. This is consistent with the processing
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of a NAND gate.

The construction of a NOR gate also requires two transistors. Once again, V, and V,
represent the input to the gate. This time, however, the transistors are not connected in
series. The source connects to each transistor separately. If either transistor allows the
source signal to be grounded, the output is 0. Therefore, the output is high (binary 1) only
when both V| and V; are low (binary 0), which is what we want for a NOR gate.

An AND gate produces output that is exactly opposite of the NAND output of a gate.
Therefore, to construct an AND gate, we simply pass the output of a NAND gate through
an inverter (a NOT gate). That’s why AND gates are more complicated to construct than
NAND gates: They require three transistors, two for the NAND and one for the NOT.
The same reasoning can be applied to understand the relationship between NOR and OR
gates.

4.4 Circuits

Now that we know how individual gates work and how they are constructed, let’s examine
how we combine gates to form circuits. Circuits can be classified into two general
categories. In a combinational circuit, the input values explicitly determine the output. In
a sequential circuit, the output is a function of the input values as well as the existing state
of the circuit. Thus sequential circuits usually involve the storage of information. Most of
the circuits we examine in this chapter are combinational circuits, although we briefly
mention sequential memory circuits.

Combinational circuit A circuit whose output is solely determined by its input values

Sequential circuit A circuit whose output is a function of its input values and the current state of the circuit

As with gates, we can describe the operations of entire circuits using three notations:
Boolean expressions, logic diagrams, and truth tables. These notations are different, but
equally powerful, representation techniques.

Combinational Circuits

ates are combined into circuits usin e output of one gate as the input for another
Gat bined int ts by using the output of one gate as th t fi th
gate. For example, consider the following logic diagram of a circuit:

Eﬂl l:l:*

) B

The output of the two AND gates is used as the input to the OR gate. The input value A is
used as input to both AND gates. The dot indicates that two lines are connected. If the
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intersection of two crossing lines does not have a dot, you should think of one as “jumping
over” the other without affecting each other.

What does this logic diagram mean? Well, let’s work backward to see what it takes to
get a particular result. For the final output X to be 1, either D must be 1 or E must be 1.
For D to be 1, A and B must both be 1. For E to be 1, both A and C must be 1. Both E
and D may be 1, but that isn’t necessary. Examine this circuit diagram carefully; make sure
that this reasoning is consistent with your understanding of the types of gates used.

Now let’s represent the processing of this entire circuit using a truth table:

0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
1 0 0 0 0 0
l 0 1 0 1 1
1 1 0 1 8] 1
1 1 1 1 1 1

Because there are three inputs to this circuit, eight rows are required to describe all possible
input combinations. Intermediate columns show the intermediate values (D and E) in the
circuit,

Finally, let’s express this same circuit using Boolean algebra. A circuit is a collection of
interacting gates, so a Boolean expression to represent a circuit is a combination of the
appropriate Boolean operations. We just have to put the operations together in the proper
form to create a valid Boolean algebra expression. In this circuit, there are two AND
expressions. The output of each AND operation is input to the OR operation. Thus this
circuit is represented by the following Boolean expression (in which the AND operator is
assumed):

(AB + AC)

When we write truth tables, it is often better to label columns using these kinds of Boolean
expressions rather than arbitrary variables such as D, E, and X. That makes it clear what
each column represents. In fact, we can use Boolean expressions to label our logic diagrams
as well, eliminating the need for intermediate variables altogether.

Now let’s go the other way: Let’s take a Boolean expression and draw the corresponding
logic diagram and truth table. Consider the following Boolean expression:

AB +C)

In this expression, the OR operation is applied to input values B and C. The result of that
operation is used as input, along with A, to an AND operation, producing the final result.
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The corresponding circuit diagram is:

A . AB+C)
B

Once again, we complete our series of representations by expressing this circuit as a
truth table. As in the previous example, there are three input values, so there are eight rows
in the truth table:

A B C B+C A(B + C)
0 0 0 0 0
0 0] 1 1 0
0 1 0 1 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1

Pick a row from this truth table and follow the logic of the circuit diagram to make sure the
final results are consistent. Try it with a few rows to get comfortable with the process of
tracing the logic of a circuit.

Now compare the final result column in this truth table to the truth table for the
previous example. They are identical. We have just demonstrated circuit equivalence. That
is, both circuits produce exactly the same output for each input value combination.

Circuit equivalence The same output for each corresponding input—value combination for two circuits

In fact, this situation demonstrates an important property of Boolean algebra called the
distributive law:

AB +C)=AB + AC

That’s the beauty of Boolean algebra: It allows us to apply provable mathematical
principles to design logical circuits. The following chart shows a few of the properties of
Boolean algebra:

PROPERTY AND OR
Commutative AB = BA A+B=B+A
Associative (AB) C = A (BO) A+B)+C=A+B+0O
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Distributive A (B +C)=(AB) + (AC) A+ BC)=(A+B) (A+C)

Identity Al =A A+0=A

Complement AA) =0 A+(A)=1

De Morgan’s law (AB)’ = A’ OR B’ (A+B) =A'B’
?

De Morgan’s Law, named for Augustus De Morgan

De Morgan, a contemporary of George Boole, was the first professor of mathematics at the University of London in
1828, where he continued to teach for 30 years. He wrote elementary texts on arithmetic, algebra, trigonometry,
and calculus as well as papers on the possibility of establishing a logical calculus and the fundamental problem of
expressing thought by means of symbols. De Morgan did not discover the law bearing his name, but he is credited

with formally stating it as it is known today.’

These properties are consistent with our understanding of gate processing as well as with
the truth table and logic diagram representations. For instance, the commutative property,
in plain English, says that the order of the input signals doesn’t matter, which is true.
(Verify it using the truth tables of individual gates.) The complement property says that if
we put a signal and its inverse through an AND gate, we are guaranteed to get 0, but if we
put a signal and its inverse through an OR gate, we are guaranteed to get 1.

There is one very famous—and useful—theorem in Boolean algebra called De Morgan’s
law. This law states that the NOT operator applied to the AND of two variables is equal to
the NOT applied to each of the two variables with an OR between. That is, inverting the
output of an AND gate is equivalent to inverting the individual signals first and then
passing them through an OR gate:

(AB)’ = A’ OR B’

The second part of the law states that the NOT operator applied to the OR of two variables
is equal to the NOT applied to each of the two variables with an AND between. Expressed
in circuit terms, this means that inverting the output of an OR gate is equivalent to
inverting both signals first and then passing them through an AND gate:

(A+B)' =A'B’

De Morgan’s law and other Boolean algebra properties provide a formal mechanism for
defining, managing, and evaluating logical circuit designs.

Adders

Perhaps the most basic operation a computer can perform is to add two numbers together.
At the digital logic level, this addition is performed in binary. Chapter 2 discusses this
process in depth. These types of addition operations are carried out by special circuits
called, appropriately, adders.
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Adder An electronic circuit that performs an addition operation on binary values

Like addition in any base, the result of adding two binary digits could potentially
produce a carry value. Recall that 1 + 1 = 10 in base 2. A circuit that computes the sum of
two bits and produces the correct carry bit is called a half adder.

Half adder A circuit that computes the sum of two bits and produces the appropriate carry bit

Let’s consider all possibilities when adding two binary digits A and B: If both A and B
are 0, the sum is 0 and the carry is 0. If A is 0 and B is 1, the sum is 1 and the carry is 0. If
Ais 1 and B is 0, the sum is 1 and the carry is 0. If both A and B are 1, the sum is 0 and
the carry is 1. This yields the following truth table:

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

In this case, we are actually looking for two output results, the sum and the carry. As a
consequence, our circuit has two output lines.

If you compare the sum and carry columns to the output of the various gates, you see
that the sum corresponds to the XOR gate and the carry corresponds to the AND gate.
Thus the following circuit diagram represents a half adder:

Sum

Test this diagram by assigning various combinations of input values and determining
the two output values produced. Do the results follow the rules of binary arithmetic? They
should. Now compare your results to the corresponding truth table. They should match the
results there as well.

What about the Boolean expression for this circuit? Because the circuit produces two
distinct output values, we represent it using two Boolean expressions:

sum=A®B
carry = AB

Note that a half adder does not take into account a possible carry value into the
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calculation (carry-in). That is, a half adder is fine for adding two single digits, but it cannot
be used as is to compute the sum of two binary values with multiple digits each. A circuit
called a full adder takes the carry-in value into account.

Full adder A circuit that computes the sum of two bits, taking an input carry bit into account

We can use two half adders to make a full adder. How? Well, the input to the sum
must be the carry-in and the sum from adding the two input values. That is, we add the
sum from the half adder to the carry-in. Both of these additions have a carry-out. Could
both of these carry-outs be 1, yielding yet another carry? Fortunately, no. Look at the truth
table for the half adder. There is no case where the sum and the carry are both 1.

FIGURE 4.10 shows the logic diagram and the truth table for the full adder. This
circuit has three inputs: the original two digits (A and B) and the carry-in value. Thus the
truth table has eight rows. We leave the corresponding Boolean expression as an exercise.

To add two 8-bit values, we can duplicate a full-adder circuit eight times. The carry-out
from one place value is used as the carry-in to the next-highest place value. The value of the
carry-in for the rightmost bit position is assumed to be zero, and the carry-out of the
leftmost bit position is discarded (potentially creating an overflow error).

There are various ways to improve on the design of these adder circuits, but we do not
explore them in any more detail in this text.

Truth Table
Carry-in 0 0 i 4 4
0 0 1 1 0
,q_' ._’]_ 1—"}— . Sum 0 1 0 1 0
y F 0 1 1 0 1
R = 1 0 0 1 0
__ﬁL_j—] T 1 0 1
— I Carry-out 1 1 0 0 1
By A I 1 1 1

FIGURE 4.10 A full adder

2

Errors

While developing his first program, in about 1949, Maurice Wilkes said, “The realization came over me with full

force that a good part of the remainder of my life was going to be spent in finding the errors in my own

programs. 4

Multiplexers
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A multiplexer (often referred to as a mux) is a general circuit that produces a single output
signal. This output is equal to one of several input signals to the circuit. The multiplexer
selects which input signal to use as an output signal based on the value represented by a few
more input signals, called select signals or select control lines.

Multiplexer A circuit that uses a few input control signals to determine which of several input data lines is routed
to its output

Let’s look at an example to clarify how a multiplexer works. FIGURE 4.11 shows a
block diagram of a mux. The control lines SO, S1, and S2 determine which of eight other
input lines (DO through D7) are routed to the output (F).

The values of the three control lines, taken together, are interpreted as a binary number,
which determines which input line to route to the output. Recall from Chapter 2 that three
binary digits can represent eight different values: 000, 001, 010, 011, 100, 101, 110, and
111. These values, which simply count in binary from 0 to 7, correspond to our output
values DO through D7. Thus, if SO, S1, and S2 are all 0, the input line DO would be the
output from the mux. If SO is 1, S1 is 0, and S2 is 1, then D5 would be output from the
Mmux.

The following truth table shows how the input control lines determine the output for
this multiplexer:

The block diagram in Figure 4.11 hides a fairly complicated circuit that carries out the
logic of a multiplexer. Such a circuit could be shown using eight three-input AND gates
and one eight-input OR gate. We won’t get into the details of this circuit in this book.

0 0 0 Do
0 0 1 D1

0 1 0 D2

0 1 1 D3

: 2 0 o Do DI D2 D3 D4 D5 D6 D7

1 0 1 D5 -

1 1 0 D6 51 e
1 1 1 D7 o

FIGURE 4.11 A block diagram of a multiplexer with three select control lines

A multiplexer can be designed with various numbers of input lines and corresponding
control lines. In general, the binary values on 7 input control lines are used to determine
which of 2" other data lines are selected for output.

A circuit called a demultiplexer (demux) performs the opposite operation. That is, it
takes a single input and routes it to one of 2” outputs, depending on the values of the 7
control lines.
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4.5 Circuits as Memory

Digital circuits play another important role: They can store information. These circuits
form a sequential circuit, because the output of the circuit also serves as input to the circuit.
That is, the existing state of the circuit is used in part to determine the next state.

Many types of memory circuits have been designed. We examine only one type in this
book: the S-R lazch. An S-R latch stores a single binary digit (1 or 0). An S-R latch circuit
could be designed using a variety of gates. One such circuit, using NAND gates, is pictured
in FIGURE 4.12.

The design of this circuit guarantees that the two outputs X and Y are always
complements of each other. That is, when X is 0, Y is 1, and vice versa. The value of X at
any point in time is considered to be the current state of the circuit. Therefore, if X is 1, the
circuit is storing a 1; if X is 0, the circuit is storing a 0.

Recall that a NAND gate produces an output of 1 unless both of its input values are 1.
Each gate in this circuit has one external input (S or R) and one input coming from the
output of the other gate. Suppose the current state of the circuit is storing a 1 (that is, X is
1), and suppose both S and R are 1. Then Y remains 0 and X remains 1. Now suppose that
the circuit is currently storing a 0 (X is 0) and that R and S are again 1. Then Y remains 1
and X remains 0. No matter which value is currently being stored, if both input values S
and R are 1, the circuit keeps its existing state.

This explanation demonstrates that the S-R latch maintains its value as long as S and R
are 1. But how does a value get stored in the first place? We set the S-R latch to 1 by
momentarily setting S to 0 while keeping R at 1. If S is 0, X becomes 1. As long as S is
returned to 1 immediately, the S-R latch remains in a state of 1. We set the latch to 0 by
momentarily setting R to 0 while keeping S at 1. If R is 0, Y becomes 0, and thus X
becomes 0. As long as R is immediately reset to 1, the circuit state remains 0.

By carefully controlling the values of S and R, the circuit can be made to store either
value. By scaling this idea to larger circuits, we can design memory devices with larger
capacities.

FIGURE 4.12 An S-R latch

4.6 Integrated Circuits

An integrated circuit (also called a chip) is a piece of silicon on which multiple gates have
been embedded. These silicon pieces are mounted on a plastic or ceramic package with pins
along the edges that can be soldered onto circuit boards or inserted into appropriate
sockets. Each pin connects to the input or output of a gate, or to power or ground.
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Integrated circuit (chip) A piece of silicon on which multiple gates have been embedded

Integrated circuits (IC) are classified by the number of gates contained in them. These
classifications also reflect the historical development of IC technology:

Abbreviation Name Number of Gates
SSI Small-scale integration 1 to 10
MSI Medium-scale integration 10 to 100
LS Large-scale integration 100 to 100,000
VLSI Very-large-scale integration more than 100,000

An SSI chip has a few independent gates, such as the one shown in FIGURE 4.13.
This chip has 14 pins: eight for inputs to gates, four for output of the gates, one for
ground, and one for power. Similar chips can be made with different gates.

How can a chip have more than 100,000 gates on it? That would imply the need for
300,000 pins! The key is that the gates on a VLSI chip are not independent, as they are in
small-scale integration. VLSI chips embed circuits with a high gate-to-pin ratio. That is,
many gates are combined to create complex circuits that require only a few input and
output values. Multiplexers are an example of this type of circuit.

LI
jilion

FIGURE 4.13 An SSI chip containing independent NAND gates

4

What is computer ethics?

Be careful—the term computer ethics is ambiguous. The use of the term in the tenth strand of computer science
curricula refers to a code of ethics that computer professionals can apply within their own profession. Computer
ethics also refers to determinations made by contemporary philosophers to cases that involve computers or computer
networks.
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4.7 CPU Chips

The most important integrated circuit in any computer is the central processing unit
(CPU). The processing of a CPU is discussed in the next chapter, but it is important to
recognize at this point that the CPU is, in one sense, merely an advanced circuit with input
and output lines.

Each CPU chip contains a large number of pins through which essentially all
communication in a computer system occurs. This communication connects the CPU to
memory and I/O devices, which are themselves, at fundamental levels, advanced circuits.

The explanation of CPU processing and its interaction with other devices takes us to
another level of computer processing, sometimes referred to as component architecture.
Although it is still primarily focused on hardware, computer component architecture
applies the principle of abstraction yet again, allowing us to temporarily ignore the details
of the gates and circuits discussed in this chapter and bringing us ever closer to a complete
understanding of computer processing.

SUMMARY

In this chapter we discussed how a computer operates at its lowest level by controlling the
flow of electricity. Because we are dealing with digital computers that use binary
information, we concern ourselves with only two voltage ranges, which we interpret as
binary 1 or 0. The flow of electricity is guided by electronic devices called gazes, which
perform basic logical operations such as NOT, AND, and OR. A gate is created by using
one or more transistors, an invention that revolutionized computing.

Gates can be combined into circuits, in which the output of one gate serves as an input
to another gate. By designing these circuits carefully, we can create devices that perform
more complex tasks such as adding, multiplexing, and storing data. Collections of gates, or
complete circuits, are often embedded into a single integrated circuit, or ¢hip, which leads to
the concept of a central processing unit (CPU).

ETHICAL ISSUES
Codes of Ethics’

There are two major organizations in computing: the Association of Computing
Machinery and the Institute of Electrical and Electronics Engineers. The IEEE
represents the hardware side and the ACM represents the software side. However, in
many universities, this distinction is blurred. We are presenting both codes of ethics so
you can compare and contrast them.

IEEE Code of Ethics

We, the members of the IEEE, in recognition of the importance of our technologies in
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affecting the quality of life throughout the world, and in accepting a personal obligation
to our profession, its members and the communities we serve, do hereby commit
ourselves to the highest ethical and professional conduct and agree:

m to accept responsibility in making decisions consistent with the safety, health, and
welfare of the public, and to disclose promptly factors that might endanger the public
or the environment;

m to avoid real or perceived conflicts of interest whenever possible, and to disclose them
to affected parties when they do exist;

m to be honest and realistic in stating claims or estimates based on available data;

m to reject bribery in all its forms;

m to improve the understanding of technology, its appropriate application, and
potential consequences;

m to maintain and improve our technical competence and to undertake technological
tasks for others only if qualified by training or experience, or after full disclosure of
pertinent limitations;

m to seek, accept, and offer honest criticism of technical work, to acknowledge and
correct errors, and to credit properly the contributions of others;

m to treat fairly all persons regardless of such factors as race, religion, gender, disability,
age, or national origin;

m to avoid injuring others, their property, reputation, or employment by false or
malicious action;

m to assist colleagues and co-workers in their professional development and to support

them in following this code of ethics.

ACM Code of Ethics (abridged)
Rather than copy them, we show the flyer that the ACM produces.
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THE CODE represents ACM’s commitment to promoting
the highest professional and ethical standards, and makes
it incumbent on all ACM Members to:

« Contribute to society and human  « Honor property rights including

well-being. copyrights and patent.
# Avoid harm to others.  Give proper credit for intellectual
« Be honest and trustworthy. property.
+ Be fair and take action not to * Respect the privacy of others.
discriminate. + Honor confidentiality.

And as computing professionals, every ACM Member is
also expected to:

+ Strive to achieve the highest # Give comprehensive and thorough
quality, effectiveness and dignity in evaluations of com puter systems
both the process and products of and their impacts, including

professional work. analysis of possible risks.

# Acquire and maintain professional  #+ Honor contracts, agreements, and
competence. assigned responsibilities.

# Know and respect existing laws # Improve public understanding of
pertaining to professional work. computing and its consequences.

+ Accept and provide appropriate & Access computing and
professional review. communication resources only

when authorized to do so.

Thin fiywr showa sn abnd ged verssan of the ACM Code of Ethice

The complets versian can be viewnd at

KEY TERMS

Adder

Boolean algebra
Circuit

Circuit equivalence
Combinational circuit
Full adder

Gate

Half adder

Integrated circuit (also chip)
Logic diagram
Multiplexer
Semiconductor
Sequential circuit
Transistor
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Truth table

EXERCISES

For Exercises 1-17, mark the answers true or false as follows:
A. True
B. False
1. Logic diagrams and truth tables are equally powerful in expressing the processing

of gates and circuits.

Boolean expressions are more powerful than logic diagrams in expressing the
processing of gates and circuits.
A NOT gate accepts two inputs.

The output value of an AND gate is 1 when both inputs are 1.

The AND and OR gates produce opposite results for the same input.

The output value of an OR gate is 1 when both inputs are 1.

The output of an OR gate is 0 when one input is 0 and one input is 1.

The output value of an XOR gate is 0 unless both inputs are 1.

9. The NOR gate produces the opposite results of the XOR gate.
10. A gate can be designed to accept more than two inputs.
11. A transistor is made of semiconductor material.
12. Inverting the output of an AND gate is equivalent to inverting the individual

signals first, then passing them through an OR gate.

13. The sum of two binary digits (ignoring the carry) is expressed by an AND gate.
14. A full adder takes the carry-in value into account.
15. A multiplexer adds all of the bits on its input lines to produce its output.
16. Integrated circuits are classified by the number of gates contained in them.
17. A CPU is an integrated circuit.

b

PO N A AW

For Exercises 18-29, match the gate with the description of the operation or the
diagram.
A. AND
B. NAND
C. XOR
D. OR
E. NOR
F. NOT
18. Inverts its input.
19. Produces a 1 only if all its inputs are 1 and a 0 otherwise.
20. Produces a 0 only if all its inputs are 0 and a 1 otherwise.
21. Produces a 0 only if its inputs are the same and a 1 otherwise.
22. Produces a 0 if all its inputs are 1 and a 1 otherwise.
23. Produces a 1 if all its inputs are 0 and a 0 otherwise.
A “:: v x
24. »
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25.

26.

27.

28.

29.
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Exercises 30—73 are short-answer or design questions.

30.
31.
32.

33.
34.

35.
36.
37.

38.
39.
40.

41.
42.
43.

44,

45.
406.
47.
48.
49.
50.

How is voltage level used to distinguish between binary digits?

Distinguish between a gate and a circuit.

What are the three notational methods for describing the behavior of gates and
circuits?

Characterize the notations asked for in Exercise 32.

How many input signals can a gate receive, and how many output signals can a
gate produce?

Name six types of gates.

Give the three representations of a NOT gate and say in words what NOT means.
Give the three representations of an AND gate and say in words what AND
means.

Give the three representations of an OR gate and say in words what OR means.
Give the three representations of an XOR gate and say in words what XOR means.
Give the three representations of a NAND gate and say in words what NAND
means.

Give the three representations of a NOR gate and say in words what NOR means.
Compare and contrast the AND gate and the NAND gate.

Give the Boolean expression for a three-input AND gate, and then show its
behavior with a truth table.

A

B

c

Give the Boolean expression for a three-input OR gate, and then show its behavior
with a truth table.

What is used in a gate to establish how the input values map to the output value?
How does a transistor behave?

Of what is a transistor made?

What happens when an electric signal is grounded?

What are the three terminals in a transistor, and how do they operate?

How many transistors does it take for each of these gates?
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51.
52.
53.
54.
55.

56.

57.

58.

59.

60.

61.

62.

NOT

. AND

NOR

. OR

e. XOR

Draw a transistor diagram for an AND gate. Explain the processing.

Draw a transistor diagram for an OR gate. Explain the processing.

How can gates be combined into circuits?

What are the two general categories of circuits, and how do they differ?

Draw a circuit diagram corresponding to the following Boolean expression: (A +

B)(B + C)

oo o

Draw a circuit diagram corresponding to the following Boolean expression: (AB +
C)D
A
B X
c

Draw a circuit diagram corresponding to the following Boolean expression: A’B +
B+ Cy

Draw a circuit diagram corresponding to the following Boolean expression: (AB)’
+ (CD)

Show the behavior of the following circuit with a truth table:

\-\.

;[: >

Show the behavior of the following circuit with a truth table:

A E ::):
B =
Show the behavior of the following circuit with a truth table:
P
o
G

Show the behavior of the following circuit with a truth table:
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63.
64.
65.
606.
67.
68.

69.
70.
71.
72.

73.

i

; r g

T ‘J

What is circuit equivalence?

Name six properties of Boolean algebra and explain what each means.

Differentiate between a half adder and a full adder.

What is the Boolean expression for a full adder?

What is a multiplexer?

a. Circuits used for memory are what type of circuits?

b. How many digits does an S-R latch store?

c. The design for an S-R latch shown in Figure 4.12 guarantees what about the
outputs X and Y?

What is an integrated circuit or chip?

Define the abbreviations SSI, MSI, LSI, and VLSI.

In the chip shown in Figure 4.13, what are the pins used for?

Draw a circuit using two full adders that adds two two-bit binary values. Show its

corresponding truth table.
How can the XOR operation be expressed using other operators?

THOUGHT QUESTIONS

1.

Throughout this chapter we have used Boolean expressions, truth tables, and logic
diagrams to describe the same behavior. Is the relationship among these notational
methods clear to you? Which do you find the most intuitive? Which do you find
the least intuitive?

Many situations can be described by the ideas in this chapter—for example, the
operation of a single light switch or a light that has two switches. Can you think of
other everyday occurrences that can be described by the notational methods
presented in this chapter?

How do the two sets of codes of ethics differ? How are they similar?

Have you ever sent email to someone, only to regret it immediately? Do you find
that you would say something in email that you would never say in person?
Consider the following premise: “Email has lowered the civility of personal
discourse.” Do you agree or disagree?

If a person sends email from a school computer or a business computer, should
that message be considered private? Does the institution or person that owns the
computer from which email is sent have a right to inspect the message?
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THE HARDWARE LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits

5 Computing Components
The Programming Layer

6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages
The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer

15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion

18 Limitations of Computing
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5 COMPUTING COMPONENTS

Chapter 2 described the binary number system in which all information is represented on a
computer. Chapter 4 described how we control electricity at a fundamental level to manage
binary values. Now we can describe the primary components of a computer that capitalize
on these technologies. These primary components are like Lego pieces; they can be
combined to build a variety of different computers, just as Legos can form a variety of
buildings.

Although these components, such as main memory and the central processing unit
(CPU), are often thought of as the most fundamental parts of a computer, we know that
they are abstractions of even more fundamental concepts.

GOALS
After studying this chapter, you should be able to:

read an ad for a computer and understand the jargon.

list the components and their function in a von Neumann machine.
describe the fetch—decode—execute cycle of the von Neumann machine.
describe how computer memory is organized and accessed.

name and describe the various auxiliary storage devices.

define three alternative parallel computer configurations.

explain the concept of embedded systems and give examples from your own home.

5.1 Individual Computer Components

Computing, more than most fields, has its own special jargon and acronyms. We begin this
chapter by translating an ad for a desktop computer. We then examine the components of a
computer as a logical whole before looking at each component in some detail.

Consider the following ad for a laptop computer.

Insatavialion 640 Laptop
Exceptional Performance and Portability

¢ Intel® Core™ 2 Duo (2.66GHz/1066MHz FESB/6MB cache)
* 15.6 High Definition (1080p) LED Backlit LCD Display (1366 x 768)
* 512MB ATI Mobility Radeon Graphics
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¢ Built-in 2.0MP Web Camera

¢ 4GB Shared Dual Channel DDR2 at 800MHz

* 500GB SATA Hard Drive at 5400RPM

8X Slot Load DL DVD+/- RW Drive

802.11 a/g/n and Bluetooth 3.0

85 WHr Lithium Ion Battery

(2) USB 2.0, HDMI, 15-pin VGA, Ethernet 10/100/1000, IEEE 1394 Firewire, Express Card, Audio line-
in, line-out, mic-in

e 14.8WX1.2HX10.1 D,5.61bs

* Microsoft® Windows 8° Professional

e Microsoft® Office Home and Student 2007

* 36-Month subscription to McAfee Security Center Anti-virus

There are two important and interesting things about this ad: The average person
hasn’t the foggiest idea what it all means, and by the time you are reading it, the machine
that it describes will be obsolete. In this chapter, we try to interpret the acronyms; we can’t
do anything about the speed at which computer hardware and software change.

Before we go on to describe computer components in the abstract, let’s go through this
specification and decipher the acronyms. After this exercise, we go through all of the
material again in more depth, so don’t be concerned if the terms seem confusing. You'll see
all of them defined again later.

The first line describes the central processor inside the laptop. Core™ 2 is a type of
processor, and Duo refers to the presence of two of these processors (called cores) on a
single chip. The 2.66GHz tells how fast the processors are. The G in GHz is the
abbreviation for giga, a metric prefix indicating one billion. Hz stands for hertz, a unit of
frequency that measures cycles per second, named after Heinrich R. Hertz. In a computer,
a centrally generated series of electrical pulses, called the clock, is used to ensure that all of
its actions are coordinated. You can think of the clock like an orchestra conductor’s waving
baton, which keeps all of the musicians playing together at a particular tempo. The clock in
this processor pulses 2.66 billion times per second.

Following the clock speed number, we read 1066MHz FSB. Knowing that M in the
metric system stands for million, we can guess that something called FSB is pulsing 1066
million (or just over a billion) times per second. What is the FSB? A processor needs to
access memory and input/output devices and does so through a set of wires called a bus. A
computer has many different buses, but the one that makes the primary connection
between the processor and the outside world is called the front-side bus (FSB). Thus, these
processors can communicate with the outside world 1066 million times per second. But if
each of the processors is performing 2.66 billion operations per second, how can the FSB
keep up at only one billion accesses per second?

The answer is related to the “6MB cache.” MB stands for megabytes. A byte is a unit of
memory, and a megabyte is 2?° (a little more than a million) bytes. So 6MB refers to six
megabytes of cache memory. Cache is a small, fast memory that is usually built into the
processor chip. Thus, the two processors have direct access to 6MB of memory without
using the FSB. Many of the processors’ attempts to access memory will find what they need
within the cache. They only activate the FSB when they need something that is not in
cache. Thus, the FSB can be slower than the processors and still not get in their way.

In general, a faster clock, faster FSB, and more cache would seem to make for a more
powerful computer. But as in all areas of engineering, there are tradeoffs. If the processor
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runs faster it consumes more power, which can cause the circuitry to overheat and shut
down. A faster FSB requires faster devices in the outside world, which means their circuitry
is more expensive. As cache gets bigger, access to its data becomes slower, which slows
down the processors.

The next part of the ad describes the screen. The number 15.6” refers to the diagonal
measurement of the display area. High Definition (1080p) means it is compatible with the
high-definition television standard, with 1080 horizontal lines of display elements. As we’ll
see, this isn’t completely true. The screen is described as an LED backlit LCD. LED stands
for light emitting diode, just like those found in some flashlights. A strip of these lights
shine up from the bottom to illuminate the display. LEDs are replacing the use of a
miniature fluorescent light bulb. The advantages are that LEDs last longer without growing
dim and do not contain the toxic metal mercury. Lastly, the numbers 1366 x 768 refer to
the screen’s resolution in picture elements (pixels). This screen is 1366 pixels wide and 768
pixels high. Note that the number of vertical pixels is less than the 1080 claimed earlier.
The computer compresses the 1080 lines from a high-definition source, such as a movie, to
fit the 768 lines in its screen. It takes an informed consumer to recognize marketing
exaggerations such as this.

Next the ad lists the brand and model of graphics processor unit (GPU). We also see
that it has 512MB of memory. The GPU is a separate computer that can be even more
powerful than the main processors. Games and other graphics software send commands to
the GPU that cause it to manipulate the image on the screen very quickly. It thus relieves
the main processors of this task. The GPU keeps the data for the screen image in its own
memory. The more it has, the better it is able to work with complex images, support
external displays, and so on.

The fourth line in the ad describes a built-in digital camera that faces the user from just
above the screen. This camera can be used for video conferencing over the Internet or
recording still images and videos. 2.0MP indicates that the camera has a resolution of 2
million pixels, which is sufficient for these tasks.

Next the ad lists the computer’s random access memory (RAM), also called main
memory. Random access means that each byte of memory can be accessed directly, rather
than having to begin at the beginning and access each byte in turn until you get to the one
you want. 4GB means that there are 4 x 2% bytes of storage (2*° is just over one billion).
Shared means that both processors have access to this memory. Dual-channel DDR2 is the
type of memory. It provides two access paths (called channels), and DDR2 stands for
second generation, double-data rate. Through clever use of circuitry, memory designers
doubled the rate at which a memory could operate, compared with earlier designs. Their
achievement is acknowledged in this acronym.

This laptop contains a hard disk drive, which is the common name for the computer’s
secondary (also called auxiliary) storage device. It is listed as having 500GB (500 x 2%
bytes) of storage. The disk uses an interface called SATA, which stands for Serial ATA.
Serial means that its data is transmitted to and from the computer as a stream of individual
bits, rather than the older approach of sending 16 bits at once over 16 wires (known as
Parallel ATA). The ATA acronym has a long history, referring to a means of attaching a
hard drive to the IBM PC/AT—a computer that was introduced in 1984. Serial ATA is
both faster and less costly to make, and it can transfer up to 300 MB per second, which is
more than most hard disks can supply. The ad also mentions 5400 RPM (revolutions per
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minute), which is how fast the disk spins. Disks in laptops spin relatively slowly to conserve
battery power. Disks are also available that spin at 7200 RPM and 15,000 RPM, enabling
them to transfer data at a higher rate. Hard drives are gradually being replaced by all-
electronic secondary storage, called solid-state disks (SSDs). The technology of SSD is
similar to RAM, except that data isn’t lost when the power is turned off. Because it has no
moving parts, it is faster and consumes less power than a hard drive. At this early stage in
the transition, SSD is more expensive and has less storage capacity, but those factors can be
expected to change as the technology advances.

A DVD drive comes with the machine. The ad describes it as being 8x, which means it
can read data from a DVD as much as eight times faster than a DVD movie player. Slot
load means that you insert a DVD into a narrow slit in the edge of the laptop, rather than
pressing a button and having a drawer slide out to accept the disk. DL stands for dual layer,
which means that the drive can work with second-generation DVDs that store nearly twice
as much data by using two layers of recording surface. Following the DVD acronym are the
symbols +/-RW. The R indicates that the drive can record on special DVDs that are
writeable. There are actually two standards for how these disks are made, called -R and +R,
and the +/- indicates that the drive is compatible with both standards. A DVD+/-R can
have data written just once. After that, it can be read any number of times, but no more
writing is allowed. Another type of DVD, called RW (for rewritable) can be written more
than once. This laptop also supports RW disks. While DVD drives are still the most
popular, laptops are starting to shift to the newer Blu-Ray format, which has higher
capacity and is being used to distribute high-definition movies.

The next line of the ad describes its wireless networking support. 802.11 is the number
of a standard that has been defined by the Institute of Electrical and Electronics Engineers
(IEEE), an engineering professional society. There are three accepted versions of the
standard: a, g, and n. The original was 802.11a. The 802.11g version supports
communication over longer distances, but at a slightly slower speed. With 802.11n, both
greater speed and distance are achieved. This laptop is compatible with all three standards.
Bluetooth is another form of wireless network, but it operates at much shorter ranges with a
relatively weak signal. Typical uses for Bluetooth are to connect with a wireless keyboard,
mouse, earphones, or for transferring data to and from a cell phone. There have been
multiple versions of the Bluetooth standard, each adding various features.

Of course, laptops run on batteries. Even so, they still consume quite a bit of power.
When a laptop is idle, with the screen turned off, it will use just a few watts. But in playing
a game that makes heavy use of both processors and the GPU, it can draw 50 watts. That’s
far more energy than normal rechargeable batteries can supply, so special technology, based
on the metal lithium, provides high electrical storage capacity. This laptop’s battery can
store 85 watt-hours of energy, which means that it could supply 85 watts for one hour, or
42.5 watts for two hours, etc. More capacity means a longer time without recharging, but it
also adds size and weight to the laptop.

2

Putting sizes in perspective

Admiral Grace Murray Hopper demonstrated the relative sizes of computer jargon by displaying a coil of wire
nearly 1000 feet long, a short piece of wire about as long as your forearm, and a bag containing grains of pepper.
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She would say that the wire coil was the distance traveled in the space of a microsecond. The short piece was the
distance traveled along the wire in the space of a nanosecond. The grains of pepper represented the distance traveled
by an electron in a picosecond. She would admonish the members of her audience to remember their nanoseconds.

Next the ad has a long list of external connections (often called ports). USB, or
universal serial bus, uses a cable to transfer data. As its name suggests, it can connect to just
about anything, including an external hard drive, a digital camera, a printer, a scanner, a
music player, and so on. This laptop has two second-generation USB ports, which transfer
data faster than USB 1.0. HDMI stands for high-definition multimedia interface, which
can send digital video and audio to, for example, a home theater system. A 15-pin VGA
port is used to connect the laptop to an external analog monitor or projector. An Ethernet
cable connects to a router or cable modem for wired network access. There are three
versions of Ethernet that provide 10, 100, and 1000 million bits per second of data transfer
capacity, and this laptop handles all three. IEEE 1394 is another communication standard,
also called Firewire. This port provides very fast digital data transfer and is commonly used
for connecting high-definition camcorders and high-performance disk drives. The express
card slot allows the user to insert a small circuit board to provide extra functionality, such
as a solid-state disk or wireless communication with a cellular phone network. Lastly, we
see that we can connect analog audio inputs and outputs, such as electronic musical
instruments and headphones, plus an external microphone.

Physical size and weight are important parameters for a laptop that will be carried
regularly. This is a mid-size, mid-weight model. At 5.6 pounds, it weighs over twice as
much as this book. A lightweight laptop has roughly the same weight as this book, and
heavier models, sometimes called desktop replacements, can weigh in at around 8 pounds.
Generally, to reduce weight, the size shrinks and we give up features and battery life.
However, it is also possible to reduce weight by replacing plastic in the case with
aluminum, but for greater cost.

Lastly, the ad lists software that is preinstalled on the laptop. These include the
operating system (Windows 8), the Microsoft® Office suite of programs that includes a
word processor, spreadsheet, and so on for performing common tasks, and a 3-year
subscription to updates for a malware detection package. Malware is software that intends
to do harm, and it comes in many forms, such as viruses that can take over your computer
when you open a downloaded file. Malware detection software constantly watches for such
programs in files and web content to prevent them from running. But hackers are
constantly creating new forms of malware, so it is necessary to regularly update the
detection software to keep up with the latest threats.

Within this ad, multiple size measures have been used. Let’s summarize the prefixes
that are used frequently in computing,.
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Power Power Value of

of 10 of 2 Power of 2 Prefix  Abbreviation Derivation
107 pico P Italian for little

107 nano n Greek for dwarf
107% micro T Greek for small

1072 milli m Latin for thousandth
10° 2w 1024 kilo K Greek for thousand
10¢ 2 1,048,576 mega ) Greek for large

10° 2% 1,073,741,824 giga G Greek for giant

10" 7ot not encugh room  tera 1F Greek for monster
10 L not enough room  peta F Greek prefix for five

Did you notice that we used powers of 10 when referring to time and powers of 2 when
referring to storage? Time is expressed in multiples of seconds in decimal notation. Storage
capacity is expressed in multiples of bytes in binary notation. If you keep this distinction in
mind, it is clear that K is 1000 when referring to speed and 1024 when referring to storage.

We now move from the specific to the general. In the next several sections we look at
each of the pieces of hardware that make up a computer from the logical level, rather than
from a specific computer configuration.

4

Far-reaching discovery

Within six weeks of beginning to program, Maurice Wilkes made one of the most far-reaching discoveries of the
computer age: To get programs right is more difficult than it looks.!

5.2 The Stored-Program Concept

A major defining point in the history of computing was the realization in 1944-1945 that
data and instructions to manipulate the data were logically the same and could be stored in
the same place. The computer design built upon this principle, which became known as the
von Neumann architecture, is still the basis for computers today. Although the name honors
John von Neumann, a brilliant mathematician who worked on the construction of the
atomic bomb, the idea probably originated with J. Presper Eckert and John Mauchly, two
other early pioneers who worked on the ENIAC at the Moore School at the University of
Pennsylvania during the same time period.

‘ John Vincent Atanasoff
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Courtesy of ISU Photo Service

John Vincent Atanasoff was born in Hamilton, New York, on October 4, 1903, one of
nine children. When he was about ten, his father bought a new slide rule. After reading
the instructions, John Vincent became more interested in the mathematics involved
than in the slide rule itself. His mother picked up on his interest and helped him study
his father’s old college algebra book. He continued his interest in mathematics and
science and graduated from high school in two years. His family moved to Old Chicara,
Florida, where John Vincent graduated from the University of Florida in 1925 with a
degree in electrical engineering because the university didn’t offer a degree in theoretical
physics. A year later, he received a master’s degree in mathematics from lowa State
College. In 1930, after receiving his PhD in theoretical physics, he returned to Iowa
State College as an assistant professor in mathematics and physics.

Dr. Atanasoff became interested in finding a machine that could do the complex
mathematical work he and his graduate students were doing. He examined
computational devices in existence at that time, including the Monroe calculator and
the IBM tabulator. Upon concluding that these machines were too slow and inaccurate,
he became obsessed with finding a solution. He said that at night in a tavern after a
drink of bourbon he began generating ideas of how to build this computing device. It
would be electronically operated and would compute by direct logical action rather than
enumeration, as in analog devices. It would use binary numbers rather than decimal
numbers, condensers for memory, and a regenerative process to avoid lapses due to
leakage of power.

In 1939, with a $650 grant from the school and a new graduate assistant named
Clifford Berry, Dr. Atanasoff began work on the first prototype of the Atanasoff-Berry
Computer (ABC) in the basement of the physics building. The first working prototype
was demonstrated that year.

In 1941, John Mauchly, a physicist at Ursinus College whom Dr. Atanasoff had met
at a conference, came to Iowa State to visit the Atanasoffs and see a demonstration of
the ABC machine. After extensive discussions, Mauchly left with papers describing its
design. Mauchly and J. Presper Eckert continued their work on a computation device at
the Moore School of Electrical Engineering at the University of Pennsylvania. Their
machine, the ENIAC, completed in 1945, became known as the first computer.

Dr. Atanasoff went to Washington in 1942 to become director of the Underwater
Acoustics Program at the Naval Ordnance Laboratory, leaving the patent application for

155




the ABC computer in the hands of the Iowa State attorneys. The patent application was
never filed and the ABC was eventually dismantled without either Atanasoff or Berry
being notified. After the war, Dr. Atanasoff was chief scientist for the Army Field Forces
and director of the Navy Fuse program at the Naval Ordnance Laboratory.

In 1952, Dr. Atanasoff established the Ordnance Engineering Corporation, a
research and engineering firm, which was later sold to Aerojet General Corporation. He
continued to work for Aerojet until he retired in 1961.

Meanwhile, in 1947 Mauchly and Eckert applied for the patent on their ENIAC
computer. Sperry Rand brought suit. The subsequent trial lasted 135 working days and
filled more than 20,000 pages of transcript from the testimony of 77 witnesses,
including Dr. Atanasoff. Judge Larson found that Mauchly and Eckert “did not
themselves first invent the automatic electronic digital computer, but instead derived
that subject matter from one Dr. John Vincent Atanasoff.”

In 1990, President George Bush acknowledged Dr. Atanasoff’s pioneering work by
awarding him the National Medal of Technology. Dr. Atanasoff died on June 15, 1995.

von Neumann Architecture

Another major characteristic of the von Neumann architecture is that the units that process
information are separate from the units that store information. This characteristic leads to
the following five components of the von Neumann architecture, shown in FIGURE 5.1:

m The memory unit that holds both data and instructions

m The arithmetic/logic unit that is capable of performing arithmetic and logic
operations on data

m The input unit that moves data from the outside world into the computer

m The output unit that moves results from inside the computer to the outside world

m The control unit that acts as the stage manager to ensure that all the other

components act in concert

Memory

Recall from the discussion of number systems that each storage unit, called a biz, is capable
of holding a 1 or a 0; these bits are grouped together into bytes (8 bits), and these bytes are
in turn grouped together into words. Memory is a collection of cells, each with a unique
physical address. We use the generic word cell here rather than byte or word, because the
number of bits in each addressable location, called the memory’s addressability, varies from
one machine to another. Today, most computers are byte addressable.

Addressability The number of bits stored in each addressable location in memory
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Central processing unit

Input
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FIGURE 5.1 The von Neumann architecture.

The ad in the previous section describes a memory of 4 x 2%° bytes. This means that
each of the 4GB is uniquely addressable. Therefore, the addressability of the machine is 8
bits. The cells in memory are numbered consecutively beginning with 0. For example, if
the addressability is 8, and there are 256 cells of memory, the cells would be addressed as
follows:

Address I Contents
00000000 || 11100011 |
00000001 || 10101001 |
11111100 H 00000000 !
11111101 | 1ma1mma
11111110 || 10101010 |
11111111 || 00110011 |

What are the contents of address 111111102 The bit pattern stored at that location is
10101010. What does it mean? We can’t answer that question in the abstract. Does
location 11111110 contain an instruction? An integer with a sign? A two’s complement
value? Part of an image? Without knowing what the contents represent, we cannot
determine what it means: It is just a bit pattern. We must apply an interpretation on any
bit pattern to determine the information it represents.

When referring to the bits in a byte or word, the bits are numbered from right to left
beginning with zero. The bits in address 11111110 are numbered as follows:

7 [ 5 4 3 2 1 0 -—-e—— Bit position
1 0 1 0 1 0 1 0 |-«=——Contents

Arithmetic/Logic Unit

The arithmetic/logic unit (ALU) is capable of performing basic arithmetic operations such
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as adding, subtracting, multiplying, and dividing two numbers. This unit is also capable of
performing logical operations such as AND, OR, and NOT. The ALU operates on words,
a natural unit of data associated with a particular computer design. Historically the word
length of a computer has been the number of bits processed at once by the ALU. However,
the current Intel line of processors has blurred this definition by defining the word length
to be 16 bits. The processor can work on words (16 bits), double words (32 bits), and
quadwords (64 bits). In the rest of this discussion we continue to use word in its historical
sense.

Arithmetic/logic unit (ALU) The computer component that performs arithmetic operations (addition,
subtraction, multiplication, and division) and logical operations (comparison of two values)

Who Was Herman Hollerith?

In 1889 the United States Census Bureau realized that unless it found a better way to
count the 1890 census, the results might not be tabulated before the next required
census in 1900. Herman Hollerith had designed a method of counting based on cards
with holes punched in them. This method was used for tabulating the census and the
cards became known as Hollerith cards. Hollerith’s electrical tabulating system led to the
founding of the company known today as IBM.

© iStockphoto/Thinkstock

Most modern ALUs have a small number of special storage units called registers. These
registers contain one word and are used to store information that is needed again
immediately. For example, in the calculation of

Register A small storage area in the CPU used to store intermediate values or special data

One * (Two + Three)

Two is first added to Three and the result is then multiplied by One. Rather than storing
the result of adding Two and Three in memory and then retrieving it to multiply it by
One, the result is left in a register and the contents of the register are multiplied by One.
Access to registers is much faster than access to memory locations.
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Input/Output Units

All of the computing power in the world wouldn’t be useful if we couldn’t input values into
the calculations from outside or report to the outside the results of those calculations. Input
and output units are the channels through which the computer communicates with the
outside world.

An input unit is a device through which data and programs from the outside world are
entered into the computer. The first input units interpreted holes punched on paper tape or
cards. Modern-day input devices include the keyboard, the mouse, and the scanning
devices used at supermarkets.

Input unit A device that accepts data to be stored in memory

An output unit is a device through which results stored in the computer memory are
made available to the outside world. The most common output devices are printers and

displays.

Output unit A device that prints or otherwise displays data stored in memory or makes a permanent copy of
information stored in memory or another device

Control Unit

The control unit is the organizing force in the computer, for it is in charge of the fetch—
execute cycle, discussed in the next section. There are two special registers in the control
unit. The instruction register (IR) contains the instruction that is being executed, and the
program counter (PC) contains the address of the next instruction to be executed. Because
the ALU and the control unit work so closely together, they are often thought of as one
unit called the central processing unit, or CPU.

Control unit The computer component that controls the actions of the other components so as to execute
instructions in sequence

Instruction register (IR) The register that contains the instruction currently being executed
Program counter (PC) The register that contains the address of the next instruction to be executed

CPU The central processing unit, a combination of the arithmetic/logic unit and the control unit; the “brain” of a
computer that interprets and executes instructions

FIGURE 5.2 shows a simplified view of the flow of information through the parts of a
von Neumann machine. The parts are connected to one another by a collection of wires
called a bus, through which data travels in the computer. Each bus carries three kinds of
information: address, data, and control. An address is used to select the memory location or
device to which data will go or from which it will be taken. Data then flows over the bus
between the CPU, memory, and I/O devices. The control information is used to manage
the flow of addresses and data. For example, a control signal will typically be used to
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determine the direction in which the data is flowing, either to or from the CPU. The bus
width is the number of bits that it can transfer simultaneously. The wider the bus, the
more address or data bits it can move at once.

Bus width The number of bits that can be transferred in parallel over the bus

Because memory accesses are very time consuming relative to the speed of the
processor, many architectures provide cache memory. Cache memory is a small amount of
fast-access memory into which copies of frequently used data are stored. Before a main
memory access is made, the CPU checks whether the data is stored in the cache memory.
Pipelining is another technique used to speed up the fetch—execute cycle. This technique
splits an instruction into smaller steps that can be overlapped.

Cache memory A type of small, high-speed memory used to hold frequently used data

Input Main Qutput
devices CPU | memory | devices
Bus

FIGURE 5.2 Data flow through a von Neumann machine

Pipelining A technique that breaks an instruction into smaller steps that can be overlapped

In a personal computer, the components in a von Neumann machine reside physically
in a printed circuit board called the motherboard. The motherboard also has connections
for attaching other devices to the bus, such as a mouse, a keyboard, or additional storage
devices. (See the section on secondary storage devices later in this chapter.)

Motherboard The main circuit board of a personal computer

So just what does it mean to say that a machine is an 7-bit processor? The variable 7
usually refers to the number of bits in the CPU general registers: Two 7-bit numbers can be
added with a single instruction. It also can refer to the width of the address bus, which is
the size of the addressable memory—but not always. In addition, 7 can refer to the width
of the data bus—but not always.
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Christmas 2013 is swiped

About 70 million debit and/or credit card accounts were jeopardized because of a data breach at Target (the second-
largest discount retailer in the United States) between November 27 and December 15, 2013. Online transactions
were not affected, but some in-store transactions for which credit cards were swiped were compromised. Card
numbers were stolen, along with their expiration date, name, and credit verification value. Encrypted PIN data for
debit cards was also involved in the data theft.?

The Fetch—Execute Cycle

Before looking at how a computer does what it does, let’s look at what it can do. The
definition of a computer outlines its capabilities: A computer is a device that can store,
retrieve, and process data. Therefore, all of the instructions that we give to the computer
relate to storing, retrieving, and processing data. In Chapters 6 and 9, we look at various
languages that we can use to give instructions to the computer. For our examples here, we
use simple English-like instructions.

Recall the underlying principle of the von Neumann machine: Data and instructions
are stored in memory and treated alike. This means that instructions and data are both
addressable. Instructions are stored in contiguous memory locations; data to be
manipulated are stored together in a different part of memory. To start the fetch—execute
cycle, the address of the first instruction is loaded into the program counter.

The processing cycle includes four steps:

m Fetch the next instruction.

m Decode the instruction.
m Get data if needed.

m Execute the instruction.

Let’s look at each of these steps in more detail. The process starts with the address in
memory of the first instruction being stored in the program counter.

Fetch the Next Instruction

The program counter (PC) contains the address of the next instruction to be executed, so
the control unit goes to the address in memory specified in the PC, makes a copy of the
contents, and places the copy in the instruction register. At this point the IR contains the
instruction to be executed. Before going on to the next step in the cycle, the PC must be
updated to hold the address of the next instruction to be executed when the current
instruction has been completed. Because the instructions are stored contiguously in
memory, adding the number of bytes in the current instruction to the program counter
should put the address of the next instruction into the PC. Thus the control unit
increments the PC. It is possible that the PC may be changed later by the instruction being
executed.

In the case of an instruction that must get additional data from memory, the ALU
sends an address to the memory bus, and the memory responds by returning the value at
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that location. In some computers, data retrieved from memory may immediately participate
in an arithmetic or logical operation. Other computers simply save the data returned by the
memory into a register for processing by a subsequent instruction. At the end of execution,
any result from the instruction may be saved either in registers or in memory.

Decode the Instruction

To execute the instruction in the instruction register, the control unit has to determine
what instruction it is. It might be an instruction to access data from an input device, to
send data to an output device, or to perform some operation on a data value. At this phase,
the instruction is decoded into control signals. That is, the logic of the circuitry in the CPU
determines which operation is to be executed. This step shows why a computer can execute
only instructions that are expressed in its own machine language. The instructions
themselves are literally built into the circuits.

Get Data If Needed

The instruction to be executed may potentially require additional memory accesses to
complete its task. For example, if the instruction says to add the contents of a memory
location to a register, the control unit must get the contents of the memory location.

Execute the Instruction

Once an instruction has been decoded and any operands (data) fetched, the control unit is
ready to execute the instruction. Execution involves sending signals to the arithmetic/logic
unit to carry out the processing. In the case of adding a number to a register, the operand is
sent to the ALU and added to the contents of the register.

When the execution is complete, the cycle begins again. If the last instruction was to
add a value to the contents of a register, the next instruction probably says to store the
results into a place in memory. However, the next instruction might be a control
instruction—that is, an instruction that asks a question about the result of the last
instruction and perhaps changes the contents of the program counter.

FIGURE 5.3 summarizes the fetch—execute cycle.

Hardware has changed dramatically in the last half-century, yet the von Neumann
machine remains the basis of most computers today. As Alan Perlis, a well-known
computer scientist, said in 1981, “Sometimes I think the only universal in the computing
field is the fetch—execute cycle.” This statement is still true today, more than three decades
later.

RAM and ROM

As mentioned, RAM stands for random-access memory. RAM is memory in which each
cell (usually a byte) can be directly accessed. Inherent in the idea of being able to access
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each location is the ability to change the contents of each location. That is, storing
something else into that place can change the bit pattern in each cell.

”Cnnlml

C- ALU

unit
(2) Decode instruction (3) Get data
Registers
FETCH CYCLE EXECUTION CYCLE

(1) Fetch instruction : (4) Execute the instruction

Main memaory

FIGURE 5.3 The fetch—execute cycle

In addition to RAM, most computers contain a second kind of memory, called ROM.
ROM stands for read-only memory. The contents in locations in ROM cannot be changed.
Their contents are permanent and cannot be altered by a stored operation. Placing the bit
pattern in ROM is called burning. The bit pattern is burned either at the time the ROM is
manufactured or at the time the computer parts are assembled.

RAM and ROM are differentiated by a very basic property: RAM is volatile; ROM is
not. This means that RAM does not retain its bit configuration when the power is turned
off, but ROM does. The bit patterns within ROM are permanent. Because ROM is stable
and cannot be changed, it is used to store the instructions that the computer needs to start
itself. Frequently used software is also stored in ROM so that the system does not have to
read the software each time the machine is turned on. Main memory usually contains some

ROM along with the general-purpose RAM.

Secondary Storage Devices

As mentioned earlier, an input device is the means by which data and programs are entered
into the computer and stored into memory. An output device is the means by which results
are sent back to the user. Because most of main memory is volatile and limited, it is
essential that there be other types of storage devices where programs and data can be stored
when they are no longer being processed or when the machine is not turned on. These
other types of storage devices (other than main memory) are called secondary or auxiliary
storage devices. Because data must be read from them and written to them, each secondary
storage device is also an input and an output device.

Secondary storage devices can be installed within the computer box at the factory or
added later as needed. Because these devices can store large quantities of data, they are also
known as mass storage devices. For example, the hard disk drive that comes with the laptop
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specified in the ad can store 500 x 2% bytes as opposed to 4 x 2% bytes in main memory.
The next sections describe some secondary storage devices.

Magnetic Tape

Card readers and card punches were among the first input/output devices. Paper tape
readers and punches were the next input/output devices. Although paper tapes, like cards,
are permanent, they cannot hold much data. The first truly mass auxiliary storage device
was the magnetic tape drive. A magnetic tape drive is like a tape recorder and is most often
used to back up (make a copy of) the data on a disk in case the disk is later damaged. Tapes
come in several varieties, from small streaming-tape cartridges to large reel-to-reel models.
Tape drives have one serious drawback: To access data in the middle of the tape, all the
data before the piece you want must be accessed and discarded. Although modern
streaming-tape systems have the capability of skipping over segments of tape, the tape must

physically move through the read/write heads. Any physical movement of this type is time
consuming. See FIGURE 5.4.

Magnetic Disks

A disk drive is a cross between a compact disk player and a tape recorder. A read/write head
(similar to the record/playback head in a tape recorder) travels across a spinning magnetic
disk, retrieving or recording data. As on a compact disk, the heads travel directly to the
information desired; as on a tape, the information is stored magnetically.

Disks come in several varieties, but all of them consist of a thin disk made out of
magnetic material. The surface of each disk is logically organized into tracks and sectors.
Tracks are concentric circles around the surface of the disk. Each track is divided into
sectors. Each sector holds a block of information as a continuous sequence of bits. See
FIGURE 5.5(a). The figure depicts the original layout of data on a disk, in which each
track has the same number of sectors, and each sector holds the same number of bits. The
blocks of data nearer the center were more densely packed. On modern disks, there are
fewer sectors near the middle and more toward the outside. The actual number of tracks
per surface and the number of sectors per track vary, but 512 bytes or 1024 bytes is
common. (The power of 2 strikes again.) The locations of the tracks and sectors are marked
magnetically when a disk is formatted; they are not physically part of the disk.

Track A concentric circle on the surface of a disk
Sector A section of a track

Block The information stored in a sector
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FIGURE 5.4 A magnetic tape
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FIGURE 5.5 The organization of a magnetic disk

Track

The read/write head in a disk drive is positioned on an arm that moves from one track
to another. See FIGURE 5.5(b). An input/output instruction specifies the track and sector.
When the read/write head is over the proper track, it waits until the appropriate sector is
beneath the head; it then accesses the block of information in that sector. This process gives
rise to four measures of a disk drive’s efficiency: seek time, latency, access time, and
transfer rate. Seek time is the time it takes for the read/write head to get into position over
the specified track. Latency is the time it takes for the specified sector to spin to the
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read/write head. The average latency is one-half the time for a full rotation of the disk. For
this reason, latency is also called rotation delay. Access time is the sum of seek time and
latency. Transfer rate is the rate at which data is transferred from the disk to memory.

Seek time The time it takes for the read/write head to get positioned over the specified track
Latency The time it takes for the specified sector to be in position under the read/write head
Access time The time it takes for a block to start being read; the sum of seek time and latency

Transfer rate The rate at which data moves from the disk to memory

Now let’s look at some of the varieties of disks. One classification of disk is hard versus
floppy. These terms refer to the flexibility of the disk itself. The original floppy disk,
introduced in the 1970s, was 8” in diameter and even its case was floppy. By the time of
the rise in personal computers in the late 1970s, the floppy disk had been reduced in size to
5 1/4" in diameter. Today’s generic “floppy” disks are 3 1/2” in diameter, encased in a
hard plastic cover, and capable of storing 1.44MB of data. Newer machines do not
automatically have built-in drives for these disks as they did several years ago, but drives for
them can be added.

Hard disks actually consist of several disks—this sounds strange, so let’s explain. Let’s
call the individual disks platters. Hard disks consist of several platters attached to a spindle
that rotates. Each platter has its own read/write head. All of the tracks that line up under
one another are called a cylinder (see Figure 5.5(b)). An address in a hard drive consists of
the cylinder number, the surface number, and the sector. Hard drives rotate at much higher
speeds than floppy drives do, and the read/write heads don’t actually touch the surface of
the platters but rather float above them. A typical hard disk drive rotates at 7200
revolutions per minute. Laptop hard disks usually spin at 5400 RPM, conserving battery
power. The disks in high-performance servers may run at 15,000 RPM, providing lower
latency and a higher transfer rate.

Cylinder The set of concentric tracks on all surfaces

CDs and DVDs

The world of compact discs and their drivers looks like acronym soup. The ad we examined
used the acronym DVD +/—/RW. In addition, we have to decipher CD-DA, CD-RW, and
DVD.

Let’s look for a moment at the acronym CD. CD, of course, stands for compact disk—
you probably have a collection of them with recorded music. A CD drive uses a laser to
read information that is stored optically on a plastic disk. Rather than having concentric
tracks, a CD has one track that spirals from the inside out. As on magnetic disks, this track
is broken into sectors. A CD has the data evenly packed over the whole disk, so more
information is stored in the track on the outer edges and read in a single revolution. To
make the transfer rate consistent throughout the disk, the rotation speed varies depending
on the position of the laser beam.
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The other letters attached to CD refer to various properties of the disk, such as
formatting and whether the information on the disk can be changed. CD-DA is the format
used in audio recordings; CD-DA stands for compact disk—digital audio. Certain fields in
this format are used for timing information. A sector in a CD-DA contains 1/75 of a
second of music.

4

E-vote glitch

An error with an electronic voting system gave President Bush 3,893 extra votes in suburban Columbus, Ohio,
elections officials said. Franklin County’s unofficial results had Bush receiving 4,258 votes to Democrat John
Kerry’s 260 votes in a precinct in Gahanna. Records show only 638 voters cast ballots in that precinct. Bush
actually received 365 votes in the precinct. (That still doesn’t add up.)

CD-ROM is the same as CD-DA, but the disk is formatted differently. Data is stored
in the sectors reserved for timing information in CD-DA. ROM stands for read-only
memory. As we said earlier, read-only memory means that the data is permanent and
cannot be changed. A sector on a CD-ROM contains 2KB of data. CD-ROM capacity is
in the neighborhood of 600MB.

CD-R stands for recordable, allowing data to be written after it is manufactured. The
contents of a CD-R cannot be changed after data is recorded on it. A CD-RW is rewritable,
meaning that it can have data recorded on it multiple times.

The most common format for distributing movies is now a DVD, which stands for
digital versatile disk (although the acronym generally stands on its own these days). Because
of its large storage capacity, a DVD is well suited to hold multimedia presentations that
combine audio and video.

DVDs come in multiple forms: DVD+R, DVD-R, DVD+RW, and DVD-RW, and
each of these may be preceded by DL. As we noted in describing the ad, the + and - refer to
two competing formats. As with CD, R means recordable and RW means rewritable. DL
stands for dual layer, which nearly doubles the capacity of a DVD. DVD-R has a capacity
of 4.7GB while DL DVD-R can hold 8.5GB. More recently, Blu-Ray disks with 25GB
capacity and DL 50GB capacity have been introduced. Writable versions are also available.
The name Blu-Ray refers to its use of a blue laser instead of the red laser in CD and DVD
drives.

Note that the x used in rating CD and DVD speeds indicates the relative speed of
access compared with a standard CD or DVD player. When evaluating these devices, be
aware that the higher speeds listed represent maximums that are usually attainable only
when retrieving data from certain parts of the disk. They are not averages. Therefore, faster
may not be better in terms of the added cost.

Flash Drives

IBM introduced the flash drive in 1998 as an alternative to floppy disks. FIGURE 5.6
shows a flash drive (or thumb drive), which uses flash memory, a nonvolatile computer
memory that can be erased and rewritten. The drive is integrated with a USB (universal
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serial bus). Computers today do not come with floppy disks, but they do come with USB
ports. Today, little (thumb-sized) storage devices like this are common, inexpensive, and
have much more capacity than floppy disks.

FIGURE 5.6 Flash drive
© Brian A. Jackson/Shutterstock, Inc.

Flash memory is also being used to build solid-state disks (SSDs) that can directly
replace a hard disk. Because an SSD is all electronic and has no moving parts, it is faster
and consumes less power than a hard disk. Even so, its storage elements can eventually wear
out, meaning that it can suffer failures just as a hard disk can.

Touch Screens

We've seen how secondary memory devices provide locations in which to store programs
and data used by the CPU. Other input/output (I/O) devices allow the human user to
interact with an executing program. Many of these are commonplace—we often provide
information through a keyboard and mouse, and we usually view information displayed on
a monitor screen. Other input devices include bar code readers and image scanners; other
output devices include printers and plotters.

Let’s examine one particular type of I/O device in some detail. A zouch screen displays
text and graphics like a regular monitor, but it can also detect and respond to the user
touching the screen with a finger or stylus. Usually, an I/O device serves either as an input
device or an output device. A touch screen serves as both.

You've probably seen touch screens used in a variety of situations such as information
kiosks, restaurants, and museums. FIGURE 5.7 shows someone using a touch screen.
These devices are most helpful in situations in which complex input is not needed, and
they have the added benefit of being fairly well protected. It’s far better for a waiter at a
restaurant to make a few choices using a touch screen than to have to deal with a keyboard,

which has more keys than necessary (for the task) and may easily get damaged from food
and drink.
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FIGURE 5.7 A touch screen
© Denys Prykhodov/Shutterstock, Inc.

2

Virtual games and national security

U.S. and British spies have infiltrated the fantasy world of virtual games. A 2008 National Security Agency (NSA)

document declared that virtual games provide a “target-rich communication network” that allows intelligence

suspects a way to communicate and “hide in plain sight.”*

A touch screen not only detects the touch, but also knows where on the screen it is
being touched. Choices are often presented using graphical buttons that the user selects by
touching the screen where the button is positioned. In this sense, using a touch screen is
not much different from using a mouse. The mouse position is tracked as the mouse is
moved; when the mouse button is clicked, the position of the mouse pointer determines
which graphical button is pushed. In a touch screen, the location at which the screen is
touched determines which button is pushed.

So how does a touch screen detect that it is being touched? Furthermore, how does it
know where on the screen it is being touched? Several technologies are used today to
implement touch screens. Let’s briefly explore them.

A resistive touch screen is made up of two layers—one with vertical lines and one with
horizontal lines of electrically conductive material. The two layers are separated by a very
small amount of space. When the top layer is pressed, it comes in contact with the second
layer, which allows electrical current to flow. The specific vertical and horizontal lines that
make contact dictate the location on the screen that was touched.

A capacitive touch screen has a laminate applied over a glass screen. The laminate
conducts electricity in all directions, and a very small current is applied equally on the four
corners. When the screen is touched, current flows to the finger or stylus. The current is so
low that the user doesn’t even feel it. The location of the touch on the screen is determined
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by comparing the strength of the flow of electricity from each corner.

An infrared touch screen projects crisscrossing horizontal and vertical beams of infrared
light just over the surface of the screen. Sensors on opposite sides of the screen detect the
beams. When the user breaks the beams by touching the screen, the location of the break
can be determined.

A surface acoustic wave (SAW) touch screen is similar to an infrared touch screen except
that it projects high-frequency sound waves across the horizontal and vertical axes. When a
finger touches the surface, the corresponding sensors detect the interruption and determine
the location of the touch.

Note that a gloved hand could be used in resistive, infrared, and SAW touch screens,
but cannot be used with capacitive screens, which rely on current flowing to the touch
point.

5.3 Embedded Systems

Embedded systems are computers that are designed to perform a narrow range of functions
as part of a larger system. Typically, an embedded system is housed on a single
microprocessor chip with the programs stored in ROM. Virtually all appliances that have a
digital interface—watches, microwaves, VCRs, cars—utilize embedded systems. In fact,
embedded systems are everywhere: From consumer electronics, to kitchen appliances, to
automobiles, to networking equipment, to industrial control systems, you find embedded
systems lurking in the device. Some embedded systems include an operating system, but
many are so specialized that the entire logic can be implemented as a single program.’

Early embedded systems were stand-alone 8-bit microprocessors with their own
homegrown operating system. Today, they range from 8-bit controllers to 32-bit digital
signal processors (DSPs) to 64-bit RISC (Reduced Instruction Set) chips. More and more
embedded systems are based on networks of distributed microprocessors that communicate
through wired and wireless buses, remotely monitored and controlled by regular network
management communications protocols.

In fact, the term embedded system is nebulous because it encompasses just about
everything except desktop PCs. The term originated because the first such computers were
physically embedded within a product or device and could not be accessed. Now the term
refers to any computer that is preprogrammed to perform a dedicated or narrow range of
functions as part of a larger system. The implication is that there is only minimal end-user
or operator intervention, if any.

Because the average person encounters an embedded system only in his or her kitchen,
entertainment room, or car, we tend to equate these systems with hardware. In reality,
programs must be written and burned into the read-only memory that comes with the
system to make it accomplish its assigned function. Given that programs cannot be
developed and tested on the embedded processor itself, how are they implemented?
Programs are written on a PC and compiled for the target system, where the executable
code is generated for the processor in the embedded system.

In early embedded systems, the size of the code and the speed at which it executed were
very important. Because assembly-language programs provided the best opportunity to
streamline and speed up the code, they were used almost exclusively for embedded systems.
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Even when the C language became popular and cross-compilers for C to embedded systems
became available, many programmers continued to use assembly language for this purpose.
C programs are approximately 25% larger and slower, but are easier to write than assembly-
language programs. Even today, the size of the ROM may dictate that the code be as small

as possible, leading to an assembly-language program.®

5.4 Parallel Architectures’

If a problem can be solved in 7 time units on a computer with one processor (von
Neumann machine), can it be solved in 7/2 time units on a computer with two processors,
or 7/3 on a computer with three processors? This question has led to the rise of parallel
computing architectures.

Parallel Computing

There are four general forms of parallel computing: bit level, instruction level, data level,
and task level.

Bit-level parallelism is based on increasing the word size of a computer. In an 8-bit
processor, an operation on a 16-bit data value would require two operations: one for the
upper 8 bits and one for the lower 8 bits. A 16-bit processor could do the operation in one
instruction. Thus increasing the word size reduces the number of operations on data values
larger than the word size. The current trend is to use 64-bit processors.

Instruction-level parallelism is based on the idea that some instructions in a program
can be carried out independently in parallel. For example, if a program requires operations
on unrelated data, these operations can be done at the same time. A superscalar is a
processor that can recognize this situation and take advantage of it by sending instructions
to different functional units of the processor. Note that a superscalar machine does not
have multiple processors but does have multiple execution resources. For example, it might
contain separate ALUs for working on integers and real numbers, enabling it to
simultaneously compute the sum of two integers and the product of two real numbers.
Such resources are called execution units.

Data-level parallelism is based on the idea that a single set of instructions can be run on
different data sets at the same time. This type of parallelism is called SIMD (single
instructions, multiple data) and relies on a control unit directing multiple ALUs to carry
out the same operation, such as addition, on different sets of operands. This approach,
which is also called synchronous processing, is effective when the same process needs to be
applied to many data sets. For example, increasing the brightness of an image involves
adding a value to every one of several million pixels. These additions can all be done in

parallel. See FIGURE 5.8.
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FIGURE 5.8 Processors in a synchronous computing environment

Synchronous processing Multiple processors apply the same program in lockstep to multiple data sets

Task-level parallelism is based on the idea that different processors can execute different
tasks on the same or different data sets. If the different processors are operating on the same
data set, then it is analogous to pipelining in a von Neumann machine. When this
organization is applied to data, the first processor does the first task. Then the second
processor starts working on the output from the first processor, while the first processor
applies its computation to the next data set. Eventually, each processor is working on one
phase of the job, each getting material or data from the previous stage of processing, and
each in turn handing over its work to the next stage. See FIGURE 5.9.

In a data-level environment, each processor is doing the same thing to a different data
set. For example, each processor might be computing the grades for a different class. In the
pipelining task-level example, each processor is contributing to the grade for the same class.
Another approach to task-level parallelism is to have different processors doing different
things with different data. This configuration allows processors to work independently
much of the time, but introduces problems of coordination among the processors. This
leads to a configuration where each of the processors have both a local memory and a
shared memory. The processors use the shared memory for communication, so the
configuration is called a shared memory parallel processor. See FIGURE 5.10.

Shared memory parallel processor The situation in which multiple processors share a global memory

Result 1 Result 2 Result 3
Processor \_— w,. [ Processor |\~ . ( Processor \ —~ . ... . Processor

1 2 3 N

FIGURE 5.9 Processors in a pipeline
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Shared memory

Processor Processor . Processor Processor
Lacal Local Local Local
Memaory memory o Memaory Meamory
1 2 N-1 N

FIGURE 5.10 A shared-memory parallel processor

Classes of Parallel Hardware

The classes of parallel hardware reflect the various types of parallel computing. Multicore
processors have multiple independent cores, usually CPUs. Whereas a superscalar processor
can issue multiple instructions to execution units, each multicore processor can issue
multiple instructions to multiple execution units. That is, each independent core can have
multiple execution units attached to it.

Symmetric multiprocessors (SMPs) have multiple identical cores. They share memory,
and a bus connects them. The number of cores in an SMP is usually limited to 32
processors. A distributed computer is one in which multiple memory units are connected
through a network. A cluster is a group of stand-alone machines connected through an off-
the-shelf network. A massively parallel processor is a computer with many networked
processors connected through a specialized network. This kind of device usually has more
than 1000 processors.

The distinctions between the classes of parallel hardware are being blurred by modern
systems. A typical processor chip today contains two to eight cores that operate as an SMP.
These are then connected via a network to form a cluster. Thus, it is common to find a mix
of shared and distributed memory in parallel processing. In addition, graphics processors
that support general-purpose data-parallel processing may be connected to each of the
multicore processors. Given that each of the cores is also applying instruction-level
parallelism, you can see that modern parallel computers no longer fall into one or another
specific classification. Instead, they typically embody all of the classes at once. They are
distinguished by the particular balance that they strike among the different classes of
parallel processing they support. A parallel computer that is used for science may emphasize
data parallelism, whereas one that is running an Internet search engine may emphasize task-
level parallelism.

SUMMARY
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The components that make up a computer cover a wide range of devices. Each component
has characteristics that dictate how fast, large, and efficient it is. Furthermore, each
component plays an integral role in the overall processing of the machine.

The world of computing is filled with jargon and acronyms. The speed of a processor is
specified in GHz (gigahertz), the amount of memory is specified in MB (megabytes) and
GB (gigabytes), and a display screen is specified in pixels.

The von Neumann architecture is the underlying architecture of most of today’s
computers. It has five main parts: memory, the arithmetic/logic (ALU) unit, input devices,
output devices, and the control unit. The fetch— execute cycle, under the direction of the
control unit, is the heart of the processing. In this cycle, instructions are fetched from
memory, decoded, and executed.

RAM and ROM are acronyms for two types of computer memory. RAM stands for
random-access memory; ROM stands for read-only memory. The values stored in RAM can
be changed; those in ROM cannot.

Secondary storage devices are essential to a computer system. These devices save data
when the computer is not running. Magnetic tape, magnetic disk, and flash drives are three
common types of secondary storage.

Touch screens are peripheral devices that serve both input and output functions and are
appropriate in specific situations such as restaurants and information kiosks. They respond
to a human touching the screen with a finger or stylus, and they can determine the location
on the screen where the touch occurred. Several touch screen technologies exist, including
resistive, capacitive, infrared, and surface acoustic wave (SAW) touch screens. They have
varying characteristics that make them appropriate in particular situations.

Although von Neumann machines are by far the most common, other computer
architectures have emerged. For example, there are machines with more than one processor
so that calculations can be done in parallel, thereby speeding up the processing.

ETHICAL ISSUES

Is Privacy a Thing of the Past?

“Personal privacy is all but dead and gone, and we’re the worse for it, in my opinion,”
wrote Austin Bay in the Austin American-Statesman on December 27, 2013. Bay
contends that the long goodbye to privacy began with Johannes Gutenberg’s invention
of the printing press in 1450, which brought us mass literacy with the side effect of
making gossip “permanent.” Later came the camera, a powerful anti-privacy weapon for
paparazzi. The telegraph and the telephone gave gossip global reach. Personal
information and innuendos now move “at the speed of light,” Bay writes.

Bay goes on to discuss what he calls privacy’s “shadowy twin”: institutional and state
secrecy. He contends that state and institutional secrecy have not expired but may be on
life support. Innovative hackers have in the past two decades proven that the repositories
of modern information—computers and the Internet—are breachable. NSA contractor
Edward Snowden demonstrated the failure of states to keep their secrets in 2013, when
he released the documents he had stolen. Private investigators in Great Britain are on
trial for hacking the personal phones of the British royals. Target and Neiman Marcus
have lost the personal information of millions of customers.
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Bay’s editorial is somewhat tongue in cheek, but it is an intriguing concept that
privacy and secrecy are no longer possible in today’s world. Is this an example of
unexpected consequences? The printing press began the process of mass literacy, which
eventually resulted in the loss of privacy.

KEY TERMS

Access time

Addressability
Arithmetic/logic unit (ALU)
Block

Bus width

Cache memory

Control unit

CPU

Cylinder

Input unit

Instruction register (IR)
Latency

Motherboard

Output unit

Pipelining

Program counter (PC)
Register

Sector

Seek time

Shared memory parallel processor
Synchronous processing

Track

Transfer rate

EXERCISES

For Exercises 1-16, match the power of 10 to its name or use.
A. 1012
B. 10”°
C. 10°
D. 107
E. 10°
F. 10°
G. 10
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10.
11.
12.
13.
14.
15.
16.

PN AR =

H. 10"

[. 10®

Nano

Pico

Micro

Milli

Tera

Giga

Kilo

Mega

Often used to describe processor speed
Often used to describe size of memory
Used in relation to Internet speeds
Latin for “thousandth”

[talian for “little”

Peta

Roughly equivalent to 2

Roughly equivalent to 2%

For Exercises 17-23, match the acronym with its most accurate definition.

17.
18.
19.
20.
21.
22.
23.

A. CD-ROM

B. CD-DA

C. CD-R

D. DVD

E. CD-RW

F. DLDVD

G. Blu-Ray

Format using two layers

Data is stored in the sectors reserved for timing information in another variant
Can be read many times, but written after its manufacture only once
Can be both read from and written to any number of times

Format used in audio recordings

A new technology storing up to 50 GB

The most popular format for distributing movies

Exercises 24—66 are problems or short-answer exercises.

24.

25.
20.
27.
28.

29.

Define the following terms:

a. Core 2 processor

b. Hertz

c. Random access memory

What does FSB stand for?

What does it mean to say that a processor is 1.4 GHz?

What does it mean to say that memory is 133 MHz?

How many bytes of memory are there in the following machines?
a. 512MB machine

b. 2GB machine

Define RPM and discuss what it means in terms of speed of access to a disk.
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30

31.

32.
33.
34.
35.

36.

37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.

50.
51.
52.
53.
54.
55.
56.
57.
58.

59.

60.
61.
62.
63.

64.
65.
606.

. What is the stored-program concept, and why is it important?

What does “units that process information are separate from the units that store
information” mean in terms of computer architecture?

Name the components of a von Neumann machine.

What is the addressability of an 8-bit machine?

What is the function of the ALU?

Which component in the von Neumann architecture would you say acts as the
stage manager? Explain.

Punched cards and paper tape were two early input/output media. Discuss their
advantages and disadvantages.

What is an instruction register, and what is its function?

What is a program counter, and what is its function?

List the steps in the fetch—execute cycle.

Explain what is meant by “fetch an instruction.”

Explain what is meant by “decode an instruction.”

Explain what is meant by “execute an instruction.”

Compare and contrast RAM and ROM.

What is a secondary storage device, and why are such devices important?
Discuss the pros and cons of using magnetic tape as a storage medium.

What are the four measures of a disk drive’s efficiency?

Define what is meant by a block of data.

What is a cylinder?

Define the steps that a hard disk drive goes through to transfer a block of data
from the disk to memory.

Distinguish between a compact disk and a magnetic disk.

Describe a parallel architecture that uses synchronous processing.

Describe a parallel architecture that uses pipeline processing.

How does a shared-memory parallel configuration work?

How many different memory locations can a 16-bit processor access?

Why is a faster clock not always better?

Why is a larger cache not necessarily better?

In the ad, why is the 1080p specification for the screen not entirely true?

Keep a diary for a week of how many times the terms hardware and software
appear in television commercials.

Take a current ad for a laptop computer and compare that ad with the one shown
at the beginning of this chapter.

What is the common name for the disk that is a secondary storage device?

To what does the expression pixels refer?

What is a GPU?

If a battery in a laptop is rated for 80 WHr, and the laptop draws 20 watts, how
long will it run?

What is the difference between 1K of memory and a 1K transfer rate?
Compare and contrast a DVD-ROM and a flash drive.

Giga can mean both 107 and 2*. Explain to which each refers. Can this cause
confusion when reading a computer advertisement?
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THOUGHT QUESTIONS

1. Has your personal information ever been stolen? Has any member of your family
experienced this?

2. How do you feel about giving up your privacy for the sake of convenience?

3. All secrets are not equal. How does this statement relate to issues of privacy?

4. People post all sorts of personal information on social media sites. Does this mean
they no longer consider privacy important?
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THE PROGRAMMING LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits

5 Computing Components
The Programming Layer

6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages
The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer

15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion

18 Limitations of Computing
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6 LOW-LEVEL PROGRAMMING
LANGUAGES AND PSEUDOCODE

Chapter 6 is the first chapter in the programming layer. In Chapters 2 and 3, we covered
the basic information necessary for understanding a computing system, including number
systems and ways to represent different types of information in a computer. In Chapters 4
and 5, we covered the hardware components of a computer. Now the emphasis changes
from what a computer system is to how to use one.

We begin this chapter by looking at machine code, the lowest-level programming
language of all—the language built into the machine. We then move up one level to
assembly language, a language in which we can use a combination of letters to represent a
machine-language instruction. Finally, we introduce the concept of pseudocode as a way to
express algorithms.

GOALS
After studying this chapter, you should be able to:

list the operations that a computer can perform.

describe the important features of the Pep/8 virtual machine.

distinguish between immediate addressing mode and direct addressing mode.
write a simple machine-language program.

distinguish between machine language and assembly language.

describe the steps in creating and running an assembly-language program.
write a simple program in assembly language.

distinguish between instructions to the assembler and instructions to be translated.
distinguish between following an algorithm and developing one.

describe the pseudocode constructs used in expressing an algorithm.

use pseudocode to express an algorithm.

describe two approaches to testing.

design and implement a test plan for a simple assembly-language program. 153

6.1 Computer Operations

The programming languages we use must mirror the types of operations that a computer
can perform. So let’s begin our discussion by repeating the definition of a computer: A
computer is a programmable electronic device that can store, retrieve, and process data.

The operational words here are programmable, store, retrieve, and process. In a previous
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chapter we pointed out the importance of the realization that data and instructions to
manipulate the data are logically the same and could be stored in the same place. That is
what the word programmable means in this context. The instructions that manipulate data
are stored within the machine along with the data. To change what the computer does to
the data, we change the instructions.

Store, retrieve, and process are actions that the computer can perform on data. That is,
the instructions that the control unit executes can store data into the memory of the
machine, retrieve data from the memory of the machine, and process the data in some way
in the arithmetic/logic unit. The word process is very general. At the machine level,
processing involves performing arithmetic and logical operations on data values.

Where does the data that gets stored in the computer memory come from? How does
the human ever get to see what is stored there, such as the results of some calculation?
There are other instructions that specify the interaction between an input device and the
CPU and between the CPU and an output device.

6.2 Machine Language

As we pointed out in Chapter 1, the only programming instructions that a computer
actually carries out are those written using machine language, the instructions built into
the hardware of a particular computer. Initially humans had no choice except to write
programs in machine language because other programming languages had not yet been
invented.

Machine language The language made up of binary-coded instructions that is used directly by the computer

So how are computer instructions represented? Recall that every processor type has its
own set of specific machine instructions. These are the only instructions the processor can
actually carry out. Because a finite number of instructions exist, the processor designers
simply list the instructions and assign them a binary code that is used to represent them.
This is similar to the approach taken when representing character data, as described in
Chapter 3.

The relationship between the processor and the instructions it can carry out is
completely integrated. The electronics of the CPU inherently recognize the binary
representations of the specific commands, so there is no actual list of commands the
computer must consult. Instead, the CPU embodies the list in its design.

Managing endangered species

Zoos have established captive populations of endangered animals to save them from extinction, but they need to
have a good distribution of ages and genetic diversity to protect the species against diseases and inbreeding. A
computerized database of all captive animals enables scientists to measure important factors governing the welfare
of a species. The Minnesota Zoological Garden coordinates the International Species Inventory System (ISIS),
which provides global information on more than 2.2 million living animals.

181



Each machine-language instruction performs only one very low-level task. Each small
step in a process must be explicitly coded in machine language. Even the small task of
adding two numbers together must be broken down into smaller steps: Enter a number
into the accumulator, add a number to it, save the result. Then these three instructions
must be written in binary, and the programmer has to remember which combination of
binary digits corresponds to which instruction. As we mentioned in Chapter 1, machine-
language programmers have to be very good with numbers and very detail oriented.

However, we can’t leave you with the impression that only mathematicians can write
programs in machine language. It is true that very few programs are written in machine
language today, primarily because they represent an inefficient use of a programmer’s time.
Although most programs are written in higher-level languages and then translated into
machine language (a process we describe later in this chapter), every piece of software is
actually implemented in machine code. Understanding even just a little about this level will
make you a more informed user. In addition, this experience emphasizes the basic
definition of a computer and makes you appreciate the ease with which people interact with
computers today.

Pep/8: A Virtual Computer

By definition, machine code differs from machine to machine. Recall that just as each lock
has a specific key that opens it, each type of computer has a specific set of operations that it
can execute, called the computer’s machine language. That is, each type of CPU has its own
machine language that it understands. So how can we give each of you the experience of
using machine language when you may be working on different machines? We solve that
problem by using a virtual computer. A virtual computer is a hypothetical machine—in
this case, one that is designed to contain the important features of real computers that we
want to illustrate. Pep/8, designed by Stanley Warford, is the virtual machine that we use
here.!

Virtual computer (machine) A hypothetical machine designed to illustrate important features of a real machine

Pep/8 has 39 machine-language instructions. This means that a program for Pep/8
must be a sequence consisting of a combination of these instructions. Don’t panic: We will
not ask you to understand and remember 39 sequences of binary bits! We merely plan to
examine a few of these instructions, and we will not ask you to memorize any of them.

Important Features Reflected in Pep/8

The memory unit of the Pep/8 is made up of 65,536 bytes of storage. The bytes are
numbered from 0 through 65,535 (decimal). Recall that each byte contains 8 bits, so we
can describe the bit pattern in a byte using 2 hexadecimal digits. (Refer to Chapter 2 for
more information on hexadecimal digits.) The word length in Pep/8 is 2 bytes, or 16 bits.
Thus the information that flows into and out of the arithmetic/logic unit (ALU) is 16 bits
in length.
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Recall from Chapter 5 that a register is a small area of storage in the ALU of the CPU
that holds special data and intermediate values. Pep/8 has seven registers, three of which we
focus on at this point:

m The program counter (PC), which contains the address of the next instruction to be
executed

m The instruction register (IR), which contains a copy of the instruction being
executed

m The accumulator (A register)

The accumulator is used to hold data and the results of operations; it is the special storage
register referred to in Chapter 5 in the discussion of the ALU.

We realize that this is a lot of detailed information, but don’t despair! Remember that
our goal is to give you a feel for what is actually happening at the lowest level of computer
processing. By necessity, that processing keeps track of many details.

FIGURE 6.1 shows a diagram of Pep8’s CPU and memory. Notice that the addresses
in memory appear in orange. This color is intended to emphasize that the addresses
themselves are not stored in memory, but rather that they name the individual bytes of
memory. We refer to any particular byte in memory by its address.

Pep/8's CPU (as discussed in this chapter)

A register (accumulator) | | I | i I | I I
Programecounter®C} | [ [ J T T VP P PP P T
Instruction register {'HJ{| I E TR

7 (5 5 1

Pep/8’s Memory

FIGURE 6.1 Pep/8’s architecture

Before we go on, let’s review some aspects of binary and hexadecimal numbers. The
largest decimal value that can be represented in a byte is 255. It occurs when all of the bits
are Is: 11111111 in binary is FF in hexadecimal and 255 in decimal. The largest decimal
value that can be represented in a word (16 bits) is 65,535. It occurs when all 16 bits are 1s:
1111111111111111 in binary is FFFF in hexadecimal and 65,535 in decimal. If we

represent both positive and negative numbers, we lose a bit in the magnitude (because one
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is used for the sign), so we can represent values ranging from -7FFF to +7FFF in
hexadecimal, or -32,767 to +32,767 in decimal.

This information is important when working with the Pep/8 machine. The number of
bits we have available determines the size of the numbers we can work with.

Instruction Format

We have talked about instructions going into the instruction register, being decoded, and
being executed. Now we are ready to look at a set (or subset) of concrete instructions that a
computer can execute. First, however, we need to examine the format of an instruction in
Pep/8.

FIGURE 6.2(a) shows the format for an instruction in Pep/8. There are two parts to
an instruction: the instruction specifier and (optionally) the 16-bit operand specifier. The
instruction specifier indicates which operation is to be carried out, such as “add a number
to a value already stored in a register,” and how to interpret just where the operand is. The
operand specifier (the second and third bytes of the instruction) holds either the operand
itself or the address of where the operand is to be found. Some instructions do not use the
operand specifier.

The format of the instruction specifier varies depending on the number of bits used to
represent a particular operation. In Pep/8, operation codes (called opcodes) vary from 4 bits
to 8 bits long. The opcodes that we cover are 4 or 5 bits long, with the fifth bit of 4-bit
opcodes used to specify which register to use. The register specifier is 0 for register A (the
accumulator), which is the only register that we will use. Thus the register specifier is only

color coded in our diagrams when it is part of the opcode. See FIGURE 6.2(b).

Instruction
specifiar

Operand
specifier

(&) The two parts of an instruction

L J L J
2 .l

L Addressing mode

Register specifier or 5th bit of opcode
Operation code

{b) The instruction specifier part of an instruction

FIGURE 6.2 Pep/8 instruction format
The 3-bit addressing mode specifier (shaded green) indicates how to interpret the

operand part of the instruction. If the addressing mode is 000, the operand is in the
operand specifier of the instruction. This addressing mode is called immediate (i). If the
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addressing mode is 001, the operand is the memory address named in the operand specifier.
This addressing mode is called direcr (d). (Other addressing modes also exist, but we do not
cover them here.) The distinction between the immediate addressing mode and the direct
addressing mode is very important because it determines where the data involved in the
operation is stored or is to be stored. See FIGURE 6.3. Locations that contain addresses
are shaded in orange; operands are shaded in gray.

Instructions that do not have an operand (data to be manipulated) are called #nary
instructions; they do not have an operand specifier. That is, unary instructions are only 1
byte long rather than 3 bytes long.

Instruction specifier o(0 |0

R

(a) Immediate addressing mode: Operand is shaded gray

Operand specifier

Instruction specifier 0|01

“~_-\, Address of data

Operand spacifier

Data

(b) Direct addressing mode: Operand is shaded gray

FIGURE 6.3 The difference between immediate addressing mode and direct addressing
mode

Some Sample Instructions

Let’s look at some specific instructions in isolation and then put them together to write a
program. FIGURE 6.4 contains the 4-bit operation code (or opcode) for the operations we
are covering.

0000 Stop execution During the fetch— execute cycle, when the operation code is all
zeros, the program halts. Stop is a unary instruction, so it occupies only one byte. The three
rightmost bits in the byte are ignored.

185



1100 Load the operand into the A register This instruction loads one word (two bytes)
into the A register. The mode specifier determines where the word is located. Thus the load
opcode has different meanings depending on the addressing mode specifier. The mode
specifier determines whether the value to be loaded is in the operand part of the instruction
(the second and third bytes of the instruction) or is in the place named in the operand.

Let’s look at concrete examples of each of these combinations. Here is the first 3-byte
instruction:

Opcode Meaning of Instruction

0000 Stop execution

1100 Load the operand into the A register

1110 Store the contents of the A register into the operand
0111 Add the operand to the A register

1000 Subtract the operand from the A register

01001 Character input to the operand

01010 Character output from the operand

FIGURE 6.4 Subset of Pep/8 instructions

Instruction specifier |1 |1|0l0|0|0|0|0

Operand specifier |0(0|0|0(O0|0Q]O(0O|0|O|Q|0O|O|1|1]1

The addressing mode is immediate, meaning that the value to be loaded into the A register

is in the operand specifier. That is, the data is in the operand specifier, so it is shaded gray.

After execution of this instruction, the contents of the second and third bytes of the

instruction (the operand specifier) would be loaded into the A register (the accumulator).

That is, the A register would contain 0007 and the original contents of A would be lost.
Here is another load instruction:

Instruction specifier |1 |1 0|0 |0 |0|0 |1

Operand specifier glojojojojojojojojojoy1j11]1]1

The addressing mode is direct, which means that the operand itself is not in the operand
specifier (second and third bytes of the instruction); instead, the operand specifier holds the
address (orange) of where the operand resides in memory. Thus, when this instruction is
executed, the contents of location 001F would be loaded into the A register. Note that we
have shaded the bits that represent a memory address in orange just as we have used orange
for other addresses. The A register holds a word (2 bytes), so when an address is used to
specify a word (rather than a single byte) as in this case, the address given is of the leftmost
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byte in the word. Thus the contents of adjacent locations 001F and 0020 are loaded into
the A register. The contents of the operand (001F and 0020) are not changed.

1110 Store the A register to the operand This instruction stores the contents of the A
register into the location specified in the operand.

Instruction specifier |1 |1 |1 ]0|0 0|0 |1

Operand specifier |0|(0|0jO|0|O|Q|O|(O|O|O|O|1|O|1]|0O

This instruction stores the contents of the A register into the word beginning at location
000A. It is invalid to use an immediate addressing mode with a store opcode; that is, we
cannot try to store the contents of a register into the operand specifier.

2

Bring a hammer

When Jan Hein Donner, the Dutch chess grandmaster, was asked how he would prepare for a chess match against a

computer like IBM’s Deep Blue, he replied, “I would bring a hammer.””

0111 Add the operand to the A register Like the load operation, the add operation uses
the addressing mode specifier, giving alternative interpretations. The two alternatives for
this instruction are shown below, with the explanation following each instruction.

Instruction specifier |0 |1 [1|1|0]0[0]|0O

Operand specifier gjojojojojoj1jojojojojoj1jo1|ao

The contents of the second and third bytes of the instruction (the operand specifier) are
added to the contents of the A register (20A in hex). Thus we have shaded the operand
specifier to show that it is data.

Instruction specifier |0|1(1]1|0]0]0]| 1

Operand specifier (0|0 |0(0|0OJ0O(1|0O|0(0|OJO(1]0Q|1([0D

Because the address mode specifier is direct, the contents of the operand specified in the
second and third bytes of the instruction (location 020A) are added into the A register.

1000 Subtract the operand This instruction is just like the add operation except that the
operand is subtracted from the A register rather than added. As with the load and add
operations, there are variations of this instruction depending on the addressing mode.

01001 Character input to the operand This instruction allows the program to enter an
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ASCII character from the input device while the program is running. Only direct
addressing is allowed, so the character is stored in the address shown in the operand
specifier.

Instruction specifier |01 |0 (01|00 |1

Operand specifier |O|0|O0|O|O0OjJO|0O|O|O|OjJO|O|1]0O]|1]|0

This instruction reads an ASCII character from the input device and stores it into location
000A.

01010 Character output from the operand This instruction sends an ASCII character to
the output device while the program is running. The addressing mode may be either
immediate or direct.

Instruction specifier |0 |1 |01 ]0]0[0]0

Operand specifier |0|0|0(0|0|0Of(O|O|O|(1|O|JO|O[OJO]1

Because immediate addressing is specified, this instruction writes out the ASCII character
stored in the operand specifier. The operand specifier contains 1000001, which is 41 in hex
and 65 in decimal. The ASCII character corresponding to that value is ‘A’, so the letter ‘A’
is written to the screen.

Instruction specifier |0 |1 0|1 |0|0|0O[1

Operand specifier |0|0|0|0|O|O|O|O|OjO[O]O|1|OG[1]0

Because direct addressing is used, this instruction writes out the ASCII character stored in
the location named in the operand specifier, location 000A. What is written? We cannot
say unless we know the contents of location 000A. The ASCII character corresponding to
whatever is stored at that location is printed.

6.3 A Program Example

We are now ready to write our first machine-language program: Let’s write “Hello” on the
screen. There are six instructions in this program: five to write out a character and one to
indicate the end of the process. The instruction to write a character on the screen is 0101,
the “Character output from the operand” operation. Should we store the characters in
memory and write them using direct addressing mode, or should we just store them in the
operand specifier and use immediate addressing mode? Let’s use immediate addressing here
and leave direct addressing as an exercise. This means that the addressing mode specifier is
000 and the ASCII code for the letter goes into the third byte of the instruction.
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Action Binary Instruction Hex Instruction

Write 'H 01010000 50
0000000001001000 0048

Write ¢ 01010000 50
0000000001100101 0065

Write T 01010000 50
0000000001101100 006C

Write T 01010000 50
0000000001101100 006C

Write "o’ 01010000 50
0000000001101111 006F

Stop 00000000 00

The machine-language program is shown in binary in the second column and in
hexadecimal in the third column. We must construct the operation specifier in binary
because it is made up of a 4-bit opcode, a 1-bit register specifier, and a 3-bit addressing
mode specifier. Once we have the complete 8 bits, we can convert the instruction to
hexadecimal. Alternatively, we could construct the operand specifier directly in
hexadecimal.

We used double quotes when referring to a collection of characters like “Hello” and
single quotes when referring to a single character. This pattern is commonly used in
programming languages, so we follow this convention here.

Hand Simulation

Let’s simulate this program’s execution by following the steps of the fetch— execute cycle.
Such traces by hand really drive home the steps that the computer carries out.
Recall the four steps in the fetch—execute cycle:

. Fetch the next instruction (from the place named in the program counter).
. Decode the instruction (and update the program counter).

. Get data (operand) if needed.

0 N

. Execute the instruction.

There are six instructions in our program. Let’s assume that they are in contiguous
places in memory, with the first instruction stored in memory locations 0000—-0002.
Execution begins by loading 0000 into the program counter (PC). At each stage of
execution, let’s examine the PC (shown in orange) and the instruction register (IR). The
program does not access the A register, so we do not bother to show it. At the end of the
first fetch, the PC and the IR look like the following diagram. (We continue to use color to
emphasize the addresses, opcode, address mode specifier, and data.) Notice that the
program counter is incremented as soon as the instruction has been accessed.
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Program counter (PC) glojojojo0j0|0jOjO|O]1]1
Q11011010 ]0]0
glojofojojojojojajt1jojoji1|{ojo]a0

Instruction register (IR)

This instruction is decoded as a “Write character to output” instruction using immediate
addressing mode. Because this instruction takes 3 bytes, the PC is incremented by 3. The
data is retrieved from the operand specifier in the IR, the instruction is executed, and ‘H’ is
written on the screen.

The second fetch is executed and the PC and IR are as follows:

Program counter (PC) gjojojojoj0jojOojO)T|1]O
1|0j1]j0j0j0O]|0
ojojojojojojajojt1|1]ofjo|1]O]1

Instruction registar (IR)

This instruction is decoded as another “Write character to output” instruction using
immediate addressing mode. The instruction takes 3 bytes, so the PC is again incremented
by 3. The data is retrieved, the instruction is executed, and ‘¢’ is written on the screen.

The next three instructions are executed exactly the same way. After the ‘0’ has been
written, the PC and IR look as follows:

Program counter (PC) ojojojojojojofoj1]1]|1]1

Instruction register (IR)

The opcode is decoded as a “Stop” instruction, so the contents of the addressing mode and
the operand specifier are ignored. At this point, the fetch—execute cycle stops.

4

Nigerian check scam

In June 2008, Edna Fiedler of Olympia, Washington, was sentenced to 2 years in prison and 5 years of supervised
probation in a $1 million Nigerian check scam. In this scam, a message in broken English pleaded for the financial
help of the kind recipient. In all cases, the sender was a high-ranking official who had millions stashed in an
inaccessible spot. If the recipient wired money for the official’s escape from his ravaged country, he or she was
offered a share of the money. The average loss to the victims of this scam was more than $5000.

Pep/8 Simulator

Recall that the instructions are written in the Pep/8 machine language, which doesn’t
correspond to any particular CPU’s machine language. We have just hand simulated the
program. Can we execute it on the computer? Yes, we can. Pep/8 is a virtual (hypothetical)
machine, but we have a simulator for the machine. That is, we have a program that behaves
just like the Pep/8 virtual machine behaves. To run a program, we enter the hexadecimal
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code byte by byte, with exactly one blank between each byte, and end the program with
“2z”. The simulator recognizes two z’s as the end of the program. Here is a screenshot of the
Pep/8 machine-language program:

Object Code

|so oo 48 S0 00 &5 50 00 6C 50 00 &C 50 OO |
&6F 0D ==

Let’s go through the steps required to enter and execute a program. We assume that the
Pep/8 simulator has been installed. To start the program, click on the Pep/8 icon. One of
several screens might appear, but each contains a section marked “Object Code.” Enter
your program in this window as described previously. You are now ready to run your
program. Go to the menu bar. Here is a shot of the portion that you need:

| BR OER &

Click on the middle of these three icons, which calls the loader. After you click on this
icon, your program is loaded into the Pep/8 memory.

Loader A piece of software that takes a machine-language program and places it into memory

Be sure the Terminal I/O button is darkened (pressed). Now click on the rightmost
icon, which is the execute button. The program is executed and “Hello” appears in the
output window. For everything we do in this chapter, the Terminal I/O button should be
darkened. This area is where you input and output values.
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Batch I/O  Terminal I/O

Input/Output: Runl.peplnOut

Hello_

Pep/8 has a feature that lets you watch what is happening in the CPU as each
instruction is executed. Here is a screenshot of the CPU after the program has been loaded.
Notice that the “Trace Program” check box has been marked. This screen includes several
boxes that we have not covered, but you can readily see the “Program Counter,”
“Instruction Register,” and “OpCode” labels.

cPu
WV Trace Program Trace Traps Trace Load
n[o] 2] v[o] c[o]
Accumulator '_UIEI-E {hex) 0 (dec) =i (char)
Index Register | D000 | (hex) 0 (dec)
Stack Pointer _FBTC_F_ (hex) (64463 (dec)
Program Counter m {hex)
Instruction Register 50 (hex)
OpCode m (bin) W {mnemonic)
Non-Unary
Addressing Mode Specifier
Operand Specifier {bin) {mode} Operand
0048 | 000 [ 0048
Single Step ) "~ Resume

When the “Trace Program” option is checked, press the Single Step button and the first
instruction will be executed. Continue pressing the Single Step button, and you can see the
register values change.

Before we leave our machine code example, let’s input two letters and print them out in
reverse order. We can choose a place to put the input as it is read somewhere beyond the
code. In this case we choose “OF” and “12”. We use direct addressing mode.

Action Binary Instruction Hex Instruction
Input a letter into location F 01001001 49
0000000000001111 000F
lnput a letter into F + 1 01001001 49
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0000000000010000 0010

Write out second letter 01010001 51
0000000000010000 0010

Write out first letter 01010001 51
0000000000001111 000F

Stop 00000000 00

bl

Here is the object code and output window after entering ‘A’ and ‘B’:

Batch 17O Terminal 1jD

Input/ Output

6.4 Assembly Language

As we pointed out in Chapter 1, the first tools developed to help the programmer were
assembly languages. Assembly languages assign mnemonic letter codes to each machine-
language instruction. The programmer uses these letter codes in place of binary digits. The
instructions in an assembly language are much like those we would use to tell someone how
to do a calculation on a hand-held calculator.

Assembly language A low-level programming language in which a mnemonic represents each of the machine-
language instructions for a particular computer

Because every program that is executed on a computer eventually must be in the form
of the computer’s machine language, a program called an assembler reads each of the
instructions in mnemonic form and translates it into the machine-language equivalent.
Also, because each type of computer has a different machine language, there are as many
assembly languages and translators as there are types of machines.

Assembler A program that translates an assembly-language program in machine code

Pep/8 Assembly Language

The goal of this section is not to make you become an assembly-language programmer, but
rather to make you appreciate the advantages of assembly-language programming over
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machine coding. With this goal in mind, we cover only a few of Pep/8’s assembly-language
features here. We begin by examining the same operations we looked at in the last sections
plus three other useful operations. In Pep/8’s assembly language, there is a different opcode
for each register, the operand is specified by “0x” and the hexadecimal value, and the
addressing mode specifier is indicated by the letters " or ‘d’.

Mnemonic Operand, Mode Meaning of Instruction
Specifier
STOP Stop execution
LDA 0x008B, 1 Load 008B into register A
LDA 0x008B,d Load the contents of location 8B into register A
STA 0x008B,d Store the contents of register A into location 8B
ADDA 0x008B, 1 Add 008B to register A
ADDA 0x008B,d Add the contents of location 8B to register A
SUBA 0x008B, 1 Subtract 008B from register A
SUBA 0x008B,d Subtract the contents of location 8B from register
A
BR Branch to the location specified in the operand
specifier
CHARI 0x008B,d Read a character and store it into location 8B
CHARO 0x008B, 1 Write the character 8B
0x0008B,d Write the character stored in location 0B
DECI 0x008B,d Read a decimal number and store it into location
DECO 0x008B, 1 8B
DECO 0x008B,d Werite the decimal number 139 (8B in hex)

Werite the decimal number stored in location 8B

Did you wonder why we didn’t do any arithmetic in machine language? Well, the
output was defined only for characters. If we had done arithmetic, we would have had to
convert the numbers to character form to see the results, and this is more complex than we
wished to get. The Pep/8 assembly language provides the mnemonics DECT and DECO,
which allow us to do decimal input and output. This terminology is somewhat misleading,
however, because these operations actually involve calls to a series of instructions behind the
scenes.

Assembler Directives

In a machine-language program, every instruction is stored in memory and then executed.
Beginning with assembly languages, most programming languages have two kinds of
instructions: instructions to be translated and instructions to the translating program. Here
are a few useful assembler directives for the Pep/8 assembler—that is, instructions to the
assembler. These instructions to the assembler are also called pseudo-operations.

Assembler directives Instructions to the translating program
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Pseudo-op Argument Meaning

.ASCII “Str\x00” Represents a string of ASCII bytes

.BLOCK Number of bytes Creates a block of bytes

.WORD Value Creates a word and stores a value in it

.END Signals the end of the assembly-language program

Assembly-Language Version of Program Hello

Let’s take a look at the assembly-language program that writes “Hello” on the screen. Pep/8
assembly language allows us to directly specify the character to be output and to add a
comment beside the instruction. A comment is text written for the human reader of the
program that explains what is happening. Comments are an essential part of writing any
program. The assembler ignores everything from the semicolon through the end of the line;
it is a comment. We color them to make them stand out.

Comment Explanatory text for the human reader

CHARC 0x0048,1; Output an 'H'
CHARO 0x0065,i; Output an 'e'
CHARD O0Ox006C,i: OQutput an '1'
CHARQ O0x006C,i; Output an '1°
CHARO O0x006F,i; Output an 'o'
STOP

.END

This code is entered into the Source Code window. The icon to the left of the load icon
is the assembler icon. Click this icon, and the object code into which the program is
translated appears in the Object Code window. The Assembler Listing window shows the
address to which an instruction has been assigned, the object code, and the assembly-
language code; it is shown here:

Assembler Listing

Addr Code Hnemon Operand Commant
0000 500048 CHARO Ox0048,1

0003 500065 CHAROD Ox0065,4

0006 S5000&C CHAROD Ox006C, 1

0008 50006C CHARD Ox006C, i

000C S000&F CHAROD 0x006F, 1

000F 00 STOP

The process of running a program coded in an assembly language is illustrated in
FIGURE 6.5. The input to the assembler is a program written in assembly language. The
output from the assembler is a program written in machine code. You can see why the
creation of assembly language represented such an important step in the history of
programming languages: It removed many of the details of machine-language programming
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by abstracting the instructions into words. Although it added a step to the process of
executing a program (the translation of assembly to machine code), that extra step is well
worth the effort to make the programmer’s life easier.

A New Program

Let’s make a step up in complexity and write a program to read in three numbers and write
out their sum. How would we do this task by hand? If we had a calculator, we would first
clear the total; that is, we would set the sum to zero. Then we would get the first number
and add it to the total, get the second number and add it to the total, and finally get the
third number and add it to the total. The result would be what is in the accumulator of the
calculator. We can model our computer program on this by-hand solution.

#

_'_,.f"

Program in i Program in
aﬁsemb'}" II"IFH.Jt Assembler DUtpUt machine
language code

. i e

FIGURE 6.5 Assembly process

The most complex problem is that we must associate four identifiers with places in
memory, and this requires knowing how many places the program itself takes—that is, if
we put the data at the end of the program. Let’s make this process easier by putting our
data before the program. We can start associating identifiers with memory locations
beginning with location 0001 and have the fetch—execute cycle skip over these places to
continue with the program. In fact, we can assign identifiers to the memory locations and
use these names later in the program. We set up space for the sum using the .WORD
pseudo-op so that we can set the contents to 0. We set up space for the three numbers

using the . BLOCK pseudo-op.
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ER main : Branch around data

sum: .WORD Ox0000 : Set up word with zero
numl: .BLOCK 2 ; Set up a two byte block for numl
num2: .BLOCK 2 ; Set up a two byte block for num2
num3: .BLOCK 2 ; Set up a two byte block for num3
main: LDA sum,d : Load zero into the accumulator

DECI numl,d ; Read and store numl

ADDA numl,d : Add numl to accumulator

DECI num?2 , d ; Read and store num2

ADDA num2 , d ; Add numZ to accumulator

DECI num3,d : Read and store num3

ADDA num3, d : Add num3 to accumulator

STA sum,d : Store accumulator into sum

DECO sum,d ; Output sum

STOP i Stop the processing

.END ; End of the program

Here is the assembler listing for this program, followed by a screenshot of the
Input/Output window after we execute the program. Note that the user keys in the three
values, and the program prints their sum.
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Assembler Listing
Addr Code Symba ] Mrg=an Oparasd O

ae0d Oo403an BER maln | Bramch arcund daks
osnl oaes A < WORD 5 1-1: 1 1 ¢ Bet up word with mere
agos ooen namli BLOCKE 2 i et up a two byts block for muml
aeeT GCoeo namd i <BLOCK 2 ¢ Bobt up a two byis block for mumd
oc0s D0aco naml) <BLOCE 2 ¢ oLl up a two byle block for mum)
0608 C1800) maing LDA samd ¢ Load zero inio the accusulabor 7
QRCE JIG00% BECI numi,d ¢ Read and store numl
@21l Ti090% ADTA nani,d I Rdd numl to accumalator
Q014 119007 BECI nund,d ¢ Resd and store numld
QRIT iy AETA nund,d ¢ A nuRd Lo accumalator
Weih  JI090F DECT nunl,d I Read and store numl
oI  TiG00® AEDR namd, d 7 Add nuad to accumslator
Q030 EIS0D) TN ur I Btore accumulator into sem
0233 IPE00) DECO sun,d ;r Ouktpuk sus
ge2& 09 09 r Skop the proceseing
« D r End of the peogranm
Synbol Valuo
e =l b )
nwml 145 ]
e =10
numl =115 ]
main =04
-
L
Input f Output
i ]
14
2
o

A Program with Branching

We have shown that the program counter can be changed with a BR instruction that sets
the program counter to the address of an instruction to execute next. Are there other ways
to change the flow of control of the program? Can we ask a question and take one or
another action on the basis of the answer to our question? Sure—let’s see how. Here are
two useful opcodes and their meaning:

Mnemonic Operand, Mode Meaning of Instruction
Specifier
BRLT i Set the PC to the operand if the A register is less
than zero
BREQ i Set the PC to the operand if the A register is equal
to zero
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4

Who is Genevieve Bell?

Dr. Bell is an anthropologist at Intel, the world’s largest producer of semiconductors. She is director of user
experience research at Intel Labs, the company’s research arm. She runs a group of some 100 social scientists and

designers who travel the globe, observing how people use technology in their homes and in public.®

For example:

LDA numl,d - oad numl into A registe
BRLT lessThan : Branch to lessThan if nu is less than 0

If the value stored in NUM1 is negative when it is loaded into the A register, the PC is set to
location TessThan. If the value is not negative, the PC is unchanged.

Let’s change the previous program so that it prints the sum if it is positive and displays
an error message if the sum is negative. Where should the test go? Just before the contents
of the answer is stored into location sum, we can test the A register and print ‘E’ if it is
negative.

We can use the BRLT instruction to test whether the sum is negative. If the A register
is negative, the operand beside the BRLT instruction replaces the contents of the program
counter so that the next instruction comes from there. We need to give the instruction a
name, so we can branch to it. Let’s call the instruction that prints the error message
negMsg. When the error message has been written, we must branch back to the line that
says STOP, which means we must name that line. Let’s name it ¥inish.

Here is the source code of this changed program. Note that we have reduced the
number of comments. If the comment just duplicates the instruction, it can be a distraction
instead of a help.
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BR
sum: WORD
numl: LBLOCK 2

num? : .BLOCK 2
num3 : .BLOCK 2

negMsg: CHARO
BR

main: LDA
DECI
ADDA
DECI
ADDA
DECT
ADDA
BRLT
STA
DECD

finish: STOP
.END

main
0x0000

0x0045,1

finish
sum, d

numl,d
numl,d
num?2 , d
num2 , d
num3,d
num3,d
negMsg
sum,d

sum,d

¥

Branch around data
Set up word with zero

; Set up a two byte block for numl
; Set up a two byte block for num2

Set up a two byte block for num3

Print "E'

Branch to STOP instruction
Load zero into the accumulator
Read and add three numbers

Branch to negMsg if A < 0
Store result into sum
Qutput sum

Here is the assembler listing, followed by a screenshot of the input and output:
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Assembler Listing

A Program with a Loop

What if we want to read and sum four values? Five values? Any number of values? We can
input how many values we want to sum (11m11t) and write the code to read and sum that
many values. We do so by creating a counting loop—a section of code that repeats a
specified number of times. Within the code of the loop, a value is read and summed. How
can we keep track of how many values we have read? We can make a hash mark each time

Addr Code Symbol Mnemon Oporand Comment
Q000 O40011 BR main Branch arcund data
0063 0000  sum WORD  Ox0000 Ser up word with zero
Q005 0000 o pmuml: BLOCK 2 Seb up a two byte block for musl
007 QoQ0 mumds BLOCK 2 Sot up a two byte block [or mumd
0009 0000 mumdid .DLOCE 12 Sak €p & two byte bloek for mumd
000D 500045 mnogMag: CHARO  Ox0045.4 Primt 'R’
QO00E G4002F BR finish Branch to §TOP inetruction
0011 ©10003 mains LDA sun,d Load zoero into the acousulator
0014 310008 DECI muanl,d Read and add three numbors
9417 710008 ADDA puanl, d
001A 310007 DECT pund, d
a0lp 710407 ADDA pund, d
o030 310009 BECI pamd.d
9023 Ti0009 ADDR ranld,d
Q02& QROOCD DRLT mogMag Bramch Lo mogMeg of A < O
0028 EL0003 8Th ouam.d Steze pesult Lnte sum
o02C 1904003 DZCto san,d Outpuat sus
Q0IF o0 finimh: STOP
END
fymbol Valuo
aum ooel
ngal L]
nungd ooR7
nund ]
noqgHeg oooa
main ba1l
finioh ooIr
o
"Batch IO Terminal 1/O |
Input/Output
2
-3
=1
E
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we repeat the loop and compare the sum of the hash marks to the number of times we wish
to repeat the loop. Actually, our hash mark is a place in memory where we store a 0; let’s
call it counter. Each time the loop is repeated, we add a 1 to that place in memory.
When counter equals 11m1i t, we are finished with the reading and counting.

In the next section we describe pseudocode, a less wordy way of explaining what we do
in branching and looping situations. For now, here is the code that reads in the number of
data values to read and sum, reads and sums them, and prints the result:

BR main : Branch around data
sum: .WORD 0x0000 i Set up word with zero
num: LBLOCK 2 : Set up a block for nun
Timit: .BLOCK 2 * Set up a block for Timit
counter: .WORD Ox0000 : Set up counter
main: DECI Timit,d : Input Timit
Toop: DECI num, d : Read and sum T1imit numbers
LDA num,d
ADDA  sum,d
STA sum,d
LDA counter,d ; Load counter into A register
ADDA 1.1 ¢ Add one to counter
STA counter,d
CPA Timit,d : Compare counter and Timit
BREQ quit ; Go to quit if equal
BR loop : Repeat loop
quit: DECOD sum,d : Qutput sum
STOP
.END

Here is the assembler listing, followed by a screenshot of a run:
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Assembler Listing
Addr Cods Symbal Maomss Operand Commgrt

g0d8  o4000B R maln 1 Branch around data
0003 o000 Bam « WORD ox2000 1 Ssb up word with zoere
604% oooe nam T S 7 Set up a blook for num

0097 Q000 linity DLOCE 2
1 St up a bloak for limit
Q099 G000 eoumter: WORD  OxG000 i Seb up counter

Go0m 210007 madns RS EBLE,d IEpEL lisdt

goaE 100085 loop: DECT mun,d 3 Read and sun limit nushers
0Ll CLOO0OS LDA mm,d
00l4 710003 ADDR wunm,d
Q1T El0002 STA sam,d
o0lA Cloaos LOA eounter,d § Load countsr imtoe A register
Rl Tooeol ADDR TS 7 Add one Lo couRber
0028 Elooos &TA counber,d
90213 B1o007 CPA limie,d y Compare counter and limit
o026 CADRIC RED Fuat i Go be guit i ogual
@029 G4O00E BR Loop ! Repoat loop
02 )90003 guits OECD am,d i Cutput aus
GoIF &0 &T0F
« END

Symbol Valuo

Bus oagl
fif g04s
limin oaaT
“oanter Qoow
malsn 0008
loop 0udE
quit gazc

®o errors. Successlul assembly.

! Batch IfO  Terminal 1I/O |
Input/Cutput: loopWlimit.pepinOut

e L AT

6.5 Expressing Algorithms

In the previous sections, we have written programs to write out a greeting, read numbers in
and write them out in reverse order, add three numbers together and print an error message
if the sum is negative, and enter a value and read and sum that many numbers. We
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expressed the solution to each problem in paragraph form and then wrote the code. In
computing, the plan for a solution is called an algorithm. As you saw, going from the
problem in paragraph form to the code is not always a clear-cut process. Pseudocode is a
language that allows us to express algorithms in a clearer form.

Algorithm A plan or outline of a solution; a logical sequence of steps that solve a problem

Pseudocode A language designed to express algorithms

Pseudocode Functionality

In Chapter 1, we talked about the layers of language surrounding the actual machine. We
didn’t mention pseudocode at that time because it is not a computer language, but rather a
shorthand-like language that people use to express actions. There are no special grammar
rules for pseudocode, but to express actions we must be able to represent the following
concepts.

2

What was the Music Genome Project?

In 2002, Will Glaser, Jon Craft, and Tim Westergren founded the company Savage Beast Technologies and created
the Music Genome Project. The project, which was created to capture “the essence of music at the most
fundamental level,” uses hundreds of musical attributes or “genes” to describe scores, as well as an intricate
mathematical formula to analyze them. The project has analyzed tens of thousands of diverse scores and artists for
attributes such as melody, harmony and rhythm, instrumentation, orchestration, arrangement, and lyrics.

Variables

Names that appear in pseudocode algorithms refer to places in memory where values are
stored. The name should reflect the role of the content in the algorithm.

Assignment

If we have variables, we must have a way to put a value into one. We use the statement
Set sum to O

to store a value into the variable sum. Another way of expressing the same concept uses a
back arrow (<—):

sum <—1

If we assign values to variables with the assignment statement, how do we access them
later? We access values in sum and num in the following statement:

Set sum to sum + num
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or
sum <—sum + num

The value stored in sum is added to the value in num and the result is stored back in sum.
Thus, when a variable is used on the right side of the to or <—, the value of the variable is
accessed. When a variable is used following Set or on the left side of <—, a value is stored
into the variable.

The value being stored into a variable can be a single value (as in 0) or an expression
made up of variables and operators (as in sum + num).

Input/Output

Most computer programs simply process data of some sort, so we must be able to input
data values from the outside world and output the result on the screen. We can use the
word write for output and the word read for input.

Write “Enter the number of values to read and sum”
Read num

The characters between the double quotation marks are called s#rings and tell the user
what to enter or to describe what is written. It doesn’t matter which exact words you use:
Display or Print would be equivalent to Write; Get or Input would be synonyms for Read.
Remember, pseudocode algorithms are written for a human to translate into some
programming language at a later stage. Being consistent within a project is better style—
both for you as you are working and for the person following you, who may have to
interpret what you have written.

The last two output statements demonstrate an important point:

Write “Err”
Write sum

The first writes the characters between the double quotation marks on the screen. The
second writes the contents of the variable sum on the screen. The value in sum is not

changed.

Selection

The selection construct allows a choice between performing an action or skipping it.
Selection also allows a choice between two actions. The condition in parentheses
determines which course of action to follow. For example, the following pseudocode
segment prints the sum or an error message. (Sound familiar?)
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IF (sum < O)
Frint error message
ELSE

Frint sum

We use indention to group statements (only one in this case). Control goes back to the
statement that is not indented. The // introduces a comment to the reader, which is not
part of the algorithm.

This version of the selection construct is called the if-then-else version because the
algorithm chooses between two actions. The if-zhen version is the case where an action is
executed or skipped. If we wanted to print the sum in any event, we could show the
algorithm this way.

IF(sum < 0)
Frint error message

Frint sum

Repetition

The repetition construct allows instructions to be repeated. In the summing problem, for
example, a counter is initialized, tested, and incremented. Pseudocode allows us to outline
the algorithm so that the pattern becomes clear. Like the selection construct, the expression
in parentheses beside the WHILE is a test. If the test is true, the indented code is executed. If
the test is false, execution skips to the next non-indented statement.

Set limit to number of values to sum
WHILE (counter < limit)

Eead num

Set sum to sum + hum

Set counter to counter + 1

The expression in parentheses beside the WHILE and the IF is a Boolean expression,
which evaluates to either true or false. In the IF, if the expression is true, the indented block
is executed. If the expression is false, the indented block is skipped and the block below the
ELSE is executed if it exists. In the WHILE, if the expression is true, the indented code is
executed. If the expression is false, execution skips to the next non-indented statement. We
are putting WHILE, IF, and ELSE in all capital letters because they are often used directly in
various programming languages. They have special meanings in computing.
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Boolean expression An expression that when evaluated is either true or false

TABLE 6.1 summarizes these statements and shows examples or the words that each

uses.

TABLE 6.1 Pseudocode Statements

Construct What It Means Words Used or Example
Variables Represent named places into which Names that represent the role of a value
values are stored and from which values in a problem are just written in
are retrieved. pseudocode
Assignment Storing a value into a variable. Set number to 1
number <—1
Input/output Input: reading in a value, probably from Read number
the Get humber
keyboard. Write number
Output: displaying the contents of a Display number
variable Write “Have a good day”
or a string, probably on the screen.
Repetition Repeat one or more statements as long as While (condition)
(iteration, looping) a condition is true. /[Execute indented statement(s)
Selection: if-then  If a condition is true, execute the IF (newBase = 10)
indented statements; if a condition is not  Write “You are converting”
true, skip the indented statements. Write “to the same base.”
/IRest of code
Selection: if-then-  If a condition is true, execute the IF (newBase = 10)
else indented statements; if a condition is not  Write “You are converting”
true, execute the indented statements Write “to the same base.”
below ELSE. ELSE
Write “This base is not the “
Write “same.”
/IRest of code

Here is the pseudocode algorithm for the program that read and summed three values
and printed an error message if the total was negative:
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Setsumto O
Read num
Set sum to sum + num’l
Eead num2
Set sum to sum + numz
Read num3
Set sum to sum + numa
If (sum < Q)

Write 'E’
ELSE

Write sum

Here is the pseudocode algorithm for the program that input the number of values to

read, read them, and printed the sum:

Set counterto O
Setsumto O
Eead limit
While (counter < limit)
Eead num
Set sum to sum + num
Set counter to counter + 1
Print sum

A pseudocode description must eventually be translated into a program that can be run
on a computer. A pseudocode statement might have to be translated into many assembly-
language statements, but into only one statement in a high-level language. For example, go
back and look at the last Pep/8 program. Here are the instructions needed to create the

loop:

Timit: .BLOCK 2 -

counter: BLOCK 2 :

Toop:
LDA counter,d ;
ADDA, 1.4 :
STA counter,d
CPA Timit,d :
BREQ quit -
BR Toop :

Set up a block for Timt
Set up counter

Load Timit into A register
Add one to counter

Store counter

Compare counter and limit
Co to quit if equal

Repeat loop

In most high-level languages, a loop can be written in one statement. In the next sections,

we explore more about pseudocode.
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Following a Pseudocode Algorithm

In Chapter 2, we introduced an algorithm for converting from base 10 to other bases. We
expressed this algorithm in pseudocode for a human to follow.

While (the quotient is not zero)
Divide the decimal number by the new base
Set the next digit to the left in the answer to the remainder
Set the decimal number to the quotient

To refresh our memories, we apply this algorithm to convert decimal number 93 to
octal. We divide 93 by 8 (the new base), giving a quotient of 11 and a remainder of 5. This
is the first division, so 5 becomes the digit in the units position of the answer. The original
decimal number (93) is replaced by the quotient, 11. The quotient is not 0, so we divide 11
by 8, giving a quotient of 1 and a remainder of 3. The digit 3 becomes the digit to the left
of 5, giving a temporary answer of 35. The current decimal number (11) is replaced by the
quotient 1. The quotient is not 0, so we divide it by 8, giving a quotient of 0 and a
remainder of 1. The digit 1 becomes the leftmost digit in the answer, giving a value of 135.
The quotient is 0, so the process ends.

This paragraph again shows how confusing English descriptions can be! First let’s
summarize the calculations.

Division Quotient Remainder Answer
93/8 11 5 5
11/8 1 3 35

1/8 0 1 135

Now let’s start over again, giving names to the values that we need to keep:
decimalNumber, newBase, quotient, remainder, and answer. We depict these items as
named boxes in which we write a value. See FIGURE 6.6(a). We have put a question mark
in boxes for which we do not know the contents.

In following an algorithm, we draw boxes for variables and fill in the values. The
algorithm begins by asking if the value in quotient is 0.
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{a) Initial values

decimalMumber newBose quotient remainder ANSWEr
93 8 7 ? ?
(b) After first time through loop (93/8)
decimalMumber newBase quotient remainder answer
1 8 1 5 ]
(c) After second time through loop (11/8)
decimalNumber newBase quotient remainder answer
1 8 1 3 35

(d) After third time through loop (1/8)
decimalMumber newgase quotient remainder answer

0 8 0 1 135

FIGURE 6.6 Walk-through of a conversion algorithm

What is Pandora?

Pandora is a music streaming company that tailors the music it plays to each listener’s preferences. Pandora uses the
results of the Music Genome Project to make selections that the listener is likely to enjoy. By April 2013, Pandora’s
radio streaming service had exceeded 200 million users. Do you listen to Pandora?*

Let’s assume it is not, but we’ll come back to this point later. FIGURE 6.6(b) shows the
results after the first time through the loop, dividing 93 by 8. The quotient is 11, so we
repeat the process.

FIGURE 6.6(c) displays the values after this repetition. The quotient is not 0, so we
divide 1 by 8, giving the situation in FIGURE 6.6(d). Now quotient is 0, so the process
stops.

One of our boxes, decimalNumber, originally contained the initial data value for the
problem, the number to be converted. In a computer algorithm, we must give instructions
to someone at the keyboard to input this value. Box newBase did not change throughout
the process, but it too must be input from the keyboard because the algorithm is to change
a decimal number into some other base. So the new base—base 8 in this case—must be
input to the problem.

When we went through this algorithm, we knew that quotient had not been calculated
yet, so we could assume it was not 0. In an algorithm for a computer to follow, we must
make sure that the quotient is not 0 by setting it to some nonzero value initially.

Here is the same algorithm rewritten in concrete steps from which a program could be
written. DIV is an operator that returns the decimal quotient, and REM is an operator that
returns the decimal remainder.
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Write "Enter the new base”

Fead newBase

Write "Enter the number to be converted”

Kead decimalNumber

Set answer to O

Set quotient to decimal number

While (quotient is not zero)
Set quotient to decimalNumber DIV newBase
Set remainder to decimalNumber REEM newBase
Make the remainder the next digit to the left in the answer
Set decimalNumber to quotient

Write “The answer is ", answer

Writing a Pseudocode Algorithm

Here we will walk you through the algorithm development process on a small scale,
pointing out strategies that we are using. In Chapter 7, we consider writing algorithms in
more depth.

Let’s read in pairs of positive numbers and print each pair in order. If there is more

than one pair of numbers, we must have a loop. Here is a first approximation of the
algorithm:

While (net done)
Write "Enter two values separated by a blank; press return”
Read number
Eead numberZ2
Frint them in order

How do we know when to stop? That is, how do we break down not done into a
question? We can ask the user to tell you how many pairs are to be entered. Here is the
second pass:

Write "How many pairs of values are to be entered?”
Read numberOffairs
Set pairsRead to O
While (pairsRead < humberOffairs)
Write "Enter two values separated by a blank; press return”
Fead number
Read number2
Print them in order

How do we determine the order of the numbers? We compare the values using the
conditional construct. If humber! is less than number2, we print number! and then
humber2. Otherwise, we print number2 and then numberl. Before we complete the
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algorithm, have we forgotten anything? numberRead never changes! We must increment
numberRead.

Write "How many pairs of values are to be entered?”

Eead numberOfFairs

Set numberRead to O

While (numberRead < number(ffairs)
Write “Enter two values separated by a blank; press return’
Eead number
Read number2

If (number1 < numberz)

Frint number1 ,"", number?2
ELSE
Frint number?2 . ", number

Set numberRead to numberRead + 1

In going through the process of writing this algorithm, we used two major strategies.
We asked questions and we deferred details. Asking questions is a strategy with which most of
us are familiar. Deferring details means giving a task a name and then filling in the details
of how to accomplish that task at a later time. That is, we first wrote the algorithm using
more pairs and print them in order; then we filled in the details of how to accomplish
these tasks at a later time. This strategy is known as divide and conquer.

An algorithm is not complete until it has been tested. We can use the same technique
that we relied on to simulate the base conversion algorithm: We can choose data values and
work through the code with paper and pencil. This algorithm has four variables that we
must trace: humberOfFPairs, numberRead, numberl, and number2. Let’s assume the user
enters the following data when prompted:

i)

10 20
20 10
10 10

FIGURE 6.7(a) shows the values of the variables at the beginning of the loop.
numberRead is less than numberOfPairs, so the loop is entered. The prompt is issued and
the two numbers are read. number! is 10 and number2 is 20, so the if statement takes the
then branch. numberl! is printed, followed by number2. numberRead is incremented.
FIGURE 6.7(b) shows the values at the end of the first repetition. numberRead is still less
than numberOfFairs, so the code is repeated. The numbers are prompted for and read.
humber1 is 20 and number?2 is 10, so the else branch is taken. number?2 is printed, followed
by numberl. numberRead is incremented, resulting in the state of the variables at the end of
the second iteration as shown in FIGURE 6.7(c).
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(a) Atthe beginning
numberofPairs numberkead number number2

3 0 ? 't

(b} At the end of the first iteration

numberofPairs numberread numberi number2
3 1 10 20
(c) Atthe end of the second iteration
numberofPairs numberkead numberi numberz
3 2 20 10
(d) At the end of the first iteration
numbercfPairs numberkead numbert number?
3 3 10 10

FIGURE 6.7 Walk-through of pairs algorithm

numberRead is less than numberOffairs, so the code is repeated. The inputs are
prompted for and read, making number! 10 and number2 10. Because humber? is not less
than number2, the else branch is taken. number2 is printed, followed by number!. Because
the values are the same, it doesn’t matter in which order they are printed. numberRead is
incremented. numberRead is now not less than numberOfPairs, so the code is not repeated.

In this process, which is called desk checking, we sit at a desk with a pencil and paper
and work through the design. It is useful to take actual data values and trace what happens
to them as we reason about the design. This technique is simple but amazingly effective.

Desk checking Tracing the execution of a design on paper

Translating a Pseudocode Algorithm

In Chapter 1, we described the layers of languages that were produced over time. In this
chapter, we began with machine language (the lowest layer) and moved up one step to
assembly language. How we translate a pseudocode algorithm depends on the language into
which we are translating the algorithm. Here, where we are limited by the limits of an
assembly language, one pseudocode statement requires several Pep/8 statements.

We have written our algorithm as an interactive program. That is, the program asks the
user to do something. In this case, the first instruction was to write a request to the user to
enter the number of pairs. This is exceptionally easy in a high-level language, but more
complicated in Pep/8. First we have to set up the message using a .ASCII pseudo-
operation and then set up the code to have it written out. Let’s shorten the message to
“Enter number.” STRO, an instruction we have not seen before, is used to print the
message.
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mesgl: JASCIT “"Enter numberix00" : First message
STRO mesgl : Write message

Reading the number of pairs can be done in one Pep/8 statement. Setting the number
read to 0 can be done in one pseudo-operation. We set up the loop by loading the number
read into the A register and comparing it with the number to be read. Once within the
loop, a second instruction is given to the user. Let’s put these pieces together.

Konrad Zuse

© Karl Staedele/dpa/Corbis

Konrad Zuse was born in Berlin on June 22, 1910.°> He attended the Humanistisches
Gymnasium and studied civil engineering at the Technische Hochschule of Berlin-
Charlottenburg. After graduation he worked briefly for the Ford Motor Company and
then went to work for Henschel & Son, a maker of transportation equipment.®

In 1935 in his parent’s flat, Zuse started experimenting in the construction of a
machine to take over the boring calculations required in engineering. His first attempt
was the Z1, which had a floating-point binary mechanical calculator. Zuse’s 1936 patent
application anticipated the von Neumann architecture by nine years, with program and
data modifiable in storage.” Zuse briefly served in the German infantry but persuaded
the army to let him return to building computers.®

Between 1936 and 1945, Zuse continued to improve on the Z1 with his Z2, 73,
and Z4 machines. The Z1, along with its original blueprints, were destroyed in a British
air raid in World War II. Because of World War II, Zuse worked in near-total isolation,
knowing nothing of the work of Turing, Atanasoff, or Eckert and Mauchly.

In 1946, Zuse founded one of the earliest computer companies, and in 1949, he
founded a second computer company. Zuse KG produced the Z4, the world’s first
commercial computer, and delivered it to ETH Zurich. Zuse KG built a total of 251
computers and was eventually sold to Siemens.

While working on the Z4, Zuse concluded that programming in machine code was
too complicated. As the war progressed, he had to flee Berlin for the countryside, where
there was no hardware to work on. There he designed the first high-level programming
language, Plankalkul (Plan Calculus). Although it was never implemented, this was the
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first attempt at a general programming language.

In the late 1980s, with funding from Siemens and five other computer companies,
Zuse built a working reconstruction of the Z1, which is now displayed at the Deutsches
Technikmuseum in Berlin.

Konrad Zuse married Gisela Brandes in January 1945 in a very formal ceremony.
The couple had five children. He died on December 18, 1995, in Germany. The 100th
anniversary of his birth was celebrated with exhibitions, lectures, and workshops to
remember the life and legacy of this computing pioneer.

Br Main
mesgl: .ASCII “Enter number\x00" ;
mesge: LASCII “Enter pairs\x00" ;

numRead: WORD Ox00 .
numPairs: .BLOCK 2 ;
numberl: .BLOCK 2 :
number?: .BLOCK 2 ;

Main: STRO mesgl,d :
DECI numPairs,d -
Begin: STRO mesgZ,d :
BR Begin -

Now we must translate the loop body, which requires writing a message, reading two
values, and comparing them. The first two tasks require only one Pep/8 statement each, but
the if-then-else statement will take more work. We must write the code to print each of the
two statements, give names to the first instruction in each code block, and then determine
which block should be executed.

Because you may never see assembly language again, we just present the source code
listing. Note that we used one command that we have not covered: CPA, which compares
the value in the accumulator to the value stored in a place in memory.
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Source Code

br Hain ; Branch to beginning of program
masgl: +ABCII “Bnter aumber\x00® ; Set up memory
maagd: +NECTT "Enter paizs\x00” H
nunicad: +WORD Gx00 1
numPairs: +BLOCKE 2
nusbarl: - BLOCK 2
nuabara: « BLOCK 2 ]
Haing STRD mosgl,d j Prompt for number of pairs
DECI anumPairs,d; Read number of pairs
Bagine STROD Besgd,d 7 Prompt for pairs
DECI aumbaerl.d ;
DECI pusberd,d ;
LDA pumberl,.d ; Load f[irst nusber
CPBA anumber? ,d ; Compare to second nuabsr
BRLE less §} Branch to less if firvet less
BR greater ; Dranch to greater LI second leoss
Leat: LDA numBead,d ; Increment counter
ADDA 1.4 ]
STA numRoad,d ;
CPA supPaire,d; Compare with number to be read
BRLT Bagin ; Repeat loop
BR End ; Branch to end
less: DECD ausberl,.d ; Output in order read
DECD pusberd,.d
BR tost 7 Ropeat loop
groater: DECD nupber?,d ; Output in reverse order
DECD pusberl.d ;
BR toat } Repeat loop
Enda STOP 7 Stop execution
« END j Stop assembly

Certification and licensing

Certification is the process by which nongovernmental organizations grant recognition to an individual who has
met predetermined qualifications specified by the organization. Licensing is a government’s grant of legal authority,
which is not voluntary. Almost anyone who provides a service to the public is required to be licensed or certified;
computer professionals do not.

6.6 Testing

We briefly tested our programs by executing them to see if they produced the output we
expected. However, there is far more to testing than just running the program once. Let’s
look at testing in more detail in the program that reads in three numbers and prints their
sum. How do we test a specific program to determine its correctness? We design and
implement a test plan. A test plan is a document that specifies how many times and with
which data a program must be run to thoroughly test the program. Each set of input data
values is called a zest case. The test plan should list the reason for choosing the data, the data
values, and the expected output from each case.

Test plan A document that specifies how a program is to be tested

The test cases should be chosen carefully. Several approaches to testing can be used to
guide this process. Code coverage is an approach that designs test cases to ensure that each
statement in the program is executed. Because the code is visible to the tester, this approach
is also called clear-box testing. Data coverage, another approach, calls for designing test
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cases to ensure that the limits of the allowable data are covered. Because this approach is
based solely on input data and not the code, it is also called black-box testing. Often
testing entails a combination of these two approaches.

Code coverage (clear-box) testing Testing a program or subprogram based on covering all the statements in the
code

Data coverage (black-box) testing Testing a program or subprogram based on the possible input values, treating
the code as a black box

Test plan implementation involves running each of the test cases described in the test
plan and recording the results. If the results are not as expected, you must go back to your
design and find and correct the error(s). The process stops when each of the test cases gives
the expected results. Note that an implemented test plan gives us a measure of confidence
that the program is correct; however, all we know for sure is that our program works
correctly on the test cases. Therefore, the quality of the test cases is extremely important.

Test plan implementation Using the test cases specified in a test plan to verify that a program outputs the
predicted results

In the case of the program that reads in three values and sums them, a clear-box test
would include just three data values. There are no conditional statements in this program
to test with alternate data. However, a clear-box test would not be sufficient here, because
we need to try both negative and positive data values. The numbers that are being read in
are stored in one word. The problem does not limit values to 2" - 1, but our
implementation does. We should also try values at the limits of the size of the allowed
input in the test plan, but because they are being summed, we need to be sure the sum does
not exceed +2"° - 1.

Reason for Test Case Input Values Expected Output Observed Output

Assumption: Input values are no
greater than 2™ or less than -2,

Input three positive numbers 4,6, 1 11 11
Input three negative numbers -4, -6, -1 =11 =11
Input mixed numbers 4,6, -1 9 )
4, -6, -1 =1 -1
-4, 6,1 3 3
Input large numbers 32767, -1, +1 32767 32767

To implement this test plan, we ran the program six times, once for each test case. The
results were then written in the “Observed Output” column. They were what we had

predicted.
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SUMMARY

A computer can store, retrieve, and process data. A user can enter data into the machine,
and the machine can display data so that the user can see it. At the lowest level of
abstraction, instructions to the machine directly relate to these five operations.

A computer’s machine language is the set of instructions that the machine’s hardware is
built to recognize and execute. Machine-language programs are written by entering a series
of these instructions in their binary form. The Pep/8 is a virtual computer with an A
register and two-part instructions. One part of the instruction tells which action the
instruction performs, and the other part specifies where the data to be used (if any) can be
found. Programs written using the Pep/8 instruction set can be run using a simulator—a
program that behaves like the Pep/8 computer.

The Pep/8 assembly language is a language that allows the user to enter mnemonic
codes for each instruction rather than binary numbers. Programs written in assembly
language are translated into their machine-language equivalents, which are then executed
using the Pep/8 simulator.

Pseudocode is a shorthand-like language that people use to express algorithms. It allows
the user to name variables (places to put values), input values into variables, and print out
the values stored in variables. Pseudocode also allows us to describe algorithms that repeat
actions and choose between alternative actions. Asking questions and deferring details are
two problem-solving strategies used in algorithm design.

Programs, like algorithms, must be tested. Code coverage testing involves determining
the input to the program by looking carefully at the program’s code. Data coverage testing
involves determining the input by considering all possible input values.

ETHICAL ISSUES

Software Piracy

Have you ever upgraded your operating system by borrowing the latest software from a
friend? Or, when you spent only $50 to purchase sophisticated software, did you ignore
your suspicion that this “steal” was too good to be true? The casual attitude of many
toward duplicating, downloading, and reselling software has made software piracy a
critical issue for the computer industry. Research conducted by the Business Software
Alliance found that globally, $11.5 billion in potential revenue was lost in 2000 to
pirated software. This figure rose to $48 billion in 2007 and $51 billion in 2009. By
2011, the figure was $63.4 billion.

Software piracy is defined as the unlawful reproduction of copyrighted software or a
violation of the terms stated in the software’s license. A software license is a document
that outlines the terms by which the user may use the software purchased. When you
lend software to a friend or download software onto multiple computers without having
a license that permits this, you are failing to adhere to the license agreement and are, in
fact, breaking the law.
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Why is software copyrighted? Unlike an idea or written work, software has
functionality. This unique quality distinguishes software from other forms of intellectual
property and complicates its need for copyrighting. While a number of programs have
open-source code, such as the Linux operating system, companies such as Microsoft”
have chosen to protect their code. Copyrighting software is the only way to protect your
code.

Who is involved in software piracy? In 2011, 42% of programs worldwide were
thought to be pirated. In Armenia, Bangladesh, Moldova, Azerbaijan, and Zimbabwe,
more than 90% of programs are thought to be pirated.” In general, the highest piracy
rates are in developing counties, and the lowest are in Europe, Japan, and the United
States.

Respecting the copyrights of software (if it is not open code) is important from
several perspectives. According to John Gantz, chief research officer at IDC, “Lowering
software piracy by just 10 percentage points during the next four years would create
nearly 500,000 new jobs and pump $140 billion into ailing economies.”"

Using pirated software also puts users at risk by potentially exposing them to
software viruses. The person who freely “borrows” software from a friend is actually
stealing, and this action can have significant ramifications.

KEY TERMS

Algorithm

Assembler

Assembler directives

Assembly language

Boolean expression

Code coverage (clear-box) testing
Comment

Desk checking

Data coverage (black-box) testing
Loader

Machine language

Pseudocode

Test plan

Test plan implementation
Virtual computer (machine)

EXERCISES

For Exercises 1-15, mark the answers true or false as follows:
A. True
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13.

14.

15
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B. False

Arithmetic can be performed in the instruction register.

Arithmetic can be performed in the A register.

Arithmetic can be performed in the accumulator.

LDA 0X008B,i loads 008B into register A.

ADDA 0x008B,i adds the contents of 008B to the A register.

The program counter and the instruction register are two names for the same
place.

The A register and the accumulator are two names for the same place.

The instruction register is 3 bytes long.

The program counter is 3 bytes long,.

The branch instruction, BR, branches to the location specified in the operand
specifier.

. The instruction specifier is 1 byte long.
12.

If the data to be loaded into the accumulator is stored in the operand, the
instruction specifier is 00.

If the data in the accumulator is to be stored in the place named in the operand,
the instruction specifier is 00.

All Pep/8 instructions occupy 3 bytes.

At least one branching instruction is required in a loop.

Given the following state of memory (in hexadecimal), complete Exercises 16-20 by
matching the problem to the solution shown.

16.

17.

18.

19.

20.

A2
11
0o
FF

a. A2 11

A2 12

c. 00 02

d. 11 00

e. 00 FF

What are the contents of the A register after the execution of this instruction?

Cl1 00 01

What are the contents of the A register after the execution of this instruction?
C1l 00 02

What are the contents of the A register after the execution of the following two
instructions?

CO 00 01 70 00 O1

What are the contents of the A register after the execution of the following two
instructions?

C1 00 01 70 00 01

What are the contents of location 0001 after the execution of the following two
instructions?

C1 00 03
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EO 00 01

Exercises 21-60 are programs or short-answer questions.

21.
22.
23.
24.
25.
206.
27.

28.
29.
30.
31.

32.

33.

34.

35.

36.
37.

38.
39.
40.
41.

What does it mean when we say that a computer is a programmable device?

List five operations that any machine language must include.

How many low-level tasks can each machine-language instruction perform?
What is a virtual machine? Discuss this definition in terms of the Pep/8 computer.
How many bits does an instruction take in Pep/8?

Describe the features of the Pep/8 CPU that we covered in this chapter.

Where is the data (operand) if the address mode specifier is

a. 0002

b. 0012

We discussed two mode specifiers. How many are there?

Distinguish between the IR (instruction register) and the PC (program counter).
How many bits are required to address the Pep/8 memory?

How many more cells could be added to memory without having to change the
instruction format? Justify your answer.

Some Pep/8 instructions are unary, taking only 1 byte. Other instructions require
3 bytes. Given the instructions that we have covered in this chapter, would it be
useful to define instructions that require only 2 bytes?

If the input character is A, what is the result of executing the following two
instructions?

49 00 06
51 00 06

If the input number is 5, what is the contents of the A register after executing the
following instructions?

31 00 OF
(1 00 OF
70 00 02

Werite the algorithm for writing out your name, given that the implementation
language is Pep/8 machine code.

Write the machine-language program to implement the algorithm in Exercise 35.
Write the algorithm for writing out your name, given that the implementation
language is Pep/8 assembly language.

Werite the assembly-language program to implement the algorithm in Exercise 37.
Rewrite the example program in Section 6.3 using direct addressing.

Distinguish between the Pep/8 menu options Assemble, Load, and Execute (run).
The following program seems to run, but does strange things with certain input
values. Can you find the bug?
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42

43.
44,
45.
406.
47.
48.

49.
50.

51.

52.
53.

54.
55.
56.

57.

58

BR Main
sum: .WORD 0x0000
numl: .BLOCK 1
numz2 ; LBLOCK 1
num3: .BLOCK 1

Main: LDA sum,d
DECI numl,d
DECI numé ,d
DECI num3,d
ADDA num3,d
ADDA, numé ,d
ADDA numl, d
STA sum,d
DECD sum, d
STOP
.END

. Correct the code in Exercise 41 and run the test plan outlined in the chapter.
Finish executing the test plan for the algorithm in the text that reads and sums
three values.

Write a pseudocode algorithm that reads in three values and writes out the result
of subtracting the second value from the sum of the first and third values.
Implement the algorithm in Exercise 44 as an assembly-language program.

Write and implement a test plan for the program in Exercise 45.

Design and implement, in assembly language, an algorithm that reads four values
and prints the sum.

Is the test plan for a machine-language program valid for the same solution written
in assembly language? Explain your answer.

Distinguish between the pseudo-operations . BLOCK and .WORD.

Distinguish between assembly-language pseudo-operations and mnemonic
instructions.

Distinguish between test plans based on code coverage and data coverage.

Which button on the Pep/8 console must be clicked for keyboard input?

Werite the Pep/8 assembly-language statement for the following instructions:

a. Branch to location Branch1 if the accumulator is zero.

b. Branch to location Branchl if the accumulator is negative.

c. Branch to location Branch1 if the accumulator is negative and to Branch? if the

accumulator is not negative.

Write a pseudocode algorithm to read in a name and write a “Good morning”
message.

Write a pseudocode algorithm to get three integers from the user and print them
in numeric order.

Enclose the design in Exercise 55 within a loop that reads in the three values until
the user enters the first value of the trio as negative.

Rewrite the algorithm in Exercise 56 so that the user has to enter only one negative
value to stop (that is, the second and third values are not entered).
. Distinguish between pseudocode and pseudo-operations.
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59. What are the constructs that pseudocode must be able to express?
60. Distinguish between the looping construct and the selection construct.

THOUGHT QUESTIONS

1.

Would you like to do assembly-language programming? Can you think of any
personality types that would be well suited for such detail-oriented work?

The translation process has been demonstrated by showing the machine-language
program that is the result of the assembly-language program. Look carefully at the
solution in Exercise 45. Think about the steps that the assembler program must
execute. Do you think that the translation can be made by looking at each
assembly-language instruction once, or must each one be examined twice?
Convince a friend that you are right.

If a person has two computers of the same kind, is it ethical to buy one copy of a
software package and install it on both machines? What are the arguments on the
yes side? What are the arguments on the no side?

4. Has anyone borrowed software from you? Do you think he or she copied it?
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7 PROBLEM SOLVING AND
ALGORITHMS

In Chapter 6, we looked at machine code, which uses binary numbers to represent
operations, and assembly language, which uses mnemonics to represent operations.
Assembly languages are a step in the right direction, but the programmer still must think in
terms of individual machine instructions. We also introduced pseudocode, an artificial
language designed for expressing algorithms. We begin this chapter with a brief discussion
of problem solving in general.

Computer science is sometimes defined as “the study of algorithms and their efficient
implementation in a computer.” The focus of this chapter is on algorithms: their role in
problem solving, strategies for developing them, techniques for following and testing them.
We choose classic searching and sorting algorithms as the context for the discussion on
algorithms.

Because algorithms operate on data, we examine ways to structure data so that it can be
more efficiently processed.

GOALS
After studying this chapter, you should be able to:

describe the computer problem-solving process and relate it to Polya’s How to Solve It list.
distinguish between a simple type and a composite type.

describe three composite data-structuring mechanisms.

recognize a recursive problem and write a recursive algorithm to solve it.

distinguish between an unsorted array and a sorted array.

distinguish between a selection sort and an insertion sort.

describe the Quicksort algorithm.

apply the selection sort, the bubble sort, insertion sort, and Quicksort to an array of items by hand.
apply the binary search algorithm.

demonstrate your understanding of the algorithms in this chapter by hand-simulating them with a sequence of
items.

7.1 How to Solve Problems

In 1945, George Polya wrote a little book entitled How to Solve It: A New Aspect of
Mathematical Method." Although this book was written more than 60 years ago, when
computers were still experimental, it remains the classic description of the problem-solving
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process. The process is summarized in FIGURE 7.1.

First.
You have to understand the problem.

Second.

Find the connection batween the
data and the unknown. You may be
obliged to consider auxiliary
problems if an immediate connection
cannet be found. You should obtain
eventually a plan of the solution.

Third.
Carry out your plan.

Fourth.
Examine the solution obtained.

HOW TO SOLVE IT

UNDERSTANDING THE PROBLEM
What is the unknown? What are the data? What is the condition?
Is it possible to satisfy the condition? |s the condition sufficient to determine the
unknown? Or is it insufficient? Or redundant? Or contradictory?
Draw a figure. Introduce suitable notation.
Separate the various parts of the condition. Can you write them down?

DEVISING A PLAN
Have you seen it before? Or have you seen the same problem in a slightly
different form?
Do you know a related problem? Do you know a theorem that could be useful?
Look af the unknown! And try to think of a familiar problem having the same or
a similar unknown.
Here is a problem related to yours and selved before. Could you use it? Could
you use its result? Could you use its methed? Should you introduce some
auxiliary element in order to make its use possible? Could you restate the
problem? Could you restate it still differently? Go back to definitions.
If you cannat solve the proposed problem, Iry to solve first some related
problem. Could you imagine a more accessible related problem? A more
general problem? A more special problem? An analogous problem? Could you
solve a part of the problem? Keep only a part of the condition, drop the other
part; how far is the unknown then determined; how can it vary? Could you
derive something useful from the data? Could you think of other data
appropriate to determine the unknown? Could you change the unknown or the
data, or both if necessary, so that the new unknown and the new data are nearer
to each other? Did you use all the data? Did you use the whole condition?
Have you taken into account all essential notions involved in the problem?

CARRYING OUT THE PLAMN
Carrying out your plan of the solution, check each step. Can you see clearly that
the step is correct? Can you prove that it is correct?

LOOKING BACK
Can you check the result? Can you check the argument? Can you derive the
result differently? Can you see it at a glance? Can you use the result, or the
method, for some other problem?

FIGURE 7.1 Polya’s How to Solve It list
Reproduced from POLYA, G.; HOW TO SOLVE IT. © 1945 Princeton University Press, 1973 renewed PUP.

Reproduced with permission of Princeton University Press

What has made Polya’s book a classic is that his How to Solve It list is quite general.
Although it was written in the context of solving mathematical problems, we can replace
the word unknown with problem, data with information, and theorem with solution, and the
list becomes applicable to all types of problems. Of course, it is the second step—finding
the connection between the information and the solution—that lies at the heart of problem

solving. Let’s look at several strategies suggested by Polya’s list.

Ask Questions

If you are given a problem or task verbally, you typically ask questions until what you are to
do is clear. You ask when, why, and where until your task is completely specified. If your
instructions are written, you might put question marks in the margin; underline a word, a
group of words, or a sentence; or in some other way indicate the parts of the task that are
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not clear. Perhaps your questions might be answered in a later paragraph, or you might
have to discuss them with the person giving you the task. If the task is one that you set for
yourself, this sort of questioning might not be verbal, but instead takes place on the
subconscious level.

Some typical questions you should be asking are as follows:

m What do I know about the problem?
m What does the solution look like?
m What sort of special cases exist?

m How will I recognize that I have found the solution?

Look for Familiar Things

You should never reinvent the wheel. If a solution exists, use it. If you’ve solved the same or
a similar problem before, just repeat the successful solution. We usually don’t consciously
think, “I have seen this before, and I know what to do”—we just do it. Humans are good at
recognizing similar situations. We don’t have to learn how to go to the store to buy milk,
then to buy eggs, then to buy candy. We know that going to the store is always the same
and only what we buy is different.

Recognizing familiar situations is particularly useful in computing. In computing, you
see certain problems again and again in different guises. A good programmer sees a task, or
perhaps part of a task (a subtask), that has been solved before and plugs in the solution. For
example, finding the daily high and low temperatures in a list of temperatures is exactly the
same problem as finding the highest and lowest grades in a list of test scores. You want the
largest and smallest values in a set of numbers.

Divide and Conquer

We constantly break up a large problem into smaller units that we can handle. The task of
cleaning the house or apartment, for example, may seem overwhelming. By contrast, the
individual tasks of cleaning the living room, the dining room, the kitchen, the bedrooms,
and the bathroom seem more manageable. This principle is especially relevant to
computing: We break up a large problem into smaller pieces that we can solve individually.

This approach applies the concept of abstraction that we discussed in Chapter 1—
cleaning the house is a large, abstract problem made up of the subtasks defined by cleaning
the individual rooms. Cleaning a room can also be thought of as an abstraction of the
details of straightening the dresser, making the bed, vacuuming the floor, and so on. Tasks
are divided into subtasks, which can be divided further into sub-subtasks and so forth. The
divide-and-conquer approach can be applied over and over again until each subtask is
manageable.

We applied two of these strategies in the last chapter when we asked questions and
deferred details in designing the algorithm to read in two numbers and output them in
order.
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Algorithms

The last sentence in the second step in Polya’s list says that you should eventually obtain a
plan of the solution. In computing, this plan is called an algorithm. We have used the term
many times; here we define it in computing terms. Formally, an algorithm is a set of
instructions for solving a problem or subproblem in a finite amount of time using a finite
amount of data. Implicit in this definition is the understanding that the instructions are
unambiguous.

Algorithm Unambiguous instructions for solving a problem or subproblem in a finite amount of time using a finite
amount of data

In computing, we must make certain conditions explicit that are implicit in human
solutions. For example, in everyday life we would not consider a solution that takes forever
to be much of a solution. We would also reject a solution that requires us to process more
information than we are capable of processing. These constraints must be explicit in a
computer solution, so the definition of an algorithm includes them.

The third step in Polya’s list is to carry out the plan—that is, to test the solution to see
if it solves the problem. The fourth step is to examine the solution for future applicability.

George Polya

© AP Photos

George Polya was born in Budapest on December 13, 1887. Although he eventually
became a world-famous mathematician, he did not show an early interest in
mathematics. Polya’s lack of interest might be explained by his memory of three high
school mathematics teachers: “two were despicable and one was good.”

In 1905, Polya entered the University of Budapest, where he studied law at the
insistence of his mother. After one very boring semester, he decided to study languages
and literature. He earned a teaching certificate in Latin and Hungarian—and never used
it. He became interested in philosophy and took courses in math and physics as part of
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his philosophy studies. He settled on mathematics, commenting that “I am too good for
philosophy and not good enough for physics. Mathematics is in between.” He received
his PhD in mathematics in 1912, which launched his career.

Polya did research and taught at the University of Gottingen, the University of
Paris, and the Swiss Federation of Technology in Zurich. While in Zurich he interacted
with John von Neumann, about whom he said, “Johnny was the only student I was ever
afraid of. If, in the course of a lecture, I stated an unsolved problem, the chances were
he’d come to me as soon as the lecture was over, with the complete solution in a few
scribbles on a slip of paper.”

Like many Europeans of that era, Polya moved to the United States in 1940 because
of the political situation in Germany. After teaching at Brown University for two years,
he moved to Palo Alto, California, to teach at Stanford University, where he remained
for the rest of his career.

Polya’s research and publications encompassed many areas of mathematics,
including number theory, combinatorics, astronomy, probability, integral functions,
and boundary value problems for partial differential equations. The George Polya Prize
is given in his honor for notable applications of combinatorial theory.

Yet, for all George Polya’s contributions to mathematics, it is his contribution to
mathematics education of which he was the most proud and for which he will be the
most remembered. His book How to Solve It, published in 1945, sold more than 1
million copies and was translated into 17 languages. In this book, Polya outlines a
problem-solving strategy designed for mathematical problems. The generality of the
strategy makes it applicable to all problem solving, however. Polya’s strategy is the basis
of the computer problem-solving strategy outlined in this text. Mathematics and
Plausible Reasoning, published in 1954, was another book dedicated to mathematics
education. Polya not only wrote about mathematics education, but also took an active
interest in the teaching of mathematics. He was a regular visitor to the schools in the
Bay Area and visited most of the colleges in the western states. The Math Center at the
University of Idaho is named for him.

On September 7, 1985, George Polya died in Palo Alto at the age of 97.

Computer Problem-Solving Process

The computer problem-solving process includes four phases: the analysis and specification
phase, the algorithm development phase, the implementation phase, and the maintenance phase.
See FIGURE 7.2. The output from the first phase is a clearly written problem statement.
The output from the algorithm development phase is a plan for a general solution to the
problem specified in the first phase. The output from the third phase is a working
computer program that implements the algorithm—that is, a specific solution to the
problem. There is no output from the fourth phase, unless errors are detected or changes
need to be made. If so, these errors or changes are sent back either to the first, second, or
third phase, whichever is appropriate.

FIGURE 7.3 shows how these phases interact. The black lines show the general flow
through the phase. The red lines represent paths that can be taken to backtrack to a
previous phase if a problem occurs. For example, during the process of producing an
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algorithm, an error or contradiction in the specification may be found, in which case the
analysis and specification must be corrected. Likewise, an error in the program may indicate
that an algorithm must be corrected.

All of Polya’s phases are included in this outline of how we solve problems using the
computer. The first step is always to understand the problem. You cannot write a computer
solution to a problem you don’t understand. The next step is to develop a plan—an
algorithm—for the solution and express it in pseudocode. It is this phase on which we
concentrate in this chapter.

Analysis and specification phase

Analyze Understand (define) the problem.

Specification Specify the problem that the program is to solve.
Algorithm development phase

Develop algorithm  Develop a logical sequence of steps to be used to solve the
problem.

Test algorithm Follow the steps as outlined to see if the solution truly solves
the problem.

Implementation phase

Code Translate the algorithm (the general solution) into a
programming language.
Test Have the computer follow the instructions. Check the

results and make corrections until the answers are correct.

Maintenance phase

Use Use the program.
Maintain Modify the program to meet changing requirements or to
correct any errors.

FIGURE 7.2 The computer problem-solving process

The next step is to implement the plan in such a way that the computer can execute it
and test the results. In Polya’s list, the human executes the plan and evaluates the results. In
a computer solution, a program is written expressing the plan in a language that the
computer can execute. But it is the human who takes the results of the computer program
and checks them to confirm that they are correct. The maintenance phase maps to Polya’s
last stage, where the results are examined and perhaps modified.

In this chapter we end the process at the pseudocode level. This text is language neutral;
that is, we do not cover a high-level language in detail. However, some of you may be
learning one in parallel with this text. In any case, remember that an algorithm must be
written before any coding in a programming language can be done.
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FIGURE 7.3 The interactions among the four problem-solving phases

Summary of Methodology

The methodology for designing algorithms can be broken down into four major steps:

1. Analyze the Problem

Understand the problem! List the information you have to work with. This information
will probably consist of the data in the problem. Specify what the solution will look like. If
it is a report, specify the format. List any assumptions that you are making about the
problem or the information. Think. How would you solve the problem by hand? Develop
an overall algorithm or general plan of attack.

2. List the Main Tasks

The listing of the main tasks is called the main module. Use English or pseudocode to
restate the problem in the main module. Use task names to divide the problem into
functional areas. If the main module is too long, you are including too much detail for this
level. Introduce any control structures that are needed at this point. Re-sequence the
subparts logically, if needed. Postpone details to lower levels.

Don’t worry if you don’t know how to solve a task. Just pretend you have a “smart
friend” who has the answer and postpone thinking about it until later. All you have to do in
the main module is to give the names of lower-level modules that solve certain tasks. Use
meaningful identifiers.
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3. Write the Remaining Modules

There is no fixed number of levels. Modules at one level can specify more modules at lower
levels. Each module must be complete, even if it references unwritten modules. Do
successive refinements through each module until each statement is a concrete step.

4. Re-sequence and Revise as Necessary

Plan for change. Don’t be afraid to start over. Several attempts and refinements may be
necessary. Try to maintain clarity. Express yourself simply and directly.

The problem-solving strategy that parallels Polya’s outline is known as rop-down design.
It produces a hierarchy of tasks to be solved. In Chapter 9, we introduce a strategy called
object-oriented design, which produces a hierarchy of data objects.

2

Rosetta Stone as a translation system

The Rosetta Stone was unearthed by Napoleon’s troops in 1799. The stone contained a proclamation marking the
first anniversary of the coronation of Ptolemy V, inscribed in three languages: hieroglyphics, demotic (a cursive
version of hieroglyphs), and Greek. Thomas Young, a British physicist, and Francois Champollion, a French
Egyptologist, were able to decipher the ancient Egyptian languages using the Greek as a guide. Thus the Rosetta
Stone provided the key that unlocked the translation of Egyptian hieroglyphics.

Testing the Algorithm

The goal of mathematical problem solving is to produce a specific answer to a problem, so
checking the results is the equivalent of testing the process by which the answer was
derived. If the answer is correct, the process is correct. However, the goal of computer
problem solving is to create the right process. The algorithm that embodies this process may
be used again and again with different data, so the process itself must be tested or verified.

Testing an algorithm often involves running the program into which the algorithm is
coded under various conditions and examining the results for problems. However, this type
of testing can be done only when the program is complete, or at least partially complete,
which is far too late to rely on just this kind of testing. The earlier that problems are
discovered and fixed, the cheaper and easier it is to address them.

Clearly, we need to perform testing at earlier stages in the development process.
Specifically, the algorithms must be tested prior to implementing them. We demonstrated
this process as we worked through the base-changing algorithm.

7.2 Algorithms with Simple Variables
Simple (atomic) variables are those that cannot be divided. They are a value stored in a

place. We used simple variables in the algorithms in Chapter 6. Numbers, for example, are
simple variables.
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An Algorithm with Selection

Suppose you want to write an algorithm to express what dress is appropriate for a given
outside temperature. You would like to wear shorts if it is hot, short sleeves if it is nice but
not too hot, a light jacket if the temperature is chilly, and a heavy coat if it is cold. If the
temperature is below freezing, you stay inside.

The top-level (main) module just expresses the tasks.

Write "Enter the temperature”
Read temperature

Determine dress

The first two statements do not need further decomposing. However, Determine dress
does. We need to associate temperatures with our descriptions. Let’s define Aot as anything
above 90, nice as above 70, chilly as above 50, and cold as above 32. Now we can write the
pseudocode for Determine dress.

Determine dress

IF (temperature » 90)

Write "Texas weather: wear shorts”
ELSE IF (temperature > 70)

Write “ldeal weather: short sleeves are fing”
ELSE IF (temperature > 50)

Write A little chilly: wear a light jacket”
ELSE IF (temperature > 32)

Write "Philadelphia weather: wear a heavy coat”
ELSE

Write "Stay inside”

The only way to get to the second if statement is if the first expression is not true; thus,
if the second expression is true, you know that the temperature is between 71 and 90. If the
first and second expressions are not true and the third is, then the temperature is between
51 and 70. The same reasoning leads to the conclusion that Philadelphia weather is
between 33 and 50, and “Stay inside” is written if the temperature is less than or equal to
32. Any one of the branches can contain a sequence of statements.

Algorithms with Repetition

233



There are two basic types of loops: count controlled and event controlled.

Count-Controlled Loops

A count-controlled loop is a loop that repeats a process a specified number of times. The
looping mechanism simply counts each time the process is repeated and tests whether it has
finished before beginning again. This was the type of loop we used in Chapter 6.

There are three distinct parts to this kind of loop, which makes use of a special variable
called a loop control variable. The first part is initialization: The loop control variable is
initialized to some starting value. The second part is testing: Has the loop control variable
reached a predetermined value? The third part is incrementation: The loop control variable
is incremented by 1. The following algorithm repeats a process limit times:

Set count to O

WHILE (count < limit)

Set count to count + 1

The loop control variable, count, is set to 0 outside the loop. The expression count < limit
is tested, and the loop is executed as long as the expression is true. The last statement in the
loop increments the loop control variable, count. How many times does the loop execute?
The loop executes when count is 0, 1, 2, ..., limit — 1. Thus the loop executes limit times.
The initial value of the loop control variable and the relational operator used in the Boolean
expression determine the number of times the loop executes.

The while loop is called a pretest loop, because the testing takes place before the loop is
executed. If the condition is false initially, the loop is not entered. What happens if the
incrementation statement is omitted? The Boolean expression never changes. If the
expression was false to begin with, nothing happens; the loop just is not executed. If the
expression is true to begin with, the expression never changes, so the loop executes forever.
Actually, most computing systems have a timer, so the program would not really run
forever. Instead, the program would halt with an error message. A loop that never
terminates is called an infinite loop.

This algorithm from Chapter 6 contains a count-controlled loop:
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Write "How many pairs of values are to be entered?”
Read numberOfFairs

Set numberEead to O

WHILE (humberRead < numberOfFairs)

Set numberBead to numberRead +

Pep/8 used a semicolon to indicate that what followed was a comment and not part of the
program. In our pseudocode, we use two forward slashes to preface a comment.

Event-Controlled Loops

Loops in which the number of repetitions is controlled by an event that occurs within the
body of the loop itself are called event-controlled loops. When implementing an event-
controlled loop using a while statement, there are again three parts to the process: The
event must be initialized, the event must be tested, and the event must be updated. The
base conversion algorithm from Chapter 6 contains an event-controlled loop:

Write "Enter the new base”
Eead newbBase
Write "Enter the number to be converted”
Read decimalMumber
Set answer to 0
Set quotient to 1
WHILE (quotient is not zero)
Set quotient to decimalNumber DIV newBase

Write “The answer is ", answer

A count-controlled loop is very straightforward: The process is repeated a specified
number of times. The activity in an event-controlled loop is less clear cut. It may not be
immediately apparent what the event should be.

Let’s look at a couple of examples. First, let’s read and sum data values until we read a
negative value. What is the event? Reading a positive value. How do we initialize the event?
We read the first data value. We test the value to determine whether it is positive and enter
the loop if it is. How do we update the event? We read the next data value. Here is the
algorithm:
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Eead a value

WHILE (value >= o)

Fead a value

Now let’s write the algorithm for reading and summing positive values until 10 have
been counted. We will ignore zero or negative values. What is the event? The number of
positive values read is less than 11. This means that we must keep a count of the number of
positive values as we read them; let’s call it posCount. How do we initialize the event? We
set posCount to 0. We test posCount against 10, and exit the loop when posCount reaches
10. How do we update the event? We increment posCount each time we read a positive
value.

Setsumto O
Set posCount to 0
WHILE (posCount < 10)
Fead a value
IF {value = O)
Set posCount to posCount + 1

Set sum to sum + value

This is not a count-controlled loop because we do not read 10 values: We read values until
we have read 10.

Notice the selection control structure embedded within the loop. The statements to be
executed or skipped in any control structure can be simple statements or compound
statements (blocks of indented statements)—there is no constraint on what these
statements can be. As a consequence, the statement to be skipped or repeated can contain a
control structure. Selection statements can be nested within looping structures; looping
structures can be nested within selection statements. Structures in which one control
structure is embedded within another control structure are called nested structures.

Nested structure (nested logic) A structure in which one control structure is embedded within another

Let’s work through another example: finding the square root of a number.

236



Square Root

Most students have to compute a square root in school. A rather complicated algorithm has
been developed that works on integer values. We do not look at that algorithm here, but
rather use a much simpler approximation that works on real numbers as well as integers.

Given the number of which you wish to find the square root, take the number and
make a guess at the answer; then take the guess and square it. If your guess is correct, the
guess squared is equal to the original value. If it is not, you adjust your guess and begin
again. This process continues until the guess squared is close enough. Do you understand
the problem? If not, reread this paragraph.

Now let’s outline the major tasks:

Read in square
Calculate the square root

Write out square and the square root

Read in square does not need further expansion. Calculate the square root does need
further expansion, because it is the heart of the algorithm. Clearly there is a loop: We keep
refining the guess until the guess is good enough. Is it a count-controlled loop or an event-
controlled loop? Because we have no idea how many iterations the process will take, it must
be an event-controlled loop.

What do we mean by “good enough” Let’s say that if the difference between the guess
squared and the original value is within plus or minus 0.001, the guess is good enough;
we'll call this difference epsilon. How do we measure “plus or minus”? We take the
absolute value of the difference. We indicate this by the expression abs(epsilon), which
stands for absolute value.

Lalculate square root

Set epsilon to 1
WHILE (epsilon > 0.001)
Calculate new guess

Set epsilon to abs(square - guess * guess)

Now the only step that needs further expansion is Calculate new guess. Now we need
to ask questions: What is the formula for calculating the new guess? We search online for
“square root formula” and find the answer in Wikipedia. We replace the old guess by the
average between the old guess and the square divided by the old guess.
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Calculate new guess

Set newGuess to (guess + (square/guess)) / 2.0

In looking up the formula, we find that we had forgotten something: What is the
original guess? Any positive value will work, but the solution is found with fewer iterations
if the original guess is closer to the square root. A good approximation for the original guess
is the square divided by 4. We do not need to have variables for old guess and new guess.
We can call it guess and just keep changing its value. Here, then, is the completed
algorithm:

Read in square
Set guess to square/4
Set epsilonto 1
WHILE (epsilon > 0.001)
Calculate new guess
Set epsilon to abs(square — guess * guess)

Write out square and the guess

Let’s desk check this algorithm with a value to which we know the answer: 81.
FIGURE 7.4 shows the algorithm walk-through. It takes only four iterations to get the
answer correct to five decimal places.

A step that needs to be expanded further is called an abstract step. A step that does not
need to be expanded is called a concrete step. From here on we will color the abstract steps
red. Each abstract step must be expanded separately.

Abstract step An algorithmic step for which some details remain unspecified

Concrete step A step for which the details are fully specified
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(&) Initial values

square epsilon Gguiesy
81 1 20.25

(b) After first iteration

square epsilon Gguessy
81 66.0156 12.125

(c) After second iteration

square epsilov guesy
81 7.410 9.403

(d) After third iteration

sjuare epsilon guesy
81 0.155 9.009

(e) After fourth iteration
square epsilovy guess
81 0.000 9.0000

FIGURE 7.4 Walk-through of the square root algorithm

7.3 Composite Variables

The places to store values described previously were all atomic in nature; that is, each place
could hold only one piece of data, which cannot be divided into smaller parts. We have also
used a string of letters within quotations to represent a message to be written out. As you
might expect, letters within quotations are called szrings. If we were to store a string, the
number of locations required would depend on the number of characters in the string.
Thus a string is not atomic because it contains more than one value, but we tend to think
of strings as atomic anyway because we do not access the individual letters.

In this section, we describe two ways of collecting data items together, giving the
collection a name, and accessing the items individually or as a collection.

Arrays

An array is a named collection of homogeneous items in which individual items are accessed
by their place within the collection. The place within the collection is called an index.
Although people usually start counting at one, most programming languages start at zero—
so that is what we will do here. FIGURE 7.5 shows an array with 10 items indexed from 0
through 9.
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[0]| 1066
m | 42
2] | 1668
(3] | 1946
4] | 1972
51| 1510
6] 999
71| 1001
[8] 21
91| 2001

FIGURE 7.5 An array of ten numbers

If the array is called humbers, we access each value by the expression
numbers[position]

where position, the index, is a value between 0 and 9.
Here is the algorithm to put values into the places in an array:

integer numbers[10]

Write "Enter 10 integer numbers, one per line’
Set positionto O
WHILE (position < 10)

Fead in numbers(position]

Set position to position + 7

We indicate that humbers is an array that can hold integer values by listing integer
followed by the array name with the number of slots in brackets beside the name. In our
algorithms previously, we have not listed a variable; we have just assumed that when we use
a variable name that the variable exists. Now that we are using composite structures, we
need to say which kind of a structure we want.

Algorithms with arrays are classified into three categories: searching, sorting, and
processing. Searching is just what it says—going through the items in the array one at a
time looking for a particular value. Sorting is putting the items in the array into order. If the
items are numbers, they would be put into numeric order; if the items are characters or
strings, they would be put into alphabetic order. A sorted array is one in which the items
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are in order. Processing is a catch-all phrase that encompasses all other computing done to or
with items in an array.

Records

A record is a named heterogeneous group of items in which individual items are accessed by
name. “Heterogeneous” means that the elements in the collection do not have to be the
same. The collection can contain integers, real values, strings, or any other type of data.
Records are good choices for bundling items together that relate to the same object. For
example, we might read in a name, an age, and an hourly wage. These three items could
then be bound together into a record named Employee. This record is made up of three
fields: hame, age, and hourlyWage. We might draw them as seen in FIGURE 7.6.

4

Malware-infected software

In 2013, the National Intellectual Property Rights (IPR) Coordination Center, of which the FBI is a partner,
warned people in the United States about the real possibility that pirated software could contain malware. Such
software can be obtained from unknown sellers and peer-to-peer (P2P) networks.”

Employee

name

age

hourlyWage

FIGURE 7.6 Record Employee

If we declare a record variable employee of type Employee, each field of the record is
accessed by the record variable, dot, and the field name. For example, employee.name refers
to the name field of the record variable employee. There are no specific algorithms designed
for records, because they are just a way of grouping related items. However, they are very
handy ways to refer to a group of related items.

The following algorithm stores values into the fields of the record:

Employee employee
Set employee.name to "Frank Jones'
Set employee.age to 32

Set employee hourlyWage to 27.50

A third composite data structure called a class characterizes object-oriented
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programming. We discuss this structure in Chapter 9.

7.4 Searching Algorithms

Sequential Search

You have an appointment with your English teacher. You get to the correct building and
look for her name in the directory to find her office number. “Look for” is a synonym for
searching—that is, you search the directory for her name.

Our first searching algorithm follows this definition of searching exactly. We look at
each item in turn and compare it to the one for which we are searching. If it matches, we
have found the item. If not, we look at the next item. When do we stop? We stop either
when we have found the item or when we have looked at all the items and not found a
match. This sounds like a loop with two ending conditions. Let’s write the algorithm using
the array numbers.

Set positionto O
Set found to FALSE
WHILE (position < 10 AND found is FALSE)
IF (numbers[position)] equals searchltem)
Set found to TRUE
ELSE

Set position to position + 1

Because we have a compound condition in the WHILE expression, we need to say a little
more about Boolean variables. AND is a Boolean operator. The Boolean operators include
the special operators AND, OR, and NOT. The AND operator returns TRUE if both
expressions are TRUE, and FALSE otherwise. The OR operator returns FALSE if both
expressions are FALSE, and TRUE otherwise. The NOT operator changes the value of the
expression. These operations are consistent with the functionality of the gates described in
Chapter 4. At that level, we were referring to the flow of electricity and the representation
of individual bits. At this level, the logic is the same, but we can talk in terms of an
expression as being either true or false.

We can simplify the second Boolean expression (found is FALSE) by using the NOT
operator. NOT found is true when found is false. So we can say

WHILE (index < 10 AND NOT found)

Thus the loop will repeat as long as the index is less than 10 and we haven’t found the
matching item.

Sequential Search in a Sorted Array
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If we know that the items in the array are sorted, we can stop looking when we pass the
place where the item would be if it were present in the array. As we look at this algorithm,
let’s generalize our search somewhat. Rather than being specific about the number of items
in the array, we use a variable length to tell us how many valid items are in the array. The
length might be less than the size, which is the number of slots in the array. As data is being
read into the array, a counter is updated so that we always know how many data items were
stored. If the array is called data, the data with which we are working is from data[O] to
data[length — 1]. FIGURES 7.7 and 7.8 show an unordered array and a sorted array,

respectively.

Length List

o | 60 | [0]
75 [1]
95 [2]
80 3]
65 [4]
90 [5]

| [MAX_LENGTH-1]

FIGURE 7.7 An unsorted array

In the sorted array, if we are looking for 76, we know it is not in the array as soon as we
examine data[3], because this position is where the number would be if it were there. Here
is the algorithm for searching in a sorted array embedded in a complete program. We use
the variable index rather than position in this algorithm. Programmers often use the
mathematical identifier index rather than the intuitive identifier position or place when
working with arrays.

Length List
(3 B0 [0]
65 [1]
75 [2]
80 [3]
90 [4]
95 [5]

[MAX_LENGTH-1)

FIGURE 7.8 A sorted array
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Eead in array of values
Write “Enter value for which to search”
Eead searchltem
Set found to TRUE if searchitem is there
IF (found)

Write “Item is found”
ELSE

Write “ltem is not found”

RFead in array of values

Write "How many values?”

Read length

Setindex to O

WHILE (index < length)
Read data(index]
Set index to indsx + 1

Set found to TEUE if searchltem is there

Setindexto O
Set found to FALSE
WHILE (index < length AND NOT found)
IF (data[index] equals searchltem)
Set found to TRUE
ELSE IF (data(index] > searchltem)
Set index to length
ELSE
Set index to index + 1

Binary Search

How would you go about looking for a word in a dictionary? We certainly hope you
wouldn’t start on the first page and sequentially search for your word! A sequential search
of an array begins at the beginning of the array and continues until the item is found or the
entire array has been searched without finding the item.
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A binary search looks for an item in an array using a different strategy: divide and
conquer. This approach mimics what you probably do when you look up a word. You start
in the middle and then decide whether your word is in the right-hand section or the left-
hand section. You then look in the correct section and repeat the strategy.

The binary search algorithm assumes that the items in the array being searched are
sorted, and it either finds the item or eliminates half of the array with one comparison.
Rather than looking for the item starting at the beginning of the array and moving forward
sequentially, the algorithm begins at the middle of the array in a binary search. If the item
for which we are searching is less than the item in the middle, we know that the item won’t
be in the second half of the array. We then continue by searching the data in the first half
of the array. See FIGURE 7.9.

Binary search Looking for an item in an already sorted list by eliminating large portions of the data on each
comparison

Length Items
n ant [0]
cat ]
chicken | [2]
cow [3]
deer | [4]
dog | [5]
fish | [6]
goat [7]
horse (8]
rat [9]
snake [10]

FIGURE 7.9 Binary search example

Once again we examine the “middle” element (which is really the item 25% of the way
into the array). If the item for which we are searching is greater than the item in the
middle, we continue searching between the middle and the end of the array. If the middle
item is equal to the one for which you are searching, the search stops. The process
continues in this manner, with each comparison cutting in half the portion of the array
where the item might be. It stops when the item is found or when the portion of the array
where the item might be is empty.
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Boolean binary search

Set first to O
Set last to length-1
Set found to FALSE
WHILE (first <= last AND NOT found)
Set. middle to (first. + last)/ 2
IF (item equals data[middle])
Set tound to TRUE
ELSE
IF (item < data[middie])
Set last to middle - 1
ELSE
Set first to middle + 1

Eeturn found

Let’s desk check (walk through) the algorithm, searching for caz, fish, and zebra. Rather
than boxes, we use a tabular form in FIGURE 7.10 to save space.

Is the binary search algorithm really faster than the sequential search algorithm?
TABLE 7.1 shows the number of comparisons required on average to find an item using a
sequential search and using a binary search. If the binary search is so much faster, why
don’t we always use it? More computations are required for each comparison in a binary
search because we must calculate the middle index. Also, the array must already be sorted.
If the array is already sorted and the number of items is more than 20, a binary search
algorithm is the better choice.

TABLE 7.1 Average Number of Comparisons

Length Sequential Search Binary Search
10 5.5 29
100 50.5 5.8
1000 500.5 9.0
10000 5000.5 12.0
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Searching for cat

First Last Middle Comparison
0 10 5 cat < dog
0 E: 2 cat = chicken
1] 1 0 cat = ant
1 1 1 cat = cat Return: true

Searching for fish

First Last Middle Comparison
1] 10 5 fish = dog
6 10 8 fish < horse
[ 7 & fish = fish Return: true

Searching for zebra

First Last Middle Comparison
1] 10 5 Zebra > dog
6 10 8 zebra = horse
9 10 9 Zebra = rat
10 10 10 Zebra = snake
Ll 10 first > last Return: false

FIGURE 7.10 Trace of the binary search

7.5 Sorting

We all know what sorting is. We sort our music playlist, our bookshelves, even our
priorities. Sorting is putting things in order. In computing, transforming an unsorted array
into a sorted array is a common and useful operation. Entire books have been written about
sorting algorithms. The goal is to come up with better, more efficient sorts. Because sorting
a large number of elements can be extremely time consuming, a good sorting algorithm is
considered highly desirable. In fact, this is one area in which programmers are sometimes
encouraged to sacrifice clarity in favor of speed of execution.

In this section, we present several diverse sorting algorithms to give you a flavor of how
many different ways there are to solve the same problem.

Selection Sort

If we handed you a set of index cards with names and asked you to put them in order by
name, you would probably go through the cards looking for the name that comes first in
the alphabet. You would then put that card as the first in a new stack. How would you
determine which card comes first? You might turn the first card sideways to remember it. If
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you found one that comes before the turned card, you could turn the first card back and
turn the new “first” card to remember it. When you have examined all the cards, the one
that is turned up is the first one. You pull it out to start the sorted deck of cards. This
process would continue until all the index cards have been moved to the new stack.

WHILE more cards in first deck
Find smallest left in first deck

VIOVE TO New deck

The selection sort algorithm is probably the easiest because it mirrors how we would
sort a list of values if we had to do it by hand. Our deck of index cards is an array of names.
The new deck is an array of sorted names. We remove items from the first and put them
into successive places in the second. We remember the smallest so far by saving its position
in a temporary variable.

This algorithm is simple, but it has one drawback: It requires space for two complete
decks (arrays). Although we have not talked about memory space considerations, this
duplication is clearly wasteful. A slight adjustment to this by-hand approach does away
with the need to duplicate space, however. As you move the smallest item to the new array,
a free space opens up where it used to be. Instead of writing this name on a second list, we
can exchange it with the name currently in the position where the new name should go.
This “by-hand list” is represented in an array.

Names Names Names Names Names
1] Sue [0]| Ann [A] | Ann [@] | Ann [o] | Ann
[1] Cora [1]1| Cora [1] | Eeth [1]| Beth [1]1| Beth
[2] Beth [2] | Beth [2] | Cora [2] | cCora [2] | Cora
[3] | Ann [3]| Sue [3] | Sue [3] | Sue [3] | June
[4] June [4] | June [4] | June [4] | June [4] sue
(@) (b) (c) (d) ()

FIGURE 7.11 Examples of selection sort (sorted elements are shaded)

Let’s look at an example—sorting the five-element array shown in FIGURE 7.11.
Because of this algorithm’s simplicity, it is usually the first sorting method that students
learn.

Let’s visualize the array as containing two parts: the unsorted part (not shaded) and the
sorted part (shaded). Each time we add an item into its proper place, we are shrinking the
unsorted part and extending the sorted part. Sorting begins with all of the items in the
unsorted part and ends with all of the items in the sorted part. Here is the algorithm
written to mirror this visualization:
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Selection sort

Set firstUnsorted to ©
WHILE (not sorted yet)
Find smallest unsorted item
Swap firstUnsorted item with the smallest

Set firstUnsorted to firstUnsorted + 1

This algorithm includes only three abstract steps (colored in red): determining when
the array is sorted, finding the index of the smallest element, and swapping the contents of
two places. In moving from Figure 7.11(d) to 7.11(e), we added the last two items to the
shaded part of the array. This is always the case because when the smaller of the last two
items is put into its proper place, the last item is also in its proper place. Thus the loop
continues as long as firstUnsorted is less than the length of array - 1.

Mot sorted yet

firstUnsorted < length - 1

How would you find the name that comes first in the alphabet in the unsorted portion
of the list if you were sorting it by hand? You see (and mentally record) the first one, and
then you scan down the list (turning index cards) until you see one that comes before the
first one. You remember this smaller one and continue scanning the list for a name that
comes before this one in the alphabet. The process of remembering the smallest so far until
you find a smaller one is repeated until you reach the end of the list. This by-hand
algorithm is exactly the one we use here, except that we must remember the index of the
smallest item because we will swap it with the item in the firstUnsorted position. Stated in
terms of our list, we look for the smallest item in the unsorted portion, which runs from
firstUnsorted through length — 1.

Find smallest unsorted item

Set indexOfSmallest to firstUnsorted
Set index to firstUnsorted + 1
WHILE (index <= length - 1)
IF (data[index] < data[indexOfSmallest])
Set index0OfSmallest to index

Set index to index + 1
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How many glasses does it take to swap the contents of two glasses? Three. You need a
glass to temporarily hold the contents of one glass while you pour the contents of the other
glass into the first. Swapping the contents of two places in memory is exactly the same
problem. The swap algorithm must have the indexes of the two items to be swapped.

Swap firstUnsorted with smallest

Set templtem to data[firstUnsorted]
Set data[firstUnsorted] to data[indexOfSmallest
Set data[indexOfSmallest] to templtem

Bubble Sort

The bubble sort is a selection sort that uses a different scheme for finding the minimum
value. Starting with the last array element, we compare successive pairs of elements,
swapping them whenever the bottom element of the pair is smaller than the one above it
[FIGURE 7.12(a)]. In this way, the smallest element “bubbles up” to the top of the array.
Each iteration puts the smallest unsorted item into its correct place using the same
technique, but it also changes the locations of the other elements in the array [FIGURE
7.12(b)].

Before we write this algorithm, we must make an observation: The bubble sort is a very
slow sorting algorithm. Sorting algorithms are usually compared based on the number of
iterations it takes to sort an array, and this approach takes one iteration for every item in
the array except the last. Also, during each algorithm a lot of swapping goes on. Why, then,
do we bother to mention the bubble sort if it is so inefficient? Because a very slight change
in the sorting algorithm makes it an excellent choice to use in certain circumstances. Let’s
apply the algorithm to an already sorted array. See the rightmost column in Figure 7.12(b).
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Marnes MNares Mames Narnes Names

| ehi o] phil (o] eni (o] | i | a

[1] Al [1] Al [1] Al [1] ' Al [1] Fhil
[2] | John [2] | Jokn [2] Eob [2] Bob [2]| Bob
Gl gim 5] Bob Bl jonn | 1| jonn | 1] john
(4| Bob | jim [ Jjim (| jim [ | jim

(a) First iteration (sorted elements are shaded)

Mames Names Mames MNames
foj| Al [0] Al [o]| Al [o]| Al
(]| ehil [1]| Bob [1]| Bob [1]| Bob
[2]| Bob [2] | Phil [2]| Jim [21| Jim
[3] | John . [3] . Jim [3] Phil [3] . John
[4] | Jim | [4] | John [4] | John | 4] " phil

(b) Remaining iterations (sorted elements are shaded)

FIGURE 7.12 Examples of a bubble sort

4

What is piggybacking?

Using another subscriber’s wireless Internet access service without the subscriber’s explicit permission or knowledge
is called piggybacking. Is it ethical? Some compare it to reading the newspaper over the shoulder of the person in
front of them while on a train. Others compare it to entering a home just because the door is unlocked. Is it legal?
Some jurisdictions permit it, some prohibit it, and others are not well defined. What do you think?

We compare Phil with Johh and do not swap them. We compare John with Jim and do
not swap them. We compare Jim with Bob and do not swap them. We compare Bob with
Al and do not swap them. If no values are swapped during an iteration, then the array is
sorted. We set a Boolean variable to FALSE before we enter the loop and set it to TRUE if a
swap occurs. If the Boolean variable is still FALSE, then the array is sorted.

Compare the processing of the bubble sort to the selection sort on an already sorted
array. The selection sort algorithm gives us no way to determine whether the array is sorted;
therefore, we will go through the entire algorithm.
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Bubble sort

Set firstUnsorted to O

Set swap to TRUE

WHILE (firstUnsorted < length — 1 AND swap)
Set swap to FALSE
‘Bubble up” the smallest item in unsorted part

Set firstUnsorted to firstUnsorted + 1

Bubble up
e

Set index to length = 1
WHILE (index > firstUnsorted)
IF (data[index] < data[index - 1])
Swap data(index] and data[index - 1]
Set swap to TRUE
Set index to index = 1

Insertion Sort

If you have only one item in the array, it is sorted. If you have two items, you can compare
and swap them if necessary. Now the first two are sorted with respect to themselves. Take
the third item and put it into its place relative to the first two. Now the first three items are
sorted with respect to one another. The item being added to the sorted portion can be
bubbled up as in the bubble sort. When you find a place where the item being inserted is
smaller than the item in the array, you store the item there. current is the item being
inserted into the sorted portion. See FIGURE 7.13.
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Insertion sort

Set current to 1
WHILE (current < length)
Set index to current.
Set placeFound to FALSE
WHILE (index > O AND NOT placeFound)
IF (data[index] < data[index — 1])
Swap data[index] and data[index - 1]
Set index to index — 1
ELSE
Set placeFound to TRUE

Set current to current + 1

At each iteration of a selection sort, one more item is put into its permanent place. At
each iteration of an insertion sort, one more item is put into its proper place with respect to
those above it.

Names MNames Names MNames MNames
(o] il o jomn | ! a o a | ol a
| John [1] Phil [1]| John | ]| Jim [1| Bob
@l A 2l A @1l oenit | @1l john 2 jim
Bl jim Bl jim Bl ogim | gl oenit |yl jomn
[4]| Bob (]| sob M| sob | @] eob | fa| ehi

FIGURE 7.13 Insertion sort

7.6 Recursive Algorithms

When an algorithm uses its own name within itself, it is called a recursive algorithm. That is,
if a task name at one level calls itself, the call is known as a recursive call. Recursion—the
ability of an algorithm to call itself—is an alternative control structure to repetition
(looping). Rather than use a looping statement to execute an algorithm segment, such an
algorithm uses a selection statement to determine whether to repeat the algorithm by
calling it again or to stop the process.

Recursion The ability of an algorithm to call itself

Each recursive algorithm has at least two cases: the base case and the general case. The
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base case is the one to which we have an answer; the general case expresses the solution in
terms of a call to itself with a smaller version of the problem. Because the general case solves
an ever smaller and smaller version of the original problem, eventually the program reaches
the base case, where an answer is known. At this point, the recursion stops.

Associated with each recursive problem is some measure of the size of the problem. The
size must become smaller with each recursive call. The first step in any recursive solution is,
therefore, to determine the size factor. If the problem involves a numerical value, the size
factor might be the value itself. If the problem involves a structure, the size factor is
probably the size of the structure.

So far, we have given a name to a task at one level and expanded the task at a lower
level. Then we have collected all of the pieces into the final algorithm. With recursive
algorithms, we must be able to give the algorithm data values that are different each time
we execute the algorithm. Thus, before we continue with recursion, we must look at a new
control structure: the subprogram statement. Although we are still at the algorithm level, this
control structure uses the word subprogram.

Subprogram Statements

We can give a section of code a name and then use that name as a statement in another part
of the program. When the name is encountered, the processing in the other part of the
program halts while the named code executes. When the named code finishes executing,
processing resumes with the statement just below where the name occurred. The place
where the name of the code appears is known as the calling unit.

Two basic forms of subprograms exist: named code that does a particular task (void
subprograms) and named code that also does a task but returns a single value to the calling
unit (value-returning subprograms). The first form is used as a statement in the calling
unit; the second form is used in an expression in the calling unit where the returned value is
then used in the evaluation of the expression.

Subprograms are powerful tools for abstraction. The listing of a named subprogram
allows the reader of the program to see that a task is being done without having to be
bothered with the details of the task’s implementation. If a subprogram needs information
to execute its task, we place the name of the data value in parentheses by the subprogram
heading. If the subprogram returns a value to the calling unit, it uses the word RETURN
followed by the name of the data to be returned. See FIGURE 7.14.
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(a) Subprogram A does its task and calling unit continues with next statement

(b) Subprogram B does its task and returns a value that is added to 5 and stored in x

FIGURE 7.14 Subprogram flow of control

Recursive Factorial

The factorial of a number is defined as the number multiplied by the product of all the
numbers between itself and 0:

N=N*NN-1)!

The factorial of 0 is 1. The size factor is the number for which we are calculating the
factorial. We have a base case:

Factorial(O) is 1.
We also have a general case:

Factorial(N) is N * Factorial(N —1).
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An if statement can evaluate N to see if it is O (the base case) or greater than O (the general
case). Because N is clearly getting smaller with each call, the base case is eventually reached.

Write "Enter N

Read N

Set result to Factorial(N)

Write result + " is the factorial of "+ N

Factorial[M)

IF (N equals O)
RETUEN 1
ELSE
RETURM N * Factorial(M - 1)

Each time Factorial is called, the value of N gets smaller. The data being given each
time is called the argumens. What happens if the argument is a negative number? The
subprogram just keeps calling itself until the run-time support system runs out of memory.
This situation, which is called infinite recursion, is equivalent to an infinite loop.

Recursive Binary Search

Although we coded the binary search using a loop, the binary search algorithm sounds
recursive. We stop when we find the item or when we know it isn’t there (base cases). We
continue to look for the item in the section of the array where it will be if it is present at all.
A recursive algorithm must be called from a nonrecursive algorithm as we did with the
factorial algorithm. Here the subprogram needs to know the first and last indices within
which it is searching. Instead of resetting first or last as we did in the iterative version, we
simply call the algorithm again with the new values for first and last.
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BinarySearch (first, Z-irﬂ,:l

IF (first > last)
EETUEN FALSE
ELSE
Set middle to (first + last)/ 2
IF (item equals data[middle])
EETUKN TEUE
ELBE
IF (item < data[middle])
BinarySearch (first, middle - 1)
ELSE
BinarySearch (middle + 1, last)

4

Was Plato a software designer?

Philosophy has spent 2500 years working on concepts now integral to software design. For example, Plato’s
universals and particulars can be viewed as the classes and instances of classes in object-oriented programming.’

Quicksort

The Quicksort algorithm, developed by C. A. R. Hoare, is based on the idea that it is faster
and easier to sort two small lists than one larger one. The name comes from the fact that, in
general, Quicksort can sort a list of data elements quite rapidly. The basic strategy of this
sort is “divide and conquer.”

If you were given a large stack of final exams to sort by name, you might use the
following approach: Pick a splitting value, say L, and divide the stack of tests into two piles,
A-L and M-Z. (Note that the two piles do not necessarily contain the same number of
tests.) Then take the first pile and subdivide it into two piles, A—F and G-L. The A-F pile
can be further broken down into A—C and D-F. This division process goes on until the
piles are small enough to be easily sorted by hand. The same process is applied to the M—Z
pile.
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i

A S.Z

FIGURE 7.15 Ordering a list using the Quicksort algorithm

Eventually, all of the small, sorted piles can be stacked one on top of the other to
produce a sorted set of tests. See FIGURE 7.15.

This strategy is based on recursion—on each attempt to sort the stack of tests, the stack
is divided, and then the same approach is used to sort each of the smaller stacks (a smaller
case). This process continues until the small stacks do not need to be divided further (the
base case). The variables first and last in the Quicksort algorithm reflect the part of the
array data that is currently being processed.

Guicksort (first, splitFoint - 1)
Guicksort (splitFoint + 1, last)

How do we select splitval? One simple solution is to use whatever value is in
data[first] as the splitting value. Let’s look at an example using data[first] as splitVal.

splitval = 9
[T | 20 | & | 1 | @ | & |6 | 1 |
[first] [last]

After the call to Split, all items less than or equal to splitVal are on the left side of the array
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and all items greater than splitVal are on the right side of the array.

Smaller values

Larger values

| | |

& 10

I

| 20 | 60 | 1 |

[first]

[splitFoint]

[last]

The two “halves” meet at splitPoint, the index of the last item that is less than or equal to
oplitVal. Note that we don’t know the value of splitPoint until the splitting process is
complete. We can then swap splitVal (data[first]) with the value at data[splitPoint].

Smaller values Larger values

] = [T [T | =TT (=
[first]

[splitFoint] [last]
Our recursive calls to Quicksort use this index (splitPoint) to reduce the size of the
problem in the general case.

Quicksort(first, splitPoint — 1) sorts the left “half” of the array. Quick-sort(splitPoint
+ 1, last) sorts the right “half” of the array. (The “halves” are not necessarily the same size.)
oplitVal is already in its correct position in data[eplitFoint].

What is the base case? When the segment being examined has only one item, we do not
need to go on. That is represented in the algorithm by the missing e/se statement. If there is
only one value in the segment being sorted, it is already in its place.

We must find a way to get all elements that are equal to or less than splitVal on one
side of splitVal and all elements that are greater than splitVal on the other side. We do this
by moving a pair of the indexes from the ends toward the middle of the array, looking for
items that are on the wrong side of the split value. When we find pairs that are on the
wrong side, we swap them and continue working our way into the middle of the array.

Set left to first + 1

Set right tolast

WHILE (left <= right)
Increment left until data[left] > splitval OR left > right
Decrement right until data[right] < splitVal OF left. > right
IF(left < right)

Swap data(left] and data[right]
Set splitFoint to right
Swap data[first] and data[splitFoint]

Return splitFoint
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Although we still have an abstract step, we can stop, because we have already expanded
this abstract step in an earlier problem. This brings up a very important point: Never
reinvent the wheel. An abstract step in one algorithm may have been solved previously either
by you or by someone else. FIGURE 7.16 shows an example of this splitting algorithm.

Quicksort is an excellent sorting approach if the data to be sorted is in random order. If
the data is already sorted, however, the algorithm degenerates so that each split has just one
item in it.

Recursion is a very powerful and elegant tool. Nevertheless, not all problems can easily
be solved recursively, and not all problems that have an obvious recursive solution should
be solved recursively. Even so, a recursive solution is preferable for many problems. If the
problem statement logically falls into two cases (a base case and a general case), recursion is
a viable alternative.

(a) Initialization

9 20 | 6 0 | 14 8 60 7
[first] [left] [right]
(b) Increment left until list[left] = splitval or left = right
B 20 | 6 0 | 14 | 8 | e | m
[first] [left] [right]

(c) Decrement right until list[right = splitval or left = right
9 20 | 6 10 14 8 60 1

[first] [left] [right]

(d) Swap list[left] and list[right]; move left and right toward each other
9 8 & 10 14 20 (1] n

[first] [left] [right]
() Increment left until list[left] = splitval or left = right
Drecrement right until list[right] <= splitval or left = right
g [ & | @ [ | 74 [ 20 | & | #
[first] [right] — [left]

(f) Left = right so no swap occurs within the loop
Swap list[first] and list[right]

6 8 g 0 | 14 | 20 [ e [ mn
[first] [right]
[splitPoint)

FIGURE 7.16 Splitting algorithm

7.7 Important Threads

In the last two chapters, we have mentioned several topics in passing that are important not
only in problem solving but also in computing in general. Let’s review some of the
common threads discussed in these chapter.
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Information Hiding

We have mentioned the idea of deferring the details several times. We have used it in the
context of giving a name to a task and not worrying about how the task is to be
implemented until later. Deferring the details in a design has distinct advantages. The
designer sees just those details that are relevant at a particular level of the design. This
practice, called information hiding, makes the details at a lower level inaccessible during

the design of the higher levels.

Information hiding The practice of hiding the details of a module with the goal of controlling access to the details
of the module

This practice must seem very strange! Why shouldn’t the details be accessible while the
algorithm is being designed? Shouldn’t the designer know everything? No. If the designer
knows the low-level details of a module, he or she is more likely to base the module’s
algorithm on these details—and it is precisely these low-level details that are more likely to
change. If they do, then the entire module has to be rewritten.

Abstraction

Abstraction and information hiding are two sides of the same coin. Information hiding is
the practice of hiding details; abstraction is the result with the details hidden. As we said in
Chapter 1, an abstraction is a model of a complex system that includes only the details that
are essential for the viewer to know. Take, for example, Daisy, the English spaniel. To her
owner, she is a household pet; to a hunter, she is a bird dog; and to the vet, she is a
mammal. Her owner watches Daisy’s wagging tail, hears her yelp when she gets left outside,
and sees the hair she leaves everywhere. The hunter sees a finely trained helper who knows
her job and does it well. The vet sees all of the organs, flesh, and bones of which she is
composed. See FIGURE 7.17.

Abstraction A model of a complex system that includes only the details essential to the viewer
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FIGURE 7.17 Different views of the same concept

In computing, an algorithm is an abstraction of the steps needed to implement it. The
casual user of a program that includes the algorithm, who sees only the description of how
to run the program, is like the dog owner: He or she sees only the surface. The
programmer, who incorporates another’s algorithm in her program, is like the hunter who
uses the well-trained dog: He or she uses the algorithm for a purpose. The implementer of
the algorithm, who must understand it thoroughly, is like the vet: He or she must see the
inner workings to implement the algorithm.

In computing, various kinds of abstraction are apparent. Data abstraction refers to the
view of data; it is the separation of the logical view of data from its implementation. For
example, your bank’s computer may represent numbers in two’s complement or one’s
complement, but this distinction is of no concern to you as long as your bank statements
are accurate.

Data abstraction The separation of the logical view of data from its implementation

Procedural abstraction refers to the view of actions; it is the separation of the logical
view of an action from its implementation. For example, when we gave a name to a
subprogram, we were practicing procedural abstraction.
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Procedural abstraction The separation of the logical view of an action from its implementation

A third kind of abstraction in computing is called control abstraction. Control
abstraction refers to the view of a control structure; it is the separation of the logical view of
a control structure from its implementation. A control structure lets us alter this sequential
flow of control of an algorithm. WHILE and IF are control structures. How these control
structures are implemented in the languages into which we might translate an algorithm is
immaterial to the design of the algorithms.

Control abstraction The separation of the logical view of a control structure from its implementation

Control structure A statement used to alter the normally sequential flow of control

Abstraction is the most powerful tool people have for managing complexity. This statement
is true in computing as well as real life.

Naming Things

When we write algorithms, we use shorthand phrases to stand for the tasks and data with
which we are dealing. We give names to data and processes. These names are called
identifiers. For example, we used newBase and decimal Number in the base-changing
algorithm. We also gave names to tasks. For example, we used Split to name the task of
splitting an array in the Quicksort algorithm. Our identifiers for data values were created
from a combination of the words, using uppercase to make the meaning clearer. We left the
names of tasks as phrases. Eventually the task names must be converted to a single
identifier.

When we get to the stage where we translate an algorithm into a program in a language
that a computer can execute, we may have to modify the identifiers. Each language has its
own rules about forming identifiers. So there is a two-stage process: Data and actions are
given names in the algorithm, and then these names are translated into identifiers that meet
the rules of the computer language. Notice that giving identifiers to data and actions is a
form of abstraction.

Testing

We have demonstrated testing at the algorithm phase using algorithm walk-throughs. We
have shown how to design test plans and implemented one in assembly language. Testing is
important at every stage in programming. There are basically two types of testing: clear-box
testing, which is based on the code itself, and black-box testing, which is based on testing
all possible input values. Often, a test plan incorporates both types of testing.

SUMMARY
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Polya, in his classic book How to Solve It, outlined a problem-solving strategy for
mathematical problems. This strategy can be applied to all problems, including those for
which a computer program is to be written. These strategies include asking questions,
looking for familiar things, and dividing and conquering; when these strategies are applied,
they should lead to a plan for solving a problem. In computing, such a plan is called an
algorithm.

Two categories of loops are distinguished: count controlled and event controlled. A
count-controlled loop executes the loop a predetermined number of times. An event-
controlled loop executes until an event within the loop changes.

Data comes in two forms: atomic (simple) and composite. An array is a homogeneous
structure that gives a name to a collection of items and allows the user to access individual
items by position within the structure.

Searching is the act of looking for a particular value in an array. In this chapter we
examined the linear search in an unsorted array, the linear search in a sorted array, and the
binary search in a sorted array. Sorting is the act of putting the items in an array into some
kind of order. The selection sort, bubble sort, insertion sort, and Quicksort are four
commonly used sorting algorithms.

Recursive algorithms are algorithms for which the name of a subprogram appears in the
subprogram itself. The factorial and binary search are naturally recursive algorithms.

ETHICAL ISSUES

Open-Source Software*?

If an application you purchased from a proprietary software vendor breaks, you cannot
pop open the hood, tinker with the source code, and continue working away. The
source code is owned and copyrighted by the manufacturer, and modifying, copying, or
reselling it to others is illegal.

Open-source software offers an alternative to this proprietary arrangement. Open-
source applications allow users to modify the source code in any way they like. They can
add to it, change it, or extend it. They can also copy it, give it away to others, or even
sell it. The only proviso is that those to whom the revised code is further distributed
have the same freedoms to access the source code, copy, or sell the software. This
passing along of the freedoms of use is sometimes referred to as “copyleft” and is highly
prized by open-source supporters.

When proprietary software made its first appearance, some parties in the computing
community saw it as a threat to the freedom of intellectual collaboration. They believed
that software is essentially an intellectual product and, therefore, is best served by being
treated as an idea: Anyone is welcome to join the debate, add an opinion, and bring
friends into the conversation. Furthermore, if a person cannot gain access to software
except by purchasing it from a proprietary vendor, then that individual is barred from
joining the discussion until he or she hands over cash to the owner of the “idea.”

In response to the changing landscape of computing in the 1980s, some MIT
computer scientists formed the Free Software Foundation (ESF) to promote the open
use and sharing of software. The Boston-based group developed the General Public
License (GPL), which outlines the rules under which users can share, distribute, and
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collaborate on developing software products. For those who feel “free” might be an
erroneous name, FSF points out, it means “free as in free speech, not free as in free
beer.”

So what makes this seemingly simple idea so controversial? If anyone can upgrade or
improve the product, doesn’t this increase its value to users? Not according to
opponents of the open-source ethic. Microsoft and other proprietary software producers
view open-source code as a threat to their businesses. If people can fix and modify the
source code on their own, they will not want to pay the licensing fees required to use the
proprietary products, nor will they want to purchase upgrades. Even more important,
opponents claim, is the danger to intellectual property rights posed by the open-source
model.

Open-source supporters point to the more cost-effective aspects of the model. Even
if users initially pay for the software, the freedoms granted under the licensing
agreement do not lock them into that choice. They can mix and match software to best
suit the needs of their mission. Fans of the open-source model also note that such
software tends to be more reliable, causing less downtime and requiring internal IT
departments and engineers to spend less time fixing low-level problems that might
otherwise cause great disruption. Those opposed to the use of software that allows
anyone access to the source code claim that it poses much greater security risks than
proprietary packages. For example, if airlines, hospitals, and municipal infrastructures
are using it, they leave themselves much more vulnerable to attack than if they use
packages where only the maker has access to the source code.

Perhaps the most famous example of open-source software is the Linux operating
system, which is licensed under the Free Software Foundation’s General Public License.
The success of Linux has given great hope to the open-source community. This
operating system is extremely popular and is even used, if somewhat sparingly, by
government agencies. Versions of Linux are sold by a variety of vendors, including Red
Hat, the best-known Linux distributor. Such examples serve as confirmation that the
open-source model is commercially viable.

Proprietary producers have been working to block proposals that would require
governments to shift to using open-source products. For now, patent and copyright laws
continue to favor proprietary software. Whether this continues to be the case remains to
be seen. Microsoft has suggested limiting open-source software in various ways, but so
far has not proved successful in its quest. For now, the debate continues over whether
the open-source model is a benefit for all, or a danger to business and property rights.

In 2008, the open-source software community reached a legal milestone. The case in
question centered on free software used in developing commercial software products for
model trains. The software’s creator, open-source software group Java Model Railroad
Interface, claimed that when Matthew Katzer used its software to create commercial
products without following the terms of the software license associated with the
software, he had infringed on copyright laws. The software license stated that anyone
using the free code had to credit the author, emphasize the source of the files, and
explain how the code had been adapted. After a lower court ruling sided with Katzer, a
federal appeals court ruled that open-source artistic licensing agreements could be
upheld by copyright laws, enforcing the rights of companies using open-source software
to protect their ideas.
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KEY TERMS

Abstract step
Abstraction
Algorithm

Binary search
Concrete step
Control abstraction
Control structure
Data abstraction
Information hiding
Nested structure (nested logic)
Procedural abstraction
Recursion

EXERCISES

For Exercises 1-6, match the problem-solving strategy with the definition or example.
A. Ask questions

B. Look for familiar things

C. Divide and conquer

The first strategy to use when given a problem.

Don’t reinvent the wheel.

Strategy used in the binary search algorithms

Is a solution to a previous problem appropriate for the current one?

Strategy used in the Quicksort algorithm

There is an apparent contradiction in the problem statement.

AN AP =

For Exercises 7-10, match the following phase with its output.
A. Analysis and specification phase

B. Algorithm development phase

C. Implementation phase

D. Maintenance phase

Working program

None

Problem statement

General solution

SAN N

1

For Exercises 11-15, match the term with the definition.
A. Information hiding
B. Abstraction
C. Data abstraction
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11.

12.

13
14
15

For

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

29.
30.
31.
32.
33.

34.

35
36

D. Procedural abstraction

E. Control abstraction

The practice of hiding the details of a module with the goal of controlling access to
the details of the module.

A model of a complex system that includes only those details essential to the
viewer.

. The separation of the logical view of an action from its implementation.

. The separation of the logical view of a control structure from its implementation.

. The separation of the logical view of data from its implementation.

Exercises 16-36, mark the answers true or false as follows:
A. True
B. False
Count-controlled loops repeat a specific number of times.
Event-controlled loops repeat a specific number of times.
Count-controlled loops are controlled by a counter.
Event-controlled loops are controlled by an event.
An infinite loop is a loop that never terminates.
Loops can be nested, but selection structures cannot.
Selection structures can be nested, but loops cannot.
All control structures can be nested.
The square root algorithm uses a count-controlled loop.
An array is a homogeneous structure, but a record is not.
A record is a heterogeneous structure, but an array is not.
A record is a homogeneous structure; an array is a heterogeneous structure.
The bubble sort algorithm involves finding the smallest item in the unsorted
portion of the array and swapping it with the first unsorted item.
Quicksort is not always quick.
A binary search can be applied to both a sorted array and an unsorted array.
A binary search is always faster than a linear search.
A selection sort puts one more item into its permanent place at each iteration.
An insertion sort puts one more item into its place with respect to the already
sorted portion.
Recursion is another word for iteration.
. Recursive algorithms use IF statements.
. Iterative algorithms use WHILE statements.

Exercises 37—62 are short-answer questions.

37
38

Exe
39
40

. List the four steps in Polya’s How to Solve It list.
. Describe the four steps listed in

rcise 37 in your own words.
. List the problem-solving strategies discussed in this chapter.
. Apply the problem-solving strategies to the following situations.
a. Buying a toy for your four-year-old cousin
b. Organizing an awards banquet for your soccer team
c. Buying a dress or suit for an awards banquet at which you are being honored
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41.

42.
43.

44,
45.

46.
47.

48.
49.

50.

51.
52.
53.

54.

55.

56.
57.
58.

59.

Examine the solutions in Exercise 40 and determine three things they have in
common.

What is an algorithm?

Write an algorithm for the following tasks.

a. Making a peanut butter and jelly sandwich

b. Getting up in the morning

c. Doing your homework

d. Driving home in the afternoon

List the phases of the computer problem-solving model.

How does the computer problem-solving model differ from Polya’s problem-
solving model?

Describe the steps in the algorithm development phase.

Describe the steps in the implementation phase.

Describe the steps in the maintenance phase.

Look up a recipe for chocolate brownies in a cookbook and answer the following
questions.

a. Is the recipe an algorithm? Justify your answer.

b. Organize the recipe as an algorithm, using pseudocode.

c. List the words that have meaning in computing.

d. List the words that have meaning in cooking.

e. Make the brownies and take them to your professor.

We said that following a recipe is easier than developing one. Go to the
supermarket and buy a vegetable that you have not cooked (or eaten) before. Take
it home and develop a recipe. Write up your recipe and your critique of the
process. (If it is good, send it to the authors.)

Describe the top-down design process.

Differentiate between a concrete step and an abstract step.

Werite a top-down design for the following tasks.

a. Buying a toy for your four-year-old cousin

b. Organizing an awards banquet for your soccer team

c. Buying a dress or suit for an awards banquet at which you are being honored
Write a top-down design for the following tasks.

a. Calculating the average of ten test scores

b. Calculating the average of an unknown number of test scores

c. Describe the differences in the two designs

Write a top-down design for the following tasks.

a. Finding a telephone number in the phone book

b. Finding a telephone number on the Internet

c. Finding a telephone number on a scrap of paper that you have lost

d. Describe the differences among these designs

Distinguish between information and data.

Write a top-down design for sorting a list of names into alphabetical order.

a. Why is information hiding important?

b. Name three examples of information hiding that you encounter every day.
An airplane is a complex system.

a. Give an abstraction of an airplane from the view of a pilot.
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60.

61.

62.

b. Give an abstraction of an airplane from the view of a passenger.

c. Give an abstraction of an airplane from the view of the cabin crew.

d. Give an abstraction of an airplane from the view of a maintenance mechanic.

e. Give an abstraction of an airplane from the view of the airline’s corporate office.
List the identifiers and indicate whether they named data or actions for the designs
in Exercise 53.

List the identifiers and indicate whether they named data or actions for the designs
in Exercise 54.

List the identifiers and indicate whether they named data or actions for the designs
in Exercise 55.

Exercises 63—65 use the following array of values.

63.

64.

65.

[

22l afeslzo] 2o a34]1@]40]99)

Show the state of the list when firstUnsorted is first set equal to the fourth item
in the selection sort.

Show the state of the list when firstUnsorted is first set equal to the fifth item in
the bubble sort algorithm.

Show the state of the list when the first recursive call is made in Quicksort using
list[O] as the split value.

Exercises 66 and 67 use the following array of values.

60.

67.

[8El 7 l2o]2a]a]ac]aa] a0 [ 10 1o2]105]

How many comparisons does it take using a sequential search to find the following
values or determine that the item is not in the list?

a. 4

b. 44

c. 45

d. 105

e. 106

How many comparisons does it take using a binary search to find the following
values or determine that the item is not in the list?

a. 4

b. 44

c. 46

d. 105

e. 106

THOUGHT QUESTIONS
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Distinguish between a program that the CPU can execute directly and a program
that must be translated.

. Top-down design creates scaffolding that is used to write a program. Is all of this

scaffolding just a waste of effort? Is it ever used again? Of what value is it after the
program is up and running?

. Which of the problem-solving strategies do you use the most? Can you think of

some others that you use? Would they be appropriate for computing problem
solving?

. There are several common examples of open-source software that many people use

in their everyday lives. Can you name any?

. Do you believe that the quality of an open-source software product is likely to be

higher or lower than the quality of software produced by a large corporation? How
do you think technical support for open-source software compares to that for
proprietary software?

. Daniel Bricklin, whose biography appears in Chapter 12, did not patent (or

copyright) his software, believing that software should not be proprietary. As a
result, he lost a great deal of money in the form of possible royalties. Do you
consider his actions to be visionary or naive?

. The Free Software Foundation is a tax-exempt charity that raises funds for work

on the GNU Project. GNU software is free. Read about its philosophy on the
Web. Compare GNU products with those of manufacturers such as Microsoft and
Sun.

. If you were to continue with computing and become a programmer, which side of

the argument would you take: Should software be copyrighted or should it be free?
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THE PROGRAMMING LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits

5 Computing Components
The Programming Layer

6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages
The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer

15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion

18 Limitations of Computing
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8 ABSTRACT DATA TYPES AND
SUBPROGRAMS

In the programming layer, we have moved from the concreteness of machine language, to
assembly language, to pseudocode, to expressing algorithms. We then went from algorithms
using simple variables to algorithms using arrays.

Now we take a step up in abstraction and talk about abstract containers: composite
structures for which we do not know the implementation. In computing circles, these
abstract containers are called abstract data types. We know their properties and operations
and we understand which types of values they can contain, but we have no information
about their internal structure or implementation. That is, we know what the operations are
and what they do, but we do not know how the operations are implemented.

The algorithm design we have been using is a top-down model, in which we break a
task into smaller pieces. We conclude this chapter with more about subprogram statements,
which are both a way to make the code mirror the design and the way that algorithms and
subalgorithms communicate.

GOALS
After studying this chapter, you should be able to:

distinguish between an array-based visualization and a linked visualization.
distinguish between an array and a list.

distinguish between an unsorted list and a sorted list.

distinguish between the behavior of a stack and the behavior of a queue.
distinguish between a binary tree and a binary search tree.

draw the binary search tree that is built from inserting a series of items.
understand the difference between a tree and a graph.

explain the concept of subprograms and parameters and distinguish between value and reference parameters.

8.1 What Is an Abstract Data Type?

An abstract data type (ADT) is a container whose properties (data and operations) are
specified independently of any particular implementation. Recall that the goal in design is
to reduce complexity through abstraction. If we can define useful structures and the
operations that manipulate those structures at the logical level, we can use them as if they
exist when we need them in our designs.
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Abstract data type (ADT) A container whose properties (data and operations) are specified independently of any
particular implementation

To put the concept of an ADT into context, we need to look at how we view data. In
computing, we view data from three perspectives: the application level, the logical level, and
the implementation level.

The application (or user) level is the view of the data within a particular problem. The
logical (or abstract) level is an abstract view of the data values (the domain) and the
operations that manipulate them. The implementation level is a specific representation of
the structure that holds the data items and the coding of the operations in a programming
language. This view sees the properties represented as specific data fields and subprograms.
It is concerned with data structures, the implementation of a composite data field in an
abstract data type.

Data structure The implementation of a composite data field in an abstract data type

The abstract data types that we examine in this chapter are those that history and
experience have shown come up again and again in real-world problems. These ADTs are
containers in which data items are stored, and each exhibits specific behaviors. They are
called containers because their sole purpose is to hold other objects.

Containers Objects whose role is to hold and manipulate other objects

8.2 Stacks

Stacks and queues are abstract composite structures that are often thought of as a pair—like
peanut butter and jelly, or motherhood and apple pie. Why this is so must be more for
historical reasons than anything else, because these two structures have quite different
behaviors.

A stack is an abstract composite structure in which accesses are made at only one end.
You can insert an item as the first one and you can remove the first one. This design
models many things in real life. Accountants call it LIFO, which stands for “last in, first
out.” The plate holder in a cafeteria has this property: We can take only the top plate.
When we do so, the plate below rises to the top so the next person can take one. Canned
goods on a grocer’s shelf exhibit this property. When we take the first can in a row, we are
taking the last can put in that row.

Another way of stating the accessing behavior of a stack is to say that the item removed
is the item that has been in the stack the shortest time. Viewing a stack from this
perspective is more abstract. The insertion operation has no constraints; the entire LIFO
behavior is specified through the removal operation.

The mental image of the cafeteria plates has left an imprint on the traditional names
used for the insertion and removal operations. Adding an item to the stack is called Push;
removing an item is called Pop. We Push an item onto the stack, and we Pop an item oft
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the stack. A stack does not have the property of length, so there is no operation that returns
the number of items on the stack. We do need operations that determine whether a stack is
IsEmpty, however, because trying to Pop an item when the stack is empty is an error.

Here is an algorithm that reads in numbers and prints them in reverse order using a
stack. We have not colored the stack operations in red because they have already been
implemented by someone else; they are ours to use. Because the more data is not relevant
to our discussion, we leave it unexpanded here and in the following algorithms.

WHILE (more data)
Read value
Push(myStack, value)
WHILE (NOT IsEmpty(myStack))
Fop(myStack, value)

Write value

Desk check this algorithm to convince yourself that the values are, indeed, written in
reverse order.

8.3 Queues

A queue is an abstract structure in which items are entered at one end and removed from
the other end. Accountants call this behavior FIFO, which stands for “first in, first out.”
This ADT sounds like a waiting line in a bank or supermarket. Indeed, queues are used to
simulate this type of situation. Insertions are made at the rear of the queue, and removals
are made from the front of the queue.

Another way of stating the accessing behavior of a queue is to say that the item removed
is the item that has been in the queue the longest time. Viewing a queue from this
perspective is more abstract. Like the stack, the insert operation has no constraints; the
entire FIFO behavior is specified in the removal operation. Unfortunately, there is no
standard queue terminology relating to the insertion and deletion operations. Enqueue,
Enque, Eng, Enter, and Insert are all names used for the insertion operation. Dequeue,
Deque, Deg, Delete, and Remove are names used for the deletion operation.

Here is an algorithm that reads in data values and prints them in the order in which
they were entered:
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WHILE (more data)
Read value
Enque(myQueue, value)
WHILE (NOT IsEmpty(myQueue))
Deque(myQueue, value)

Write value

Jumping jacks in the classroom

The UTeach Institute, a University of Texas teacher-training program, launched an initiative in late 2013 to
support the use of mobile devices in the classroom. T'o demonstrate the technology, students at Kealing Middle
School in Austin did jumping jacks and then held their fingers to a tablet’s camera, which measured their heart
rates. The data was gathered directly into a spreadsheet projected on the wall. Students could see that over time,
exercise would lower their resting heart rates, so their hearts would pump blood more efficiently. Verizon Wireless

donated more than $1 million in equipment and cash grants to support this work in the use of tablets for teaching.'

8.4 Lists

Lists occur as naturally in programming as they do in real life. We manipulate guest lists,
grocery lists, class lists, and things-to-do lists. The list of lists is endless. Three properties
characterize lists: The items are homogeneous, the items are linear, and lists have varying
lengths. By /inear, we mean that each item except the first has a unique component that
comes before it, and each item except the last has a unique component that comes after it.
For example, if there are at least three items in a list, the second item comes after the first
and before the third.

Whereas stacks and queues have all the semantics in the deletion operation, lists usually
provide operations to insert an item (Insert), delete an item (Delete), check whether an
item is there (IsThere), and report the number of items in a list (GetlLength). In addition,
they have some mechanism for allowing the user to view each item in sequence (Reset,
GetNext, Moreltems). Because items can be deleted and retrieved, the items in the list
must be able to be compared.

Do not mistake a list for an array. An array is a built-in structure; a list is an abstract
structure. However, a list may be implemented in an array, as shown in FIGURE 8.1.
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List Record

Data
[o]| 70
[1]| &8

List

>‘il:|=:ms

= Array
[length-1] | &9
[MAX_LENGTH-1]

Length | 30

FIGURE 8.1 An unsorted list of integers

A list may also be visualized as a linked structure. A linked structure is based on the
concept of a node. A node consists of two pieces of information: the user’s data and a link
or pointer that indicates where to find the next node. The end of the list is a link that

contains null, which is indicated by a /. See FIGURE 8.2.

Linked structure An implementation of a container where the items are stored together with information on where
the next item can be found

Unordered lists are those for which order is unimportant. Items are just haphazardly
put into them. Sorted lists are those where there is a semantic relationship between items in
the list. All items except the first come before the next item in this kind of list under some
ordering relationship. All items except the last come after the one before it under the same
relationship. FIGURES 8.3 and 8.4 visualize the array-based and linked versions of a
sorted list.

List

60 e 75 — 95 — &0 ——

L»ﬁs — 9]
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FIGURE 8.2 An unsorted linked list

List Record

Data

— —
[o] | 60
M| e

List
™ items
= Array
[length-1] ._E_N?._ ]
[ _LENGTH-1]

— —

Length | 30

FIGURE 8.3 A sorted list of integers

Here is an algorithm that reads values from a file and puts them into a list. The list is
then printed.

WHILE (more data)
Read value
Insert{myList, value)
Reset(mylist)
Write “Items in the list are *
WHILE (Moreltems(myList))
GetNext(mylist, nextltem)
Write nextltem,”

List
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FIGURE 8.4 A sorted linked list

We use Reset, Moreltems, and GetNext to iterate through the list, returning each
item in sequence. If the list is an unsorted list, the items will be printed in the order in
which they are inserted. If the list is sorted, the items will be printed in sorted order. This
algorithm works regardless of the implementation of the list.

2

Peer-to-Peer hardware funding

Open Source Hardware is hardware that keeps its designs available in a way similar to the open source in software.
Two open-source hardware advocates, Justin Huynh and Matt Stack, started the Open Source Hardware Bank
(OSHB), using money pooled from other open-source advocates, to support open-source hardware projects. The
peer-to-peer lenders are promised 5% to 15% if the project is successful.

8.5 Trees

Abstract structures such as lists, stacks, and queues are linear in nature. Only one
relationship in the data is being modeled. Items are next to each other in a list or are next to
each other in terms of time in a stack or queue. Depicting more complex relationships
requires more complex structures. Take, for example, family relationships. If we want to
model family relationships in a program, we would need a hierarchical structure. The
parents would appear at the top of the hierarchy, the children would be at the next level,
the grandchildren at the next level, and so on (FIGURE 8.5).

Such hierarchical structures are called zrees, and there is a rich mathematical theory
relating to them. In computing, however, we often restrict our discussion to binary trees. In
binary trees, each node in the tree can have no more than two children.

Binary Trees

A binary tree is an abstract structure in which each node is capable of having two successor
nodes, called children. Each of the children, being nodes in the binary tree, can also have up
to two child nodes, and these children can also have up to two children, and so on, giving

the tree its branching structure. The beginning of the tree is a unique starting node called
the root, which is not the child of any node. See FIGURE 8.6.

Binary tree An abstract composite structure with a unique starting node called the 700z, in which each node is
capable of having two child nodes and in which a unique path exists from the root to every other node

Root The unique starting node in a tree

Each node in the tree may have zero, one, or two children. The node to the left of a
node, if it exists, is called its left child. For example, in Figure 8.6, the left child of the root
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node contains the value 2. The node to the right of a node, if it exists, is its 7ight child. The
right child of the root node in Figure 8.6 contains the value 3. If a node has only one child,
the child could be on either side, but it is always on one particular side. In Figure 8.6, the
root node is the parent of the nodes containing 2 and 3. (Earlier textbooks used the terms
left son, right son, and father to describe these relationships.) If a node in the tree has no
children, it is called a /leaf. In Figure 8.6, the nodes containing 7, 8, 9, and 10 are leaf

nodes.

Leaf node A tree node that has no children

Bear Family
| | |
BobbyBear SueBear JudyBear

JuneBear SarahBear

FIGURE 8.5 The Bear family tree

John von Neumann?

Courtesy of the U.S. Department of Energy

John von Neumann was a brilliant mathematician, physicist, logician, and computer
scientist. Legends have been passed down about his astonishing memory and the
phenomenal speed at which von Neumann solved problems. He used his talents not
only for furthering his mathematical theories, but also for memorizing entire books and
reciting them years after he had read them. But ask a highway patrolman about von
Neumann’s driving ability and he would be likely to throw up his hands in despair;
behind the wheel, the mathematical genius was as reckless as a rebel teenager.

John von Neumann was born in Hungary in 1903, the oldest son of a wealthy
Jewish banker. He was able to divide 8-digit numbers in his head by the age of 6. He
entered high school by the time he was 11, and it wasn’t long before his math teachers
recommended he be tutored by university professors. He enrolled at the University of
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Berlin in 1921 to study chemistry as a compromise with his father, who wanted him to
study something that would allow him to make money. He received his diploma in
chemical engineering from the Technische Hochschule in Ziirich in 1926. In the same
year, he received his doctorate in mathematics from the University of Budapest, with a
thesis on set theory. During the period from 1926 to 1929, von Neumann lectured at
Berlin and at Hamburg while holding a Rockefeller fellowship for postdoctoral studies
at the University of Géttingen.

von Neumann came to the United States in the early 1930s to teach at Princeton,
while still keeping his academic posts in Germany. He resigned the German posts when
the Nazis came to power; he was not, however, a political refugee as so many were at
that time. While at Princeton, he worked with the talented and as-yet-unknown British
student Alan Turing. He continued his brilliant mathematical career, becoming editor
of Annals of Mathematics and co-editor of Compositio Mathematica. During World War
II, von Neumann was hired as a consultant for the U.S. Armed Forces and related
civilian agencies because of his knowledge of hydrodynamics. He was also called upon to
participate in the construction of the atomic bomb in 1943. It was not surprising that,
following this work, President Eisenhower appointed him to the Atomic Energy
Commission in 1955.

Even though bombs and their performance fascinated von Neumann for many
years, a fortuitous meeting in 1944 with Herbert Goldstine, a pioneer who developed
one of the first operational electronic digital computers, introduced the mathematician
to something more important than bombs—computers. von Neumann’s chance
conversation with Goldstine in a train station sparked a new fascination for him. He
started working on the stored program concept and concluded that internally storing a
program eliminated the hours of tedious labor required to reprogram computers (in
those days). He also developed a new computer architecture to perform this storage task.
In fact, today’s computers are often referred to as “von Neumann machines” because the
architectural principles he described have proven so tremendously successful. Changes in
computers over the past 40 years have been primarily in terms of the speed and
composition of the fundamental circuits, but the basic architecture designed by von
Neumann has persisted.

During the 1950s, von Neumann was a consultant for IBM, where he reviewed
proposed and ongoing advanced technology projects. One such project was John
Backus’s FORTRAN, which von Neumann reportedly questioned, asking why anyone
would want more than one machine language. In 1957, von Neumann died of bone
cancer in Washington, D.C.,, at the age of 54. Perhaps his work with the atomic bomb
resulted in the bone cancer that caused the death of one of the most brilliant and
interesting minds of the twentieth century.

In addition to specifying that a node may have up to two children, the definition of a
binary tree states that a unique path exists from the root to every other node. In other
words, every node (except the root) has a unique (single) parent.
Each of the root node’s children is itself the root of a smaller binary tree, or subtree. In
Figure 8.6, the root node’s left child, containing 2, is the root of its left subtree, while the
right child, containing 3, is the root of its right subtree. In fact, any node in the tree can be
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considered the root node of a subtree. The subtree whose root node has the value 2 also
includes the nodes with values 4 and 7. These nodes are the descendants of the node
containing 2. The descendants of the node containing 3 are the nodes with the values 5, 6,
8,9, and 10. A node is the ancestor of another node if it is the parent of the node or the
parent of some other ancestor of that node. (Yes, this is a recursive definition.) In Figure
8.6, the ancestors of the node with the value 9 are the nodes containing 5, 3, and 1.
Obviously, the root of the tree is the ancestor of every other node in the tree.

&Ry

FIGURE 8.6 A binary tree

4

Terrorist detection software

Social network analysis provides a way of modeling how people interact using a branch of mathematics called graph
theory. Graph theory maps people as nodes and their relationships as /inks. Today, some researchers are using this
approach to build software models of terrorist networks. When the software is given data on the number of
members of a network who have been apprehended, it can estimate the probability that the network has been
disrupted. This estimate may be better than one provided by human judgment.

Binary Search Trees

A tree is analogous to an unordered list. To find an item in the tree, we must examine every
node until either we find the one we want or we discover that it isn’t in the tree. A binary
search tree is like a sorted list in that there is a semantic ordering in the nodes.

A binary search tree has the shape property of a binary tree; that is, a node in a binary
search tree can have zero, one, or two children. In addition, a binary search tree has a
semantic property that characterizes the values in the nodes in the tree: The value in any

node is greater than the value in any node in its left subtree and less than the value in any
node in its right subtree. See FIGURE 8.7.

Searching a Binary Search Tree

Let’s search for the value 18 in the tree shown in Figure 8.7. We compare 18 with 15, the
value in the root node. Because 18 is greater than 15, we know that if 18 is in the tree it
will be in the right subtree of the root. Note the similarity of this approach to our binary
search of a linear structure. As in the linear structure, we eliminate a large portion of the
data with one comparison.
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Next we compare 18 with 17, the value in the root of the right subtree. Because 18 is
greater than 17, we know that if 18 is in the tree, it will be in the right subtree of the root.
We compare 18 with 19, the value in the root of the right subtree. Because 18 is less than
19, we know that if 18 is in the tree, it will be in the left subtree of the root. We compare
18 with 18, the value in the root of the left subtree, and we have a match.

Now let’s look at what happens when we search for a value that is not in the tree. Let’s
look for 4 in Figure 8.7. We compare 4 with 15. Because 4 is less than 15, if 4 is in the
tree, it will be in the left subtree of the root. We compare 4 with 7, the value in the root of
the left subtree. Because 4 is less than 7, if 4 is in the tree, it will be in 7’s left subtree. We
compare 4 with 5. Because 4 is less than 5, if 4 is in the tree, it will be in 5’s left subtree.
We compare 4 with 1. Because 4 is greater than 1, if 4 is in the tree, it will be in 1’s right
subtree. But 1’s left subtree is empty, so we know that 4 is not in the tree.

ﬁ;]
@ ?; (7)
e "’?71* @%?/ 19)
® © ® ® @

FIGURE 8.7 A binary search tree

In looking at the algorithms that work with trees, we use the following conventions: If
current points to a node, info(current) refers to the user’s data in the node, left(current)
points to the root of the left subtree of current, and right(current) points to the root of the
right subtree of current. null is a special value that means that the pointer points to nothing.
Thus, if a pointer contains null, the subtree is empty.

Using this notation, we can now write the search algorithm. We start at the root of the
tree and move to the root of successive subtrees until we either find the item we are looking
for or we find an empty subtree. The item to be searched for and the root of the tree
(subtree) are parameters—the information that the subalgorithm needs to execute.
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IsThere(tree, item)

IF (tree is null)
RETUREN FALSE
ELSE
IF (item equals info(tree))
EETURN TRUE
ELSE
IF (item < info(tree))
IsThere(left(tree), item)
ELSE
lsThere(right(tree), item)

With each comparison, either we find the item or we cut the tree in half by moving to
search in the left subtree or the right subtree. In half? Well, not exactly. The shape of a
binary tree is not always well balanced. Clearly, the efficiency of a search in a binary search
tree is directly related to the shape of the tree. How does the tree get its shape? The shape of
the tree is determined by the order in which items are entered into the tree. Look at
FIGURE 8.8. In part (a), the four-level tree is comparatively balanced. The nodes could
have been entered in several different orders to get this tree. By comparison, the ten-level
tree in part (b) could only have come from the values being entered in order.

a. A d-level tree b. A 10-lavel tree

E qﬁ
/\ Y

® O
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FIGURE 8.8 Two variations of a binary search tree

Building a Binary Search Tree

How do we build a binary search tree? One clue lies in the search algorithm we just used. If
we follow the search path and do not find the item, we end up at the place where the item
would be if it were in the tree. Let’s now build a binary search tree using the following
strings: john, phil, lila, kate, becca, judy, june, mari, jim, sue.

Because john is the first value to be inserted, it goes into the root. The second value,
phil, is greater than john, so it goes into the root of the right subtree. lila is greater than john
but less than phil, so lila goes into the root of the left subtree of phil. The tree now looks like
this:

kate is greater than john but less than phil and lila, so kate goes into the root of the left
subtree of lila. becca is less than john, so becca goes into the root of the left subtree of john.
judy is greater than john but less than phil, lila, and kate, so judy goes into the root of the
left subtree of kate. We follow the same path for june as we did for judy. june is greater
than judy, so june goes into the root of the right subtree of judy. mari becomes the root of
lila’s right subtree; jim becomes the root of the right subtree of becca; and sue becomes the
root of the right subtree of phil. The final tree is shown in FIGURE 8.9.

e AL T 3
Insert(tree, item)

IF (tree is null)
Futitemin tree
ELSE
IF (item < info(tree))
Insert(left{tree), item)
ELSE

Insert(right(tree), item)

TABLE 8.1 shows a trace of inserting nell into the tree shown in Figure 8.9. We use
the contents of the info part of the node within parentheses to indicate the pointer to the
subtree with that value as a root.

Although Put item in tree is abstract, we do not expand it. We would need to know
more about the actual implementation of the tree to do so.
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FIGURE 8.9 A binary search tree built from strings

Table 8.1 Trace of Inserting ne11 into the Tree in Figure 8.9

Call to Insert 1% IF Statement 2™ IF Statement  Action or Call
Insert{(john),nell}  (john)i=null nell=john Insert into the right subtree
Insert{(phil),nell) (phil)!=null nell<phil Insert into the left subtree
Inserti(lila),nell) (lla)l=null nell=lila Insert into the right subtree
Inserti(mari),nell)  (mari)!=null nell=mari Insert into the right subtree
Insert{(null),nell) null=null Stare nell as root of the

right subtree of (mari)

Printing the Data in a Binary Search Tree

To print the value in the root, we must first print all the values in its left subtree, which by
definition are smaller than the value in the root. Once we print the value in the root, we
must print all the values in the root’s right subtree, which by definition are greater than the
value in the root. We are then finished. Finished? But what about the values in the left and
right subtrees? How do we print them? Why, the same way, of course. They are, after all,
just binary search trees.

This algorithm sounds too easy. That’s the beauty of recursive algorithms: They are
often short and elegant (although sometimes they take some thought to trace). Let’s write
and trace this algorithm using the tree shown below the algorithm. We number the calls in
our trace because there are two recursive calls. See TABLE 8.2.
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Print{tree)

IF (tree is NOT null)
Frint(left(tree))
Write info(tree)
Print(right(tree))

False alarm

A glitch at a Las Vegas radio station falsely alerted cable companies, radio, and TV stations in five counties to a
national crisis that didn’t exist. That error occurred when a radio station tried to send out a message cancelling an
earlier AMBER Alert and instead transmitted an EAN, or emergency action notification—a special code reserved
for the president of the United States to use in the event of a nuclear war or similar extreme national emergency.

TABLE 8.2 Trace of Printing the Previous Tree
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Calls Which Call IF Statement Action or Call

Print{{john)) R1 (john)!=null Print{left{john))

Print{{becca)) R1 (becca)l=null Print(left(becca))

Print{null) R1 null=null Return

Print{(becca)) Print becca, Print(right(becca))
Print{null) R2 null=null Return, Return

Print{{john}) Print john, Print(right{john))
Print{(sarah)) R2 (sarah)!=null Print(left(sarah))

Print{{judy)) R1 (judy)i=null Print{left{judy))

Print{null) R1 null=null Return

Print{(judy}) Print judy, Print(right(judy))
Frint{rull) R2 null=rull Return, Return

Print{{sarah)) Print sarah, Print{right{sarah}}
Print{null) R2 null=null Return, Return

This algorithm prints the items in the binary search tree in ascending value order.
Other traversals of the tree print the items in other orders. We explore them in the
exercises.

Other Operations

By now, you should realize that a binary search tree is an object with the same functionality
as a list. The characteristic that separates a binary search tree from a simple list is the
efficiency of the operations; the other behaviors are the same. We have not shown the
Remove algorithm, because it is too complex for this text. We have also ignored the concept
length that must accompany the tree if it is to be used to implement a list. Rather than
keep track of the number of items in the tree as we build it, let’s write an algorithm that
counts the number of nodes in the tree.

How many nodes are in an empty tree? Zero. How many nodes are in any tree? There
are one plus the number of nodes in the left subtree and the number of nodes in the right
subtree. This definition leads to a recursive definition of the Length operation:

Length(tree)

IF (tree is null)
RETURM O
ELSE
RETUEN Length(left(tree)) + Length(right(tree)) + 1
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8.6 Graphs

The Bear family as shown in Figure 8.5 depicts only parent and child relationships. There
is no way to determine that BobbyBear, JuneBear, and JudyBear are siblings. Wouldn’t it
be nice to be able to represent other types of relationships such as sibling, cousin, aunt, and
so on?

Trees are a useful way to represent relationships in which a hierarchy exists. That is, a
node is pointed to by at most one other node (its parent). If we remove the restriction that
each node may have only one parent node, we have a data structure called a graph. A graph
is made up of a set of nodes called vertices and a set of lines called edges (or arcs) that
connect the nodes.

Graph A data structure that consists of a set of nodes and a set of edges that relate the nodes to each other
Vertex A node in a graph

Edge (arc) A pair of vertices representing a connection between two nodes in a graph

The vertices in the graph represent objects, and the edges describe relationships among
the vertices. For instance, if the graph is representing a map, the vertices might be the
names of cities, and the edges that link the vertices could represent roads between pairs of
cities. Because the roads that run between cities are two-way paths, the edges in this graph
have no direction. Such a graph is called an undirected graph. However, if the edges that
link the vertices represent flights from one city to another, the direction of each edge is
important. The existence of a flight (edge) from Houston to Austin does not assure the
existence of a flight from Austin to Houston. A graph whose edges are directed from one
vertex to another is called a directed graph (or digraph). A weighted graph is one in which
there are values attached to the edges in the graph.

Undirected graph A graph in which the edges have no direction

Directed graph (digraph) A graph in which each edge is directed from one vertex to another (or the same) vertex

Look at the graphs in FIGURE 8.10. The relationships among siblings are undirected.
For example, June is Sarah’s sibling and Sarah is June’s sibling; see FIGURE 8.10(a).
The prerequisite chart in FIGURE 8.10(c) is directed: Computer Science | must come
before Computer Science Il. The flight schedule is both directed and weighted; see
FIGURE 8.10(b). There is a flight from Dallas to Denver that covers a distance of 780
miles, but there is not a direct flight from Denver to Dallas.
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{a) Vertices: People (b) Vertices: Cities
Edges: Siblings Edges: Direct flights
Computer 3 Computer
Science | Science Il
Computer Theory of ¢ Discrete
Organization | Computation Mathematics
Dpefating - Algorithms and | .
Systems Data Types . Calculus Il
Compiler Programiming . .
Design . Languages Calculus

(c) Vertices: Courses
Edges: Prerequisites

FIGURE 8.10 Examples of graphs

If two vertices are connected by an edge, we say they are adjacent vertices. In Figure
8.10(a), June is adjacent to Bobby, Sarah, Judy, and Susy. A path from one vertex to
another consists of a sequence of vertices that connect them. For example, there is a path
from Austin to Dallas to Denver to Chicago. There is not a path from June to Lila, Kate,
Becca, or John.

Adjacent vertices Two vertices that are connected by an edge

Path A sequence of vertices that connects two nodes in a graph

Vertices represent whatever objects are being modeled: people, houses, cities, courses,
concepts, and so on. The edges represent relationships between those objects. For example,
people are related to other people, houses are on the same street, cities are linked by direct
flights, courses have prerequisites, and concepts are derived from other concepts. (See
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Figure 8.10.) Mathematically, vertices are the undefined concept upon which graph theory
rests. There is a great deal of formal mathematics associated with graphs, which is beyond
the scope of this book.

Creating a Graph

Lists, stacks, queues, and trees are all just holding containers. The user chooses which is
most appropriate for a particular problem. There are no inherent semantics other than
those built into the retrieval process: A stack returns the item that has been in the stack the
least amount of time; a queue returns the item that has been in the queue the longest
amount of time. Lists and trees return the information that is requested. A graph, in
contrast, has algorithms defined upon it that actually solve classic problems. First we talk
about building a graph; then we discuss problems that are solvable using a graph.

A lot of information is represented in a graph: the vertices, the edges, and the weights.
Let’s visualize the structure as a table using the flight connection data. The rows and
columns in TABLE 8.3 are labeled with the city names. A zero in a cell indicates that there
is no flight from the row city to the column city. The values in the table represent the
number of miles from the row city to the column city.

TABLE 8.3 Data for the Flight Graph

Atlanta  Austin  Chicago Dallas Denver Houston Washington

Atlanta 0 0 0 0 0 800 600
Austin 0 0 0 200 0 160 0
Chicago 0 ] 0 0 1000 0 0
Dallas 0 200 S00 0 780 0 0
Denver 1400 0 1000 0 0 0 0
Houston 200 Q0 Q 0 Q0 Q0 Q0
Washington &00 0 0 1300 0 0 0

To build such a table we must have the following operations:

m Add a vertex to the table
m Add an edge to the table
m Add a weight to the table

We find a position in the table by stating the row name and the column name. That is,
(Atlanta, Houston) has a flight of 800 miles. (Houston, Austin) contains a zero, so there
is no direct flight from Houston to Austin.

Graph Algorithms
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There are three classic searching algorithms defined on a graph, each of which answers a
different question.

m Can I get from City X to City Y on my favorite airline?
m How can I fly from City X to City Y with the fewest number of stops?
m What is the shortest flight (in miles) from City X to City Y?

The answers to these three questions involve a depth-first search, a breadth-first search, and
a single-source shortest-path search.

Depth-First Search

Can I get from City X to City Y on my favorite airline? Given a starting vertex and an
ending vertex, let’s develop an algorithm that finds a path from startVertex to endVertex.
We need a systematic way to keep track of the cities as we investigate them. Let’s use a stack
to store vertices as we encounter them in trying to find a path between the two vertices.
With a depth-first search, we examine the first vertex that is adjacent with start-Vertex; if
this is endVertex, the search is over. Otherwise, we examine all the vertices that can be
reached in one step from this first vertex.

Meanwhile, we need to store the other vertices that are adjacent with startVertex to
use later if we need them. If a path does not exist from the first vertex adjacent with
startVertex, we come back and try the second vertex, third vertex, and so on. Because we
want to travel as far as we can down one path, backtracking if endVertex is not found, a
stack is the appropriate structure for storing the vertices.

Who needs banks?

A lending club is an online financial community that brings together borrowers and investors. Investment clubs
have existed for a long time, but now the Internet enables people who have never met to form clubs. Lending clubs
invest in real estate, software companies, and small businesses. Lending Club, the largest such club in the United
States, is headed for an initial public offering in 2014. Along with PayPal, lending clubs are attempting to bring

down borrowing costs for Main Street businesses that don’t qualify for bank loans.”

We mark a vertex as visited once we have put all its adjacent vertices on the stack. If we
process a vertex that has already been visited, we keep putting the same vertices on the stack
over and over again. Then the algorithm isn’t an algorithm at all because it might never
end. So we must not process a vertex more than once.

Let’s apply this algorithm to the sample airline-route graph in Figure 8.10(b). We want
to fly from Austin to Washington. We initialize our search by pushing our starting city
onto the stack (FIGURE 8.11(a)). At the beginning of the loop, we pop the current city,
Austin, from the stack. The places we can reach directly from Austin are Dallas and
Houston; we push both these vertices onto the stack (FIGURE 8.11(b)). At the beginning
of the second iteration, we pop the top vertex from the stack—Houston. Houston is not
our destination, so we resume our search from there. There is only one flight out of
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Houston, to Atlanta; we push Atlanta onto the stack (FIGURE 8.11(c)). Again we pop
the top vertex from the stack. Atlanta is not our destination, so we continue searching
from there. Atlanta has flights to two cities: Houston and Washington.

Depth First Search(startVertex, endVertex)

Set found to FALSE
Fush(myStack, startVertex)
WHILE (NOT IsEmpty(myStack) AND NOT found)
Fop(myStack, tempVertex)
IF (tempVertex equals endVertex)
Write endVertex
Set. found to TEUE
ELSE IF (tempVertex not visited)
Write tempVertex
Fush all unvisited vertices adjacent with tempVertex
Mark tempVertex as visited
IF (found)
Write “Fath has been printed”
ELSE
Write "Fath does not exist”

M Stack ’ﬂl!ja Stack ""'im Stack
Stack | B PR RN PR T e g e
— Oay e Qe
SR O 0 g0 0 g o 0 g 0
@ (6) © )

FIGURE 8.11 Using a stack to store the routes

But we just came from Houston! We don’t want to fly back to cities that we have
already visited; this could cause an infinite loop. But we have already taken care of this
problem: Houston has already been visited, so we continue without putting anything on
the stack. The second adjacent vertex, Washington, has not been visited, so we push it onto
the stack (FIGURE 8.11(d)). Again we pop the top vertex from the stack. Washington is
our destination, so the search is complete.

FIGURE 8.12 shows the result of asking if we can reach Washington from Austin.

This search is called a depth-first search because we go to the deepest branch, examining
all the paths beginning at Houston before we come back to search from Dallas. When you
have to backtrack, you take the branch closest to where you dead-ended. That is, you go as
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far as you can down one path before you take alternative choices at earlier branches.

Breadth-First Search

How can you get from City X to City Y with the fewest number of stops? The breadth-first
traversal answers this question. When we come to a dead end in a depth-first search, we
back up as little as possible. We try another route from the most recent vertex—the route
on top of our stack. In a breadth-first search, we want to back up as far as possible to find a
route originating from the earliest vertices. The stack is not the right structure for finding
an early route. It keeps track of things in the order opposite of their occurrence—that is,
the latest route is on top. To keep track of things in the order in which they happen, we use
a queue. The route at the front of the queue is a route from an earlier vertex; the route at
the back of the queue is from a later vertex. Thus, if we substitute a queue for a stack, we
get the answer to our question.

Dallas
start ] B = ]
here > [ Austin’{ _ Washington |
Denver | Atlanta

Chicago
' Houston

FIGURE 8.12 The depth-first search
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Ereadth First Search(startVertex, endVertex)

Set found to FALSE
Enque(myQueue, startVertex)
WHILE (NOT IsEmpty(myQueue) AND NOT found)
Deque(myCueue, tempVertex)
IF (tempVertex equals endVertex)
Write endVertex
Set found to TRUE
ELSE IF (tempVertex not visited)
Write tempVertex

Enque all urvisited vertices adjacent with tempVertex
Mark tempVertex as visited
IF (found)
Write "Fath has been printed’

ELSE
Write "Fath does not exist”

Let’s apply this algorithm to the same airline-route graph in Figure 8.10(b). Which
path gives us the route from Austin to Washington with the fewest stops? Austin is in the
queue to start the process (FIGURE 8.13(a)). We deque Austin and enqueue all the cities
that can be reached directly from Austin: Dallas and Houston (FIGURE 8.13(b)). Then
we dequeue the front queue element. Dallas is not the destination we seek, so we enqueue
all the adjacent cities that have not yet been visited: Chicago and Denver (FIGURE
8.13(c)). (Austin has been visited already, so it is not enqueued.) Again we dequeue the
front element from the queue. This element is the other “one-stop” city—Houston.
Houston is not the desired destination, so we continue the search. There is only one flight
out of Houston, and it is to Atlanta. Because we haven’t visited Atlanta before, it is
enqueued (FIGURE 8.13(d)).

Now we know that we cannot reach Washington with one stop, so we start examining
the two-stop connections. We dequeue Chicago; this is not our destination, so we put its
adjacent city, Denver, into the queue (FIGURE 8.13(e)). Now this is an interesting
situation: Denver is in the queue twice. We have put Denver into the queue in one step and
removed its previous entry at the next step. Denver is not our destination, so we put its
adjacent cities that haven’t been visited (only Atlanta) into the queue (FIGURE 8.13(f)).
This processing continues until Washington is put into the queue (from Atlanta), and is
finally dequeued. We have found the desired city, and the search is complete (FIGURE
8.14).
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FIGURE 8.13 Using a queue to store the routes
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FIGURE 8.14 The breadth-first search

As you can see from these two algorithms, a depth-first search goes as far down a path
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from startVertex as it can before looking for a path beginning at the second vertex
adjacent with startVertex. In contrast, a breadth-first search examines all of the vertices
adjacent with startVertex before looking at those adjacent with these vertices.

Single-Source Shortest-Path Search

What is the shortest flight (in miles) from Austin to some other city? We know from the
two search operations just discussed that there may be multiple paths from one vertex to
another. Suppose we want to find the shortest path from Austin to each of the other cities
that your favorite airline serves. By “shortest path,” we mean the path whose edge values
(weights), when added together, have the smallest sum. Consider the following two paths
from Austin to Washington:

Austin
} 200 miles
Austin [allas =
160 miles } 780 miles
Houston Derver
800 miles }141}0 miles
Atlanta Atlanta
600 miles 600 miles
Washington Washington
Total miles: 1560 Total miles: 2980

Clearly the first path is preferable, unless you want to collect frequent-flyer miles.

Let’s develop an algorithm that displays the shortest path from a designated starting city
to every other city in the graph—this time we are not searching for a path between a starting
city and an ending city. As in the two graph searches described earlier, we need an auxiliary
structure for storing cities that we process later. By retrieving the city that was most recently
put into the structure, the depth-first search tries to keep going “forward.” It tries a one-
flight solution, then a two-flight solution, then a three-flight solution, and so on. It
backtracks to a fewer-flight solution only when it reaches a dead end. By retrieving the city
that had been in the structure the longest time, the breadth-first search tries all one-flight
solutions, then all two-flight solutions, and so on. The breadth-first search finds a path with
a minimum number of flights.

Of course, the minimum number of flights does not necessarily mean the minimum
total distance. Unlike the depth-first and breadth-first searches, the shortest-path traversal
must account for the number of miles (edge weights) between cities in its search. We want
to retrieve the vertex that is closest to the current vertex—that is, the vertex connected with
the minimum edge weight. In the abstract container called a priority queune, the item that is
retrieved is the item in the queue with the highest priority. If we let miles be the priority,
we can enqueue items made up of a record that contains two vertices and the distance
between them.

This algorithm is far more complex than we have seen before, so we stop at this point.

296



However, the mathematically adventurous reader may continue to pursue this solution.

8.7 Subprograms

When we examined recursion, we introduced the concept of a named subalgorithm. Here
we look at these in the nonrecursive context and discuss how we pass information back and
forth between algorithm and subalgorithm. Because we are talking about actual language
constructs, we call these structures subprograms rather than subalgorithms.

Many subprograms are available as part of a high-level language or as part of the library
that comes with the language. For example, mathematical problems often need to calculate
trigonometric functions. Subprograms that calculate these values are available in most high-
level languages in one way or another. When a program needs to calculate one of these
values, the programmer looks up the name of the subprogram that calculates the value and
just calls the subprogram to perform the calculation.

If one of these subprograms needs to have information passed to it, the calling unit
sends over the values for the subprogram to use. For example, the following two statements
set x to m times the sine function of t and y to the absolute value of z. The sine function
and the absolute value function are built into many languages. The information sent to the
sine function is t; the information sent to the absolute value function is z. Both of these
functions are value-returning subprograms.

The same is true when you write your own subprograms. We now look at the
mechanism used for passing information back and forth between the calling program and
subprogram.

We have assumed these capabilities in the algorithms relating to the abstract data types
we have examined. Take, for example, the following list algorithm:

WHILE (more data)
Read value
Insert{mylist, value)
Reset(mylist)
Write “ltems in the list are”
WHILE (Moreltems(mylList))
GetNext(mylist, nextltem)

Write nextltem, ™
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Insert needs a list and a value to insert into it. Reset needs the list to reset. Moreltems
needs the list to see if more items remain to be returned. GetNext needs the list as input
and returns the next item in the list. This communication is done through the concept of a
parameter list.

Parameter Passing

A parameter list is a list of the identifiers or values with which the subprogram is to work;
it appears in parentheses beside the subprogram name. Because a subprogram is defined
before it is called, it does not know with which variables from the calling unit it is to work.
To solve this dilemma, we specify a list of variable names in parentheses beside the
subprogram name. These identifiers are called parameters. When the subprogram is called,
the calling unit lists the subprogram name, followed by a list of identifiers in parentheses.
These identifiers are called arguments. The arguments represent actual variables in the
calling unit with which the subprogram is to work.

Parameter list A mechanism for communicating between two parts of a program
Parameters The identifiers listed in parentheses beside the subprogram name; sometimes called formal paramerers

Arguments The identifiers listed in parentheses on the subprogram call; sometimes called actual parameters

You can think of a parameter as being a temporary identifier that is used within a
subprogram. When a subprogram is called, the calling unit sends the names of the actual
identifiers the subprogram is to use. The action in the subprogram is defined using the
parameters; the action is executed using the arguments. When the action takes place, the
arguments are substituted one by one for the parameters. This substitution can be done in
several ways, but the most common practice is by position. The first argument substitutes
for the first parameter, the second argument substitutes for the second parameter, and so
on.

We have promised not to look at too many implementations, but this one is easy. We
can implement a list using an array and a length field. When we add an item to the list, we
store it in the array (values) at the length — 1 position and increment length. We bind the
values and the length together into a record called list, which we pass to the subprogram
that needs it.

In=artllict tor)
nsert{ist, 2m)

Set list.values[list.lenath - 1] to item
g

Set list.length to list.length + 1

Insert.(mylist, value)

list is the parameter and mylist is the argument. When Insert is executed, myList replaces

298



list.

The substitution mechanism acts much like a message board. When a subprogram is
called, a list of the arguments is given to the subprogram (put on the subprogram’s message
board). These arguments tell the subprogram where to find the values to use. When a
parameter is used in the body of the subprogram, the subprogram accesses the argument
through its relative position on the message board. That is, the subprogram looks for its
first parameter in the first position on the message board and for its second parameter in
the second position on the message board. See FIGURE 8.15.

The number of arguments in the call must match the number of parameters in the
subprogram heading. Because the arguments and parameters are matched by position, their
names don’t have to be the same. This is very helpful when a subprogram is called more
than once, with different arguments in each call. Parameters passed in this fashion are often
called positional parameters.

2

Hackers and crackers

The word hacker used to be complimentary, describing a programmer who could write very sophisticated programs
almost overnight. Then the term came to refer to someone tinkering with programs with malicious intent. Now
cracker refers to the person with malicious intent, and hacker has returned to its original definition.

List Parameter list

FIGURE 8.15 Passing parameters

Value and Reference Parameters

There are two basic ways of passing parameters: by value and by reference (or address). If a
parameter is a value parameter, the calling unit gives a copy of the argument to the
subprogram. If a parameter is a reference parameter, the calling unit gives the address of
the argument to the subprogram. This very fundamental difference means that a
subprogram cannot change the content of a value argument because it receives only a copy
of the argument. The subprogram can modify the copy, but the original variable will not be
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changed. In contrast, any argument passed by the calling unit to a reference parameter can
be changed by the subprogram because the subprogram manipulates the actual variable, not
a copy of it. In the previous example, the record being passed as list must be a reference
parameter. If it is not, items would be inserted into the copy, not the original.

Value parameter A parameter that expects a copy of its argument to be passed by the calling unit (put on the
message board)

Reference parameter A parameter that expects the address of its argument to be passed by the calling unit (put on
the message board)

Think of the difference this way: To access a reference parameter, the subprogram
accesses the contents of the address listed on the message board. To access a value
parameter, the subprogram accesses the contents of the message board. Clearly, both the
calling unit and the subprogram must know which parameter/argument is to be passed by
value and which is to be passed by reference. Not all high-level languages allow both kinds
of parameters, but those that do have some syntactic schemes to label parameters as value or
reference.

Before we leave subprograms, let’s look at an example that illustrates the difference
between value and reference parameters. We have already written an algorithm that swaps
the contents of two places in memory. Here is the solution without problem-dependent
variable names:

Set temp to item2
Setitem?Z to item

Setitem to temp

Now suppose that the calling unit (the part of the program that wants the contents of
the two places exchanged) calls Swap with datal and dataZ2 as parameters.

Swap(datal, dataZ2)

Now let’s say that datal is stored in location 0002 and dataZ2 is stored in location
0003. These locations contain the values 30 and 40, respectively. FIGURE 8.16 shows the
content of the message board when the parameters are passed by value and passed by
reference. When a parameter is a value parameter, the subprogram knows to manipulate the
value on the message board. When a parameter is a reference parameter, the subprogram
knows to manipulate the contents of the address on the message board. Should the
parameters for subprogram Swap be value or reference parameters?
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Message board
Calling unit 30 (data)
0002: 30 40 (data2)
0003: 40
&
&
)
Message board
Swap(datal, data2) = | D002 (datal)
By reference o003 [ﬂ.?_'{?zl

FIGURE 8.16 The difference between value parameters and reference parameters

Before we leave the topic of subprograms and parameters, let’s implement three more of
the list subprograms: getlLength, IsThere, and Delete. If the list items are not to be kept in
sorted order, we can just put the first one in the length position and increment length. For
this example, let’s assume that only one copy of item can be in the list.

getLength(list)

RETUEN list.length

IsThere(list, item)

Set position to O

WHILE (position < list.length AND list.values[position] = item)
Set position to position + 1

RETURN pesition < list.length

lsThere is a subprogram that returns a value—in this case a Boolean value. Thus it
would be used in an expression such as

IF (IsThere(mylist, item))
Write item "is in the list”

This type of subprogram is called a value-returning subprogram. Delete and Insert, in
contrast, do not return a specific value. However, they do return the changed list through
its parameters. If we assume that the item to be deleted is in the list, the implementation is
simple: When we find the item to be deleted, we just exchange it with the last item in the
list and decrement length.
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;
Delete(list, item)

Set position to 1
WHILE (list.values[position] |= item)

Set position to position + 1
Swap(list.values(list.lenath - 1], list.values[position])
Set list.length to listlength - 1

IsThere can be used to make sure that the item to be deleted is in the list.

IF (IsThere(myList, item))
Delete(mylist, item)

Value-returning subprograms include the RETURN statement followed by a value to be
returned. Non-value-returning subprograms may have a RETURN statement, but it is
unnecessary. To conclude this section, here is a code segment that reads values into the list

and then deletes some values:

WHILE (more values)
Read aValue
IF (NOT IsThere(list, aValue))
Insert(list, aValue)
Write “Input values to delete or "Quit” to quit”
Read aValue
IF (aValue |= "Quit")
IF (IsThere(list, aValue))
Delete(list, aValue)

SUMMARY

Lists, stacks, queues, trees, and graphs are all useful abstract composite structures. Each has

its own defining property and the operations that guarantee that property. All of these
abstract structures include operations to insert items and to remove items. Lists and trees
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also have operations to find items within the structure.

Lists and trees have the same properties: Items can be inserted, deleted, and retrieved.
Items can be inserted in a stack, but the item removed and returned is the last item inserted
into the stack—that is, the item that has been in the stack the shortest time. Items can be
inserted into a queue, but the item removed and returned is the first item put into the
queue—that is, the item that has been in the queue the longest time.

Lists, stack, queues, and trees are merely holding structures, but graphs are more
complex. A wealth of mathematical algorithms can be applied to information in a graph.
We examined three of these: the breadth-first search, the depth-first search, and the single-
source shortest-path search.

Subprogram statements allow subalgorithms to be implemented independently. A
subprogram may be value returning, in which case it is called by placing its name and
arguments within an expression. Alternatively, a subprogram may be non-value returning
(void), in which case the subprogram name is used as a statement in the calling program.
Data sent to and from subprograms are transmitted by the use of parameter lists.
Parameters may be either reference or value parameters. An argument is passed to a value
parameter by sending a copy of the argument to the subprogram. An argument is passed to
a reference parameter by sending the address of the argument to the subprogram.

ETHICAL ISSUES

Workplace Monitoring*®

The same privacy rights employees enjoy at home or in the marketplace do nor extend to
the workplace. Employees think conversations around the water cooler or on the phone
at work are private. Usually, they’re wrong. While they may know how to secure their
Internet connections and phones at home, there is little they can do to ensure
themselves the same privacy at work. An increasing number of employers are now using
technology to monitor the workplace. Keystroke programs can gather and record every
keystroke typed on a computer. Phones can be monitored and calls recorded. Some
employers have installed cameras and audio devices that record conversations. There is
even software that triggers a video scan of a cubicle if the keyboard has been idle for a
certain length of time.

Recent surveys show that a majority of employers monitor their employees. A 2007
survey by the American Management Association’s ePolicy Institute found that 65% of
companies used software to block connections to inappropriate websites—a 27%
increase since 2001. The number of employers that monitored the amount of time
employees spent on the phone and tracked the numbers called also increased. Twenty-
eight percent of employers have fired workers for email misuse. The realization that
email creates a written business record that is the electronic equivalent of DNA evidence
has fueled the increase in workplace monitoring.

Advocates of these practices hail these results as good news. The computers, phones,
and physical space belong to the employer, after all, and are provided to the employees
for use in their jobs. After discovering workers surfing the Internet, downloading
pornography, and using email to harass others or chat with friends, businesses realized
that the same technology that allows such behavior can be used to monitor it. Employee
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Internet monitoring (EIM) has become a big business.

Although only two states (Delaware and Connecticut) require employers to notify
employees of monitoring, most do. Still, privacy advocates say the trend has gone too
far. Approximately 26% of the employers surveyed in 2005 had fired workers for misuse
of the Internet, while 25% had fired employees for email misuse; 6% of employers had
even fired workers for misuse of the office phone.

Opponents of the monitoring technologies point out that people are not machines.
They must take breaks and feel that they have some control over their environment to
be productive, satisfied employees. Knowing that personal phone calls, hallway
conversations, and email are monitored injects feelings of resentment and apathy into
the workplace. Who wants Big Brother for an office mate?

Among the safeguards called for by privacy advocates are federal regulations,
notification and training of employees on the various monitoring methods used, and
limits of monitoring to cases where employers have cause to be suspicious of an
employee. However, lawmakers have chosen not to intervene. They point to the very
real considerations of company security and the right of employers to monitor what goes
on at the workplace.

KEY TERMS

Abstract data type (ADT)
Adjacent vertices
Arguments

Binary tree

Containers

Data structure

Directed graph (digraph)
Edge (arc)

Graph

Leaf node

Linked structure
Parameter list
Parameters

Path

Reference parameter
Root

Undirected graph

Value parameter

Vertex

EXERCISES
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Exercises 1-10, indicate which structure would be a more suitable choice for each of
following applications by marking them as follows:

A. Stack

B. Queue

C. Tree

D. Binary search tree

E. Graph
. A bank simulation of its teller operation to see how waiting times would be
affected by adding another teller.
A program to receive data that is to be saved and processed in the reverse order.
An electronic address book, kept ordered by name.
A word processor with a PF key that causes the preceding command to be
redisplayed; every time the PF key is pressed, the program is to show the command
that preceded the one currently displayed.
A dictionary of words used by a spell checker to be built and maintained.
A program to keep track of patients as they check into a medical clinic, assigning
patients to doctors on a first-come, first-served basis.
. A program keeping track of where canned goods are located on a shelf.
. A program to keep track of the soccer teams in a city tournament.
A program to keep track of family relationships.
. A program to maintain the routes in an airline.

Exercises 11-30, mark the answers true or false as follows:
A. True
B. False
A binary search cannot be applied to a tree.
A stack and a queue are different names for the same ADT.
A stack displays FIFO behavior.
A queue displays LIFO behavior.
A leaf in a tree is a node with no children.
A binary tree is a tree in which each node can have zero, one, or two children.
Binary search tree is another name for a binary tree.
The value in the right child of a node (if it exists) in a binary search tree will be
greater than the value in the node itself.
The value in the left child of a node (if it exists) in a binary search tree will be
greater than the value in the node itself.
In a graph, the vertices represent the items being modeled.
Algorithms that use a list must know whether the list is array based or linked.
A list may be linear or nonlinear, depending on its implementation.
The root of a tree is the node that has no ancestors.
Binary search trees are ordered.
On average, searching in a binary search tree is faster than searching in an array-
based list.
On average, searching in a binary search tree is faster than searching in a list.
A binary search tree is always balanced.
Given the number of nodes and the number of levels in a binary search tree, you
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can determine the relative efficiency of a search in the tree.
29. Insertion in a binary search tree is always into a leaf node.
30. A binary search tree is another implementation of a sorted list.

The following algorithm (used for Exercises 31-33) is a count-controlled loop going
from 1 through 5. At each iteration, the loop counter is either printed or put on a stack
depending on the result of Boolean function RanFun(). (The behavior of RanFun() is
immaterial.) At the end of the loop, the items on the stack are popped and printed.
Because of the logical properties of a stack, this algorithm cannot print certain sequences
of the values of the loop counter. You are given an output and asked if the algorithm

could generate the output. Respond as follows:
A. True

B. False
C. Not enough information

Set count to O
WHILE (count. < 5)
Set count to count + 1
IF (RanFun()
Write count, ™
ELSE
Fush(myStack, count)
WHILE (NOT IsEmpty(myStack))
Fop(myStack, number)

Write number,

31. The following output is possible using a stack: 1 3 5 2 4.
32. The following output is possible using a stack: 1 3 5 4 2.
33. The following output is possible using a stack: 1 35 1 3.

The following algorithm (used for Exercises 34—30) is a count-controlled loop going
from 1 through 5. At each iteration, the loop counter is either printed or put on a queue
depending on the result of Boolean function RanFun(). (The behavior of RanFun() is
immaterial.) At the end of the loop, the items on the queue are dequeued and printed.
Because of the logical properties of a queue, this algorithm cannot print certain
sequences of the values of the loop counter. You are given an output and asked if the

algorithm could generate the output. Respond as follows:
A. True

B. False
C. Not enough information
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Set count to O
WHILE (count < 5)
Set count to count + 1
IF (RanFun(})
Write count, "’
ELSE
Enqueue(myQueue, count)
WHILE (NOT IsEmpty(myQueue))
Dequeue(myQueue, number)
Write number, ™

34. The following output is possible using a queue: 1 3 5 2 4.
35. The following output is possible using a queue: 1 3 5 4 2.
36. The following output is possible using a queue: 1 3 51 3.

Exercises 37-50 are short-answer questions.
37. What is written by the following algorithm?

Push(myStack, 5)
Push(myStack, 4)
Push(myStack, 4)
Fop(myStack, item)
Fop(myStack, item)
Push({myStack, item)
WHILE (NOT IsEmpty(myStack))
Fop(myStack, item)
Write item,*’

38. What is written by the following algorithm?
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.

hqueue(myGueue, 5)

Enqueue(myGueue, 4)

Enqueue(myGlueue, 4)

Dequeue(myQueue, item)

Dequeue(myQueue, item)

E

1 B i )
nqueue(myCGlueue, item)

WHILE (NOT IsEmpty(myClueue))

Dequeue(myQueue, item)
Write item, "’

39

40.

41.
42.

43,

44,
45.

40.

47.

48.

49.

. Write an algorithm that sets bottom equal to the last element in the stack, leaving
the stack empty.

Write an algorithm that sets bottom equal to the last element in the stack, leaving
the stack unchanged.

Write an algorithm to create a copy of myStack, leaving myStack unchanged.
Write an algorithm that sets last equal to the last element in a queue, leaving the
queue empty.

Write an algorithm that sets last equal to the last element in a queue, leaving the
queue unchanged.

Werite an algorithm to create a copy of myQueue, leaving myQueue unchanged.
Write an algorithm replace that takes a stack and two items. If the first item is in
the stack, replace it with the second item, leaving the rest of the stack unchanged.
Write an algorithm replace that takes a queue and two items. If the first item is in
the queue, replace it with the second item, leaving the rest of the queue unchanged.
Draw the binary search tree whose elements are inserted in the following order:

50 7296 107261211921025511617 95

If Print is applied to the tree formed in Exercise 47, in which order would the
elements be printed?

Examine the following algorithm and apply it to the tree formed in Exercise 47. In
which order would the elements be printed?

=]
I

rint Z{tree

IF (tree is NOT null)

Print{right(tree))
Write info(tree)
Print(left(tree))

50

. Examine the following algorithm and apply it to the tree formed in Exercise 47. In

which order would the elements be printed?
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FPrint3(tree)

IF (tree is NOT null)
Print(right({tree))
Print(left(tree))
Write info(tree)

Exercises 51-55 are short-answer questions based on the following directed graph.

: amgu\
“‘“-___ Alaska
i

|
I|
‘ EE

. ~ calfornia |

51. Is there a path from Oregon to any other state in the graph?
52. Is there a path from Hawaii to every other state in the graph?
53. From which state(s) in the graph is there a path to Hawaii?
54. Show the table that represents this graph.

55. Can you get from Vermont to Hawaii?

Exercises 56—60 are short-answer questions based on the following directed graph.

56. Show the depth-first traversal from
Jean to Sandler.

57. Show the depth-first traversal from
Lance to Darlene.
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58

59

60

. Show the breadth-first traversal from
Jean to Sandler.

. Show the breadth-first traversal from
Lance to Darlene.

. Show the table that represents this graph.

Exercises 61—69 are short-answer exercises.

61

62

63

64.

65.

60.

67.

68.
69.

. Given the record List containing the array values and the variable length, write the
algorithm for GetlLength.

. Assume that record List has an additional variable currentPosition, initialized to
the first item in the list. What is the initial value of currentFPosition?

. Write the algorithm for Moreltems, which returns TRUE if there are more items in

the list and FALSE otherwise.

Write the algorithm for GetNext(mylist, item) so that item is the next item in

the list. Be sure to update currentFosition.

Exercises 61-64 create the algorithms that allow the user of a list to see the items

one at a time. Write the algorithm that uses these operations to print the items in a

list.

What happens if an insertion or deletion occurs in the middle of an iteration

through the list? Explain.

Can you think of a way to keep the user from doing an insertion or deletion

during an iteration?

Distinguish between value and reference parameters.

How are arguments and parameters matched?

THOUGHT QUESTIONS

1

3.

. A spreadsheet is a table with rows and columns. Think about an ADT spreadsheet.

Which operations would you need to construct the table? Which operations would
you need to manipulate the values in the table?

Binary trees, binary search trees, and graphs are visualized as nodes and arrows
(pointers) that represent the relationships between nodes. Compare these structures
in terms of the operations that are allowed. Can a list ever be a tree? Can a tree ever
be a list? Can a tree ever be a graph? Can a graph ever be a tree? How do the
structures all relate to one another?

Before computers, water-cooler conversations were thought to be private. How has
computer technology changed this assumption?

4. How do the rights of employees collide with privacy rights in the workplace?
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THE PROGRAMMING LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits

5 Computing Components
The Programming Layer

6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages
The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer

15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion

18 Limitations of Computing
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9 OBJECT-ORIENTED DESIGN AND
HIGH-LEVEL PROGRAMMING
LANGUAGES

In Chapter 1, we examined how the layers of languages were built up over time around the
hardware to make computing easier for the applications programmer. In Chapter 6, we
looked at machine code and then at an assembly language that allows the programmer to
use mnemonics to represent instructions rather than numbers.

Assembly languages are a step in the right direction, but the programmer still must
think in terms of individual machine instructions. To overcome this obstacle, we
introduced pseudo code as an informal way to describe algorithms; pseudo code is closer to
how humans think and communicate. High-level programming languages are a very formal
way of accomplishing the same thing. Because computers can execute only machine code,
translators were developed to translate programs written in these high-level languages into
machine code.

GOALS
After studying this chapter, you should be able to:

distinguish between functional design and object-oriented design.

describe the stages of the object-oriented design process.

apply the object-oriented design process.

name, describe, and give examples of the three essential ingredients of an object-oriented language.

describe the translation process and distinguish between assembly, compilation, interpretation, and execution.
name four distinct programming paradigms and give a language characteristic of each.

define the concepts of data type and strong typing.

understand how the constructs of top-down design and object-oriented design are implemented in programming
languages.

Before we look at high-level languages, we make a detour to look at object-oriented
design. Object-oriented design is another way of looking at the design process, which views
a program from the standpoint of data rather than tasks. Because the functionality
associated with this design process is often incorporated into high-level programming
languages, we need to understand this design process before looking at specific high-level
languages.
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9.1 Object-Oriented Methodology

We cover top-down design first because it more closely mirrors the way humans solve
problems. As you saw earlier in this book, a top-down solution produces a hierarchy of
tasks. Each task or named action operates on the data passed to it through its parameter list
to produce the desired output. The tasks are the focus of a top-down design. Object-
oriented design, by contrast, is a problem-solving methodology that produces a solution to
a problem in terms of self-contained entities called objects, which are composed of both data
and operations that manipulate the data. Object-oriented design focuses on the objects and
their interactions within a problem. Once all of the objects within the problem are collected
together, they constitute the solution to the problem.

In this process, Polya’s principles of problem solving are applied to the data rather than
to the tasks.

2

It’s in! No, it’s out!

Have you ever watched a tennis match on television in which a player asks for confirmation of a line call? On a big
screen, you can see the path of the ball and the point of impact that shows whether the ball was in or out. How do
they do it? By computer, of course. One system uses four high-speed digital cameras with computer software that
can track a ball, determine its trajectory, and map its impact point. These cameras are connected to one another
and to a main computer using wireless technology.

Object Orientation

Data and the algorithms that manipulate the data are bundled together in the object-
oriented view, thus making each object responsible for its own manipulation (behavior).
Underlying object-oriented design (OOD) are the concepts of classes and objects.

An object is a thing or entity that makes sense within the context of the problem. For
example, if the problem relates to information about students, a student would be a
reasonable object in the solution. A group of similar objects is described by an object class
(or class for short). Although no two students are identical, students do have properties
(data) and behaviors (actions) in common. Students are male or female humans who attend
courses at a school (at least most of the time). Therefore, students would be a class. The
word class refers to the idea of classifying objects into related groups and describing their
common characteristics. That is, a class describes the properties and behaviors that objects
of the class exhibit. Any particular object is an inszance (concrete example) of the class.

Object An entity or thing that is relevant in the context of a problem

Object class (class) A description of a group of objects with similar properties and behaviors

Object-oriented problem solving involves isolating the classes within the problem.
Objects communicate with one another by sending messages (invoking one another’s
subprograms). A class contains fields that represent the properties and behaviors of the
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class. A field can contain data values and/or methods (subprograms). A method is a named
algorithm that manipulates the data values in the object. A class in the general sense is a
pattern for what an object looks like (data) and how it behaves (methods).

Fields Named items in a class; can be data or subprograms

Method A named algorithm that defines one aspect of the behavior of a class

Design Methodology

The decomposition process that we present involves four stages. Brainstorming is the stage
in which we make a first pass at determining the classes in the problem. Filtering is the stage
in which we go back over the proposed classes determined in the brainstorming stage to see
if any can be combined or if any are missing. Each class that survives the filtering stage is
examined more carefully in the next stage.

Scenarios is the stage in which the behavior of each class is determined. Because each
class is responsible for its own behavior, we call these behaviors responsibilities. In this stage,
“what if” questions are explored to be sure that all situations are examined. When all of the
responsibilities of each class have been determined, they are recorded, along with the names
of any other classes with which the class must collaborate (interact) to complete its
responsibility.

Responsibility algorithms is the last stage, in which the algorithms are written for the
responsibilities for each of the classes. A notation device called a CRC card is a handy way
to record the information about each class at this stage.

Let’s look at each of these stages in a little more detail.

Brainstorming

What is brainstorming? The dictionary defines it as a group problem-solving technique that
involves the spontaneous contribution of ideas from all members of the group.'
Brainstorming brings to mind a movie or TV show where a group of bright young people
tosses around ideas about an advertising slogan for the latest revolutionary product. This
picture seems at odds with the traditional picture of a computer analyst working alone in a
closed, windowless office for days who finally jumps up shouting, “Ah ha!” As computers
have gotten more powerful, the problems that can be solved have become more complex,
and the picture of the genius locked in a windowless room has become obsolete. Solutions
to complex problems need new and innovative solutions based on collective “Ah ha!”s—not
the work of a single person.

In the context of object-oriented problem solving, brainstorming is a group activity
designed to produce a list of possible classes to be used to solve a particular problem. Just as
the people brainstorming for an advertising slogan know something about the product
before the session begins, so brainstorming for classes requires that the participants know
something about the problem. Each team member should enter the brainstorming session
with a clear understanding of the problem to be solved. No doubt during the preparation,
each team member will have generated his or her own preliminary list of classes.
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Although brainstorming is usually a group activity, you can practice it by yourself on
smaller problems.

Filtering

Brainstorming produces a tentative list of classes. The next phase is to take this list and
determine which are the core classes in the problem solution. Perhaps two classes on the list
are actually the same thing. These duplicate classes usually arise because people within
different parts of an organization use different names for the same concept or entity. Also,
two classes in the list may have many common attributes and behaviors that can be
combined.

Some classes might not actually belong in the problem solution. For example, if we are
simulating a calculator, we might list the user as a possible class. In reality, the user is not
part of the internal workings of the simulation as a class; the user is an entity outside the
problem that provides input to the simulation. Another possible class might be the on
button. A little thought, however, shows that the oz button is not part of the simulation;
rather, it is what starts the simulation program running.

As the filtering is completed, the surviving list of classes is passed onto the next stage.

Scenarios

The goal of the scenarios phase is to assign responsibilities to each class. Responsibilities are
eventually implemented as subprograms. At this stage we are interested only in whar the
tasks are, not in how they might be carried out.

Two types of responsibilities exist: what a class must know about itself (knowledge) and
what a class must be able to do (behavior). A class encapsulates its data (knowledge), such
that objects in one class cannot directly access data in another class. Encapsulation is the
bundling of data and actions so that the logical properties of the data and actions are
separated from the implementation details. Encapsulation is a key to abstraction. At the
same time, each class has the responsibility of making data (knowledge) available to other
classes that need it. Therefore, each class has a responsibility to know the things about itself
that others need to be able to get. For example, a student class should “know” its name and
address, and a class that uses the student class should be able to “get” this information.
These responsibilities are usually named with “Get” preceding the name of the data—for
example, GetName or GetEmailAddress. Whether the email address is kept in the student
class or whether the student class must ask some other class to access the address is
irrelevant at this stage: The important fact is that the student class knows its own email
address and can return it to a class that needs it.

Encapsulation Bundling data and actions so that the logical properties of data and actions are separated from the
implementation details

The responsibilities for behavior look more like the tasks we described in top-down
design. For example, a responsibility might be for the student class to calculate its grade-

315



point average (GPA). In top-down design, we would say that a task is to calculate the GPA
given the data. In object-oriented design, we say that the student class is responsible for
calculating its own GPA. The distinction is both subtle and profound. The final code for
the calculation may look the same, but it is executed in different ways. In a program based
on a top-down design, the program calls the subprogram that calculates the GPA, passing
the student object as a parameter. In an object-oriented program, a message is sent to the
object of the class to calculate its GPA. There are no parameters because the object to
which the message is sent knows its own data.

The name for this phase gives a clue about how you go about assigning responsibilities
to classes. The team (or an individual) describes different processing scenarios involving the
classes. Scenarios are “what if” scripts that allow participants to act out different situations
or an individual to think through them.

The output from this phase is a set of classes with each class’s responsibilities assigned,
perhaps written on a CRC card. The responsibilities for each class are listed on the card,
along with the classes with which a responsibility must collaborate.

Responsibility Algorithms

Eventually, algorithms must be written for the responsibilities. Because the problem-solving
process focuses on data rather than actions in the object-oriented view of design, the
algorithms for carrying out responsibilities tend to be fairly short. For example, the
knowledge responsibilities usually just return the contents of one of an object’s variables or
send a message to another object to retrieve it. Action responsibilities are a little more
complicated, often involving calculations. Thus the top-down method of designing an
algorithm is usually appropriate for designing action responsibility algorithms.

Final Word

To summarize, top-down design methods focus on the process of transforming the input
into the output, resulting in a hierarchy of tasks. Object-oriented design focuses on the daza
objects that are to be transformed, resulting in a hierarchy of objects. Grady Booch puts it
this way: “Read the specification of the software you want to build. Underline the verbs if
you are after procedural code, the nouns if you aim for an object-oriented program.”

We propose that you circle the nouns and underline the verbs as a way to begin. The
nouns become objects; the verbs become operations. In a top-down design, the verbs are
the primary focus; in an object-oriented design, the nouns are the primary focus.

Now, let’s work through an example.

Example
Problem

Create a list that includes each person’s name, telephone number, and email address. This
list should then be printed in alphabetical order. The names to be included in the list are
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on scraps of paper and business cards.

Brainstorming and Filtering

Let’s try circling the nouns and underlining the verbs.

Create a(fisDthat includes each person'siamé)felephone number

andemail address> This(lishshould then be printed in alphabetical
(orden) Theqiamedto be included in the(lishare on@crapof
and businessccards)

The first pass at a list of classes would include the following:

| list |

|I narme

| telephone humber

| email address

Il list |
order ‘
names
list:
scraps |

i 2 i .

cards |

Three of these classes are the same: The three references to /st all refer to the container
being created. Order is a noun, but what is an order class? It actually describes how the list
class should print its items. Therefore, we discard it as a class. Name and names should be
combined into one class. Scraps, paper, and cards describe objects that contain the data in
the real world. They have no counterpart within the design. Our filtered list is shown
below:

[ list
I
name
|
| telephone number

| " .
email address

[
e — —_— —_— —_— B— —— —_ —_—

The verbs in the problem statement give us a headstart on the responsibilities: create,
print, and include. Like scraps, paper, and cards, include is an instruction to someone
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preparing the data and has no counterpart within the design. However, it does indicate that
we must have an object that inputs the data to be put on the list. Exactly what is this data?
It is the name, telephone number, and email address of each person on the list. But this
train of thought leads to the discovery that we have missed a major clue in the problem
statement. A possessive adjective, person’s, actually names a major class; name, telephone
number, and email address are classes that help define (are contained within) a person
class.

Now we have a design choice. Should the person class have a responsibility to input its
own data to initialize itself, or should we create another class that does the input and sends
the data to initialize the person class? Let’s have the person class be responsible for
initializing itself. The person class should also be responsible for printing itself.

Does the person class collaborate with any other class? The answer to this question
depends on how we decide to represent the data in the person class. Do we represent name,
telephone number, and email address as simple data items within the person class, or do
we represent each as its own class? Let’s represent name as a class with two data items,
firstName and lastName, and have the others be string variables in class person. Both
classes person and name must have knowledge responsibilities for their data values. Here
are the CRC cards for these classes.

Class Name: Fuson r Superclass: Subclasses:
Responsibilities G{:Ilabnrati;ans
Litialige tuell, (name, telephone, email) Nome, Stuing

Flint Tame, Stuing.

et mail Stuing,

C.?.tmw@ Name, St«mﬁ,

ngﬁ‘f ephone Stung

Class Name: Flame Superclass: Subclasses:
Responsibilities .ﬁéoliaburatibns
Lutialige itsell, (nstWame, bastHame) Stuing

Getefast Name Stung.

What about the list object? Should the list keep the items in alphabetical order, or
should it sort the items before printing them? Each language in which we might implement
this design has a library of container classes available for use. Let’s use one of these classes,

which keeps the list in alphabetical order. This library class should also print the list. We
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can create a CRC card for this class, but mark that it most likely will be implemented using
a library class.

4

Beware of pirated software

A 2013 study analyzed 270 websites and peer-to-peer networks, 108 software downloads, 155 CDs or DVDs, 2077
consumer interviews, and 258 interviews of I'T managers around the world. The results showed that of the
counterfeit software that does not ship with the computer, 45% is downloaded from the Internet. Of software
downloaded from websites or peer-to-peer networks, 78% include some type of spyware and 36% contain Trojans

and adware.

Class Name: Superclass: Subclasses:
SotedLust (from brarg)

Responsibilitias Collaborations

Tosent C.wwo»uj Fhnson

Pt ttrelf, Fhuson,

By convention, when a class reaches the CRC stage, we begin its identifier with an

uppercase letter.

Responsibility Algorithms

Person Class There are two responsibilities to be decomposed: initialize and print.
Because Name is a class, we can just let it initialize and print itself. We apply a subprogram
(method) to an object by placing the object name before the method name with a period in
between.

Initialize

name.initialize()

Write "Enter phone number; press returmn.”
Get telephone number

Write "Enter email address; press retumn.”

Get email address
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name.print()
Write "Telephone number: ", telephoneNumber
Write "Email address: ", emailAddress

Name Class This class has the same two responsibilities: initialize and print. However, the
algorithms are different. For the initialize responsibility, the user must be prompted to
enter the name and the algorithm must read the name. For the print responsibility, the first
and last names must be output with appropriate labels.

nitialize
“Enter the first hame; press return.”
Eead firstMame
“Enter the last name; press return.

Eead lastMame

E

Frint "First name: ", firstName

Frint "Last name: *, lastName

We stop the design at this point. Reread the beginning of Chapter 7, where we discuss
problem solving and the top-down design process. A top-down design produces a
hierarchical tree with tasks in the nodes of the tree. The object-oriented design produces a
set of classes, each of which has responsibilities for its own behavior. Is one better than the
other? Well, the object-oriented design creates classes that might be useful in other
contexts. Reusability is one of the great advantages of an object-oriented design. Classes
designed for one problem can be used in another problem, because each class is self-
contained; that is, each class is responsible for its own behavior.

You can think of the object-oriented problem-solving phase as mapping the objects in
the real world into classes, which are descriptions of the categories of objects. The
implementation phase takes the descriptions of the categories (classes) and creates instances
of the classes that simulate the objects in the problem. The interactions of the objects in the
program simulate the interaction of the objects in the real world of the problem. FIGURE
9.1 summarizes this process.
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Problem space of objects
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(descriptions of objects)
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(a) Problem-solving phase

Program space of objects

Class type definitions 1 oy

WEOX
|
X

(b) Implementation phase

FIGURE 9.1 Mapping of a problem into a solution

9.2 Translation Process

Recall from Chapter 6 that a program written in assembly language is input to the
assembler, which translates the assembly-language instructions into machine code. The
machine code, which is the output from the assembler, is then executed. With high-level
languages, we employ other software tools to help with the translation process. Let’s look at
the basic function of these tools before examining high-level languages.

Compilers

The algorithms that translate assembly-language instructions into machine code are very
simple because assembly languages are very simple. By “simple,” we mean that each
instruction carries out a fundamental operation. High-level languages provide a richer set of
instructions that makes the programmer’s life even easier, but because the constructs are
more abstract, the translation process is more difficult. Programs that translate programs
written in a high-level language are called compilers. In the early days of computer
programming, the output of a compiler was an assembly-language version of the program,
which then had to be run through an assembler to finally get the machine-language
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program to execute. As computer scientists began to have a deeper understanding of the
translation process, compilers became more sophisticated and the assembly-language phase

was often eliminated. See FIGURE 9.2.

Compiler A program that translates a high-level language program into machine code

A program written in a high-level language can run on any computer that has an
appropriate compiler for the language. A compiler is a program; therefore, a machine-code
version of the compiler must be available for a particular machine to be able to compile a
program. Thus, to be used on multiple types of machines, each high-level language must
have many compilers for that language.

Interpreters

An interpreter is a program that translates and executes the statements in sequence. Unlike
an assembler or compiler that produces machine code as output, which is then executed in
a separate step, an interpreter translates a statement and then immediately executes the
statement. Interpreters can be viewed as simulators or virtual machines that understand the
language in which a program is written. As Terry Pratt points out in his classic text on
programming languages, both a translator and a simulator accept programs in a high-level
language as input. The translator (assembler or compiler) simply produces an equivalent
program in the appropriate machine language, which must then be run. The simulator
executes the input program directly.

Interpreter A program that inputs a program in a high-level language and directs the computer to perform the
actions specified in each statement

Program in Program in
a high-level Input Compiler Output machine
language code

g
—_— \_/ —_—
FIGURE 9.2 Compilation process

Second-generation high-level languages came in two varieties: those that were compiled
and those that were interpreted. FORTRAN, COBOL, and ALGOL were compiled; Lisp,
SNOBOL4, and APL were interpreted. Because of the complexity of the software
interpreters, programs in interpreted languages usually ran much more slowly than
compiled programs. As a result, the trend was toward compiled languages—until the
adv