

World Headquarters
Jones & Bartlett Learning
5 Wall Street
Burlington, MA 01803
978-443-5000
info@jblearning.com
www.jblearning.com

Jones & Bartlett Learning books and products are available through most bookstores and online booksellers. To contact
Jones & Bartlett Learning directly, call 800-832-0034, fax 978-443-8000, or visit our website, www.jblearning.com.

Substantial discounts on bulk quantities of Jones & Bartlett Learning publications are available to corporations,
professional associations, and other qualified organizations. For details and specific discount information, contact
the special sales department at Jones & Bartlett Learning via the above contact information or send an email to
specialsales@jblearning.com.

Copyright © 2016 by Jones & Bartlett Learning, LLC, an Ascend Learning Company

All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form,
electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system,
without written permission from the copyright owner.

The content, statements, views, and opinions herein are the sole expression of the respective authors and not that of
Jones & Bartlett Learning, LLC. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement or recommendation by
Jones & Bartlett Learning, LLC and such reference shall not be used for advertising or product endorsement purposes.
All trademarks displayed are the trademarks of the parties noted herein. Computer Science Illuminated, Sixth Edition is
an independent publication and has not been authorized, sponsored, or otherwise approved by the owners of the
trademarks or service marks referenced in this product.

There may be images in this book that feature models; these models do not necessarily endorse, represent, or participate
in the activities represented in the images. Any screenshots in this product are for educational and instructive purposes
only. Any individuals and scenarios featured in the case studies throughout this product may be real or fictitious, but
are used for instructional purposes only.

06951-8

Production Credits
Publisher: Cathy L. Esperti
Acquisitions Editor: Laura Pagluica
Editorial Assistant: Taylor Ferracane
Director of Production: Amy Rose
Associate Production Editor: Sara Kelly
Associate Marketing Manager: Cassandra Peterson
Art Development Editor: Joanna Lundeen
Art Development Assistant: Shannon Sheehan
VP, Manufacturing and Inventory Control: Therese Connell
Composition: Cenveo Publisher Services
Cover Design: Kristin E. Parker
Rights and Photo Research Coordinator: Amy Rathburn
Cover Image: © Sergey Nivens/Shutterstock, Inc.
Printing and Binding: Courier Companies
Cover Printing: Courier Companies

Library of Congress Cataloging-in-Publication Data
Dale, Nell.

Computer science illuminated / Nell Dale, PhD, University of Texas-Austin, Department of Computer Science,
John A. Lewis, Virginia Tech. — Sixth edition.

 pages cm
Includes bibliographical references and index.
ISBN 978-1-284-05591-7 (pbk.) 1. Computer science. I. Lewis, John, 1963- II. Title.

4

QA76.D285 2015
004—dc23

2014032093

6048

Printed in the United States of America
19 18 17 16 15 10 9 8 7 6 5 4 3 2 1

mailto:info@jblearning.com
http://www.jblearning.com
http://www.jblearning.com
mailto:specialsales@jblearning.com

To my wife, Sharon, and our children, Justin, Kayla, Nathan, and
Samantha.
—John Lewis

To all the students who will use this book: It is written for you.
—Nell Dale

5

John Lewis, Virginia Tech
John Lewis is a leading educator and author in the field of computer science. He has
written a market-leading textbook on Java software and program design. After earning his
PhD in Computer Science, John spent 14 years at Villanova University in Pennsylvania.
He now teaches computing at Virginia Tech, his alma mater, and works on textbook
projects out of his home. He has received numerous teaching awards, including the
University Award for Teaching Excellence and the Goff Award for Outstanding Teaching.
His professional interests include object-oriented technologies, multimedia, and software
engineering. In addition to teaching and writing, John actively participates in the ACM
Special Interest Group on Computer Science Education (SIGCSE) and finds time to spend
with his family and in his workshop.

Nell Dale, The University of Texas at Austin
Well-respected in the field of computer science education, Nell Dale has served on the
faculty of The University of Texas at Austin, for more than 25 years and has authored over
40 undergraduate Computer Science textbooks. After receiving her BS in Mathematics and
Psychology from the University of Houston, Nell entered The University of Texas at
Austin, where she earned her MA in Mathematics and her PhD in Computer Science. Nell
has made significant contributions to her discipline through her writing, research, and
service. Nell’s contributions were recognized in 1996 with the ACM SIGCSE Award for
Outstanding Contributions in Computer Science Education and in 2001 with the ACM
Karl V. Karlstrom Outstanding Educator Award. She was elected an ACM Fellow in 2010.
In 2013, she received the IEEE Taylor L. Booth Education Award. Nell has retired from
full-time teaching, giving her more time to write, travel, and play tennis and bridge. She
currently resides in Austin, Texas.

6

BRIEF CONTENTS

1 Laying the Groundwork Laying the Groundwork
Chapter 1 The Big Picture

2 The Information Layer
Chapter 2 Binary Values and Number Systems
Chapter 3 Data Representation

3 The Hardware Layer
Chapter 4 Gates and Circuits
Chapter 5 Computing Components

4 The Programming Layer
Chapter 6 Low-Level Programming Languages and Pseudocode
Chapter 7 Problem Solving and Algorithms
Chapter 8 Abstract Data Types and Subprograms
Chapter 9 Object-Oriented Design and High-Level Programming Languages

5 The Operating Systems Layer
Chapter 10 Operating Systems
Chapter 11 File Systems and Directories

6 The Applications Layer
Chapter 12 Information Systems
Chapter 13 Artificial Intelligence
Chapter 14 Simulation, Graphics, Gaming, and Other Applications

7 The Communications Layer
Chapter 15 Networks
Chapter 16 The World Wide Web
Chapter 17 Computer Security

8 In Conclusion
Chapter 18 Limitations of Computing

7

CONTENTS

1 Laying the Groundwork
Chapter 1 The Big Picture

1.1 Computing Systems
Layers of a Computing System
Abstraction

1.2 The History of Computing
A Brief History of Computing Hardware
A Brief History of Computing Software
Predictions

1.3 Computing as a Tool and a Discipline
Summary
Ethical Issues: Digital Divide
Key Terms
Exercises
Thought Questions

2 The Information Layer
Chapter 2 Binary Values and Number Systems

2.1 Numbers and Computing
2.2 Positional Notation

Binary, Octal, and Hexadecimal
Arithmetic in Other Bases
Power-of-2 Number Systems
Converting from Base 10 to Other Bases
Binary Values and Computers

Summary
Ethical Issues: The FISA Court
Key Terms
Exercises
Thought Questions

Chapter 3 Data Representation
3.1 Data and Computers

8

Analog and Digital Data
Binary Representations

3.2 Representing Numeric Data
Representing Negative Values
Representing Real Numbers

3.3 Representing Text
The ASCII Character Set
The Unicode Character Set
Text Compression

3.4 Representing Audio Data
Audio Formats
The MP3 Audio Format

3.5 Representing Images and Graphics
Representing Color
Digitized Images and Graphics
Vector Representation of Graphics

3.6 Representing Video
Video Codecs

Summary
Ethical Issues: The Fallout from Snowden’s Revelations
Key Terms
Exercises
Thought Questions

3 The Hardware Layer
Chapter 4 Gates and Circuits

4.1 Computers and Electricity
4.2 Gates

NOT Gate
AND Gate
OR Gate
XOR Gate
NAND and NOR Gates
Review of Gate Processing
Gates with More Inputs

4.3 Constructing Gates
Transistors

4.4 Circuits
Combinational Circuits

9

Adders
Multiplexers

4.5 Circuits as Memory
4.6 Integrated Circuits
4.7 CPU Chips

Summary
Ethical Issues: Codes of Ethics
Key Terms
Exercises
Thought Questions

Chapter 5 Computing Components
5.1 Individual Computer Components
5.2 The Stored-Program Concept

von Neumann Architecture
The Fetch–Execute Cycle
RAM and ROM
Secondary Storage Devices
Touch Screens

5.3 Embedded Systems
5.4 Parallel Architectures

Parallel Computing
Classes of Parallel Hardware

Summary
Ethical Issues: Is Privacy a Thing of the Past?
Key Terms
Exercises
Thought Questions

4 The Programming Layer
Chapter 6 Low-Level Programming Languages and Pseudocode

6.1 Computer Operations
6.2 Machine Language

Pep/8: A Virtual Computer
6.3 A Program Example

Hand Simulation
Pep/8 Simulator

6.4 Assembly Language
Pep/8 Assembly Language

10

Assembler Directives
Assembly-Language Version of Program Hello
A New Program
A Program with Branching
A Program with a Loop

6.5 Expressing Algorithms
Pseudocode Functionality
Following a Pseudocode Algorithm
Writing a Pseudocode Algorithm
Translating a Pseudocode Algorithm

6.6 Testing
Summary
Ethical Issues: Software Piracy
Key Terms
Exercises
Thought Questions

Chapter 7 Problem Solving and Algorithms
7.1 How to Solve Problems

Ask Questions
Look for Familiar Things
Divide and Conquer
Algorithms
Computer Problem-Solving Process
Summary of Methodology
Testing the Algorithm

7.2 Algorithms with Simple Variables
An Algorithm with Selection
Algorithms with Repetition

7.3 Composite Variables
Arrays
Records

7.4 Searching Algorithms
Sequential Search
Sequential Search in a Sorted Array
Binary Search

7.5 Sorting
Selection Sort
Bubble Sort
Insertion Sort

7.6 Recursive Algorithms

11

Subprogram Statements
Recursive Factorial
Recursive Binary Search
Quicksort

7.7 Important Threads
Information Hiding
Abstraction
Naming Things
Testing

Summary
Ethical Issues: Open-Source Software
Key Terms
Exercises
Thought Questions

Chapter 8 Abstract Data Types and Subprograms
8.1 What Is an Abstract Data Type?
8.2 Stacks
8.3 Queues
8.4 Lists
8.5 Trees

Binary Trees
Binary Search Trees
Other Operations

8.6 Graphs
Creating a Graph
Graph Algorithms

8.7 Subprograms
Parameter Passing
Value and Reference Parameters

Summary
Ethical Issues: Workplace Monitoring
Key Terms
Exercises
Thought Questions

Chapter 9 Object-Oriented Design and High-Level Programming Languages
9.1 Object-Oriented Methodology

Object Orientation
Design Methodology

12

Example
9.2 Translation Process

Compilers
Interpreters

9.3 Programming Language Paradigms
Imperative Paradigm
Declarative Paradigm

9.4 Functionality in High-Level Languages
Boolean Expressions
Data Typing
Input/Output Structures
Control Structures

9.5 Functionality of Object-Oriented Languages
Encapsulation
Classes
Inheritance
Polymorphism

9.6 Comparison of Procedural and Object-Oriented Designs
Summary
Ethical Issues: Hoaxes and Scams
Key Terms
Exercises
Thought Questions

5 The Operating Systems Layer
Chapter 10 Operating Systems

10.1 Roles of an Operating System
Memory, Process, and CPU Management
Batch Processing
Timesharing
Other OS Factors

10.2 Memory Management
Single Contiguous Memory Management
Partition Memory Management
Paged Memory Management

10.3 Process Management
The Process States
The Process Control Block

10.4 CPU Scheduling

13

First Come, First Served
Shortest Job Next
Round Robin

Summary
Ethical Issues: Medical Privacy: HIPAA
Key Terms
Exercises
Thought Questions

Chapter 11 File Systems and Directories
11.1 File Systems

Text and Binary Files
File Types
File Operations
File Access
File Protection

11.2 Directories
Directory Trees
Path Names

11.3 Disk Scheduling
First-Come, First-Served Disk Scheduling
Shortest-Seek-Time-First Disk Scheduling
SCAN Disk Scheduling

Summary
Ethical Issues: Privacy: Opt-In or Opt-Out?
Key Terms
Exercises
Thought Questions

6 The Applications Layer
Chapter 12 Information Systems

12.1 Managing Information
12.2 Spreadsheets

Spreadsheet Formulas
Circular References
Spreadsheet Analysis

12.3 Database Management Systems
The Relational Model
Relationships
Structured Query Language

14

Database Design
12.4 E-Commerce

Summary
Ethical Issues: Politics and the Internet: The Candidate’s View
Key Terms
Exercises
Thought Questions

Chapter 13 Artificial Intelligence
13.1 Thinking Machines

The Turing Test
Aspects of AI

13.2 Knowledge Representation
Semantic Networks
Search Trees

13.3 Expert Systems
13.4 Neural Networks

Biological Neural Networks
Artificial Neural Networks

13.5 Natural Language Processing
Voice Synthesis
Voice Recognition
Natural Language Comprehension

13.6 Robotics
The Sense–Plan–Act Paradigm
Subsumption Architecture
Physical Components

Summary
Ethical Issues: Initial Public Offerings
Key Terms
Exercises
Thought Questions

Chapter 14 Simulation, Graphics, Gaming, and Other Applications
14.1 What Is Simulation?

Complex Systems
Models
Constructing Models

14.2 Specific Models
Queuing Systems

15

Meteorological Models
Computational Biology
Other Models
Computing Power Necessary

14.3 Computer Graphics
How Light Works
Object Shape Matters
Simulating Light
Modeling Complex Objects
Getting Things to Move

14.4 Gaming
History of Gaming
Creating the Virtual World
Game Design and Development
Game Programming

Summary
Ethical Issues: Gaming as an Addiction
Key Terms
Exercises
Thought Questions

7 The Communications Layer
Chapter 15 Networks

15.1 Networking
Types of Networks
Internet Connections
Packet Switching

15.2 Open Systems and Protocols
Open Systems
Network Protocols
TCP/IP
High-Level Protocols
MIME Types
Firewalls

15.3 Network Addresses
Domain Name System
Who Controls the Internet?

15.4 Cloud Computing
Summary
Ethical Issues: The Effects of Social Networking
Key Terms

16

Exercises
Thought Questions

Chapter 16 The World Wide Web
16.1 Spinning the Web

Search Engines
Instant Messaging
Weblogs
Cookies
Web Analytics

16.2 HTML and CSS
Basic HTML Elements
Tag Attributes
More About CSS
More HTML5 Elements

16.3 Interactive Web Pages
Java Applets
Java Server Pages

16.4 XML
16.5 Social Networks

Summary
Ethical Issues: Gambling and the Internet
Key Terms
Exercises
Thought Questions

Chapter 17 Computer Security
17.1 Security at All Levels

Information Security
17.2 Preventing Unauthorized Access

Passwords
CAPTCHA
Fingerprint Analysis

17.3 Malicious Code
Antivirus Software
Security Attacks

17.4 Cryptography
17.5 Protecting Your Information Online

Security and Portable Devices
WikiLeaks

17

Summary
Ethical Issues: Blogging
Key Terms
Exercises
Thought Questions

8 In Conclusion
Chapter 18 Limitations of Computing

18.1 Hardware
Limits on Arithmetic
Limits on Components
Limits on Communications

18.2 Software
Complexity of Software
Current Approaches to Software Quality
Notorious Software Errors

18.3 Problems
Comparing Algorithms
Turing Machines
Halting Problem
Classification of Algorithms

Summary
Ethical Issues: Therac-25: Anatomy of a Disaster
Key Terms
Exercises
Thought Questions

Glossary
Endnotes
Index

18

PREFACE

Choice of Topics
In putting together the outline of topics for this CS0 text, we used many sources. We
looked at course catalogue descriptions and book outlines, and we administered a
questionnaire designed to find out what you, our colleagues, thought should be included in
such a course. We asked you and ourselves to do the following:

■ Please list four topics that you feel students should master in a CS0 course if this is
the only computer science course they will take during their college experience.

■ Please list four topics that you would like students entering your CS1 course to have
mastered.

■ Please list four additional topics that you would like your CS1 students to be
familiar with.

The strong consensus that emerged from the intersections of these sources formed the
working outline for this book. Students who master this material before taking CS1 have a
strong foundation upon which to build their knowledge of computer science. Although our
intention was to write a CS0 text, our reviewers have pointed out that the material also
forms a strong breadth-first background that can also serve as a companion to a
programming-language introduction to computer science.

Rationale for Organization
This book begins with the history of hardware and software, showing how a computer
system is like an onion. The processor and its machine language form the heart of the
onion, and layers of software and more sophisticated hardware have been added around this
heart, layer by layer. At the next layer, higher-level languages such as FORTRAN, Lisp,
Pascal, C, C++, and Java were introduced parallel to the ever-increasing exploration of the
programming process, using such tools as top-down design and object-oriented design.
Over time, our understanding of the role of abstract data types and their implementations
matured. The operating system, with its resource-management techniques—including files
on ever-larger, faster secondary storage media—developed to surround and manage these
programs.

The next layer of the computer system “onion” is composed of sophisticated general-
purpose and special-purpose software systems that overlay the operating system.
Development of these powerful programs was stimulated by theoretical work in computer
science, which makes such programs possible. The final layer comprises networks and

19

network software—that is, the tools needed for computers to communicate with one
another. The Internet and the World Wide Web put the finishing touches to this layer, and
this text culminates with a discussion of security issues affecting our interaction online.

As these layers have grown over the years, the user has become increasingly insulated
from the computer system’s hardware. Each of these layers provides an abstraction of the
computing system beneath it. As each layer has evolved, users of the new layer have joined
with users of inner layers to create a very large workforce in the high-tech sector of the
global economy. This book is designed to provide an overview of the layers, introducing the
underlying hardware and software technologies, in order to give students an appreciation
and understanding of all aspects of computing systems.

Having used history to describe the formation of the onion from the inside out, we
were faced with a design choice: We could look at each layer in depth from the inside out
or the outside in. The outside-in approach was very tempting. We could peel the layers off
one at a time, moving from the most abstract layer to the concrete machine. However,
research has shown that students understand concrete examples more easily than abstract
ones, even when the students themselves are abstract thinkers. Thus, we have chosen to
begin with the concrete machine and examine the layers in the order in which they were
created, trusting that a thorough understanding of one layer makes the transition to the
next abstraction easier for the students.

Changes in the Sixth Edition
As always when planning a revision, we asked our colleagues, including many current users
of the text, to give us feedback. We appreciate the many thoughtful and insightful

20

responses we received.
Updates in the Sixth Edition include a considerable overhaul of Chapters 15 and 16,

which are about networks and the World Wide Web. We include new information about
wireless networks, as well as updates to the top-level domains (TLDs) that are now
available. In light of recent developments in U.S. oversight, we added a discussion about
who controls the Internet. Screenshots and discussions of ping and traceroute utilities are
now included, as well as an enhanced discussion about mobile computing. We completely
rewrote the section on HTML in Chapter 16 to reflect the most up-to-date practices and
the use of Cascading Style Sheets (CSS). We updated the section on social networks and
added a new discussion of web-based analytics.

In addition to these and other updates, the common features throughout the book have
been completely revised and augmented. The “Ethical Issues” sections at the end of each
chapter have been brought up to date. The “Did You Know?” sidebars have been updated
throughout the book as well, with the addition of several more that reflect new and novel
topics. Finally, the biographical sections throughout have been updated.

The Sixth Edition features a brand new design and layout, with all figures redrawn and
photos updated throughout.

Of course, we also made minor revisions throughout the book to improve and update
the coverage, presentation, and examples.

Synopsis
Chapter 1 lays the groundwork, as described in the “Rationale for This Book’s
Organization” section above. Chapters 2 and 3 step back and examine a layer that is
embodied in the physical hardware. We call this the “information layer” because it reflects
how data is represented in the computer. Chapter 2 covers the binary number system and
its relationship to other number systems such as decimal (the one we humans use on a daily
basis). Chapter 3 investigates how we take the myriad types of data we manage—numbers,
text, images, audio, and video—and represent them in a computer in binary format.

Chapters 4 and 5 discuss the hardware layer. Computer hardware includes devices such
as transistors, gates, and circuits, all of which control the flow of electricity in fundamental
ways. This core electronic circuitry gives rise to specialized hardware components such as
the computer’s central processing unit (CPU) and memory. Chapter 4 covers gates and
electronic circuits; Chapter 5 focuses on the hardware components of a computer and how
they interact within a von Neumann architecture.

Chapters 6 through 9 examine aspects of the programming layer. Chapter 6 explores
the concepts of both machine language and assembly language programming using Pep/8, a
simulated computer. We discuss the functionality of pseudocode as a way to write
algorithms. The concepts of looping and selection are introduced here, expressed in
pseudocode, and implemented in Pep/8.

Chapter 7 examines the problem-solving process as it relates to both humans and
computers. George Polya’s human problem-solving strategies guide the discussion. Top-
down design is presented as a way to design simple algorithms. We choose classic searching
and sorting algorithms as the context for the discussion of algorithms. Because algorithms
operate on data, we examine ways to structure data so that it can be more efficiently

21

processed. We also introduce subalgorithm (subprogram) statements.
Chapter 8 takes a step further toward abstraction, exploring abstract data types and

containers: composite structures for which we know only properties or behaviors. Lists,
sorted lists, stacks, queues, binary search trees, and graphs are discussed. The section on
subalgorithms is expanded to include reference and value parameters and parameter
passing.

Chapter 9 covers the concepts of high-level programming languages. Because many
prominent high-level languages include functionality associated with object-oriented
programming, we detour and first present this design process. Language paradigms and the
compilation process are discussed. Pseudocode concepts are illustrated in brief examples
from four programming languages: Python, Visual Basic .NET, C++, and Java.

Chapters 10 and 11 cover the operating system layer. Chapter 10 discusses the resource
management responsibilities of the operating system and presents some of the basic
algorithms used to implement these tasks. Chapter 11 focuses on file systems, including
what they are and how they are managed by the operating system.

Chapters 12 through 14 cover the application layer. This layer is made up of the
general-purpose and specialized application programs that are available to the public for
solving programs. We divide this layer into the sub-disciplines of computer science upon
which these programs are based. Chapter 12 examines information systems, Chapter 13
examines artificial intelligence, and Chapter 14 examines simulation, graphics, gaming, and
other applications.

Chapters 15 through 17 cover the communication layer. Chapter 15 presents the
theoretical and practical aspects of computers communicating with each other. Chapter 16
discusses the World Wide Web and the various technologies involved. Chapter 17
examines computer security and keeping information protected in the modern information
age.

Chapters 2 through 17 are about what a computer can do and how. Chapter 18
concludes the text with a discussion of the inherent limitations of computer hardware and
software, including the problems that can and cannot be solved using a computer. We
present Big-O notation as a way to talk about the efficiency of algorithms so that the
categories of algorithms can be discussed, and we use the Halting problem to show that
some problems are unsolvable.

The first and last chapters form bookends: Chapter 1 describes what a computing
system is and Chapter 18 cautions about what computing systems cannot do. The chapters
between take an in-depth look at the layers that make up a computing system.

Why Not a Language?
The original outline for this book included an “Introduction to Java” chapter. Some of our
reviewers were ambivalent about including a language at all; others wondered why Java
would be included and not C++. We decided to leave the choice to the user. Introductory
chapters, formatted in a manner consistent with the design of this book, are available for
Java, C++, JavaScript, Visual Basic. NET, Python, SQL, Ruby, Perl, Alice, and Pascal on
the book’s website and in hard copy through Jones & Bartlett Learning.

If the students have enough knowledge and experience to master the introductory

22

syntax and semantics of a language in addition to the background material in this book,
simply have the students download the appropriate chapter. As an alternative, one or all of
these chapters can be used to enrich the studies of those who have stronger backgrounds.

Special Features
We have included three special features in this text in order to emphasize the history and
breadth of computing as well as the moral obligations that come with new technology.

?
Virtual games and national security

U.S. and British spies have infiltrated the fantasy world of virtual games. A 2008 National Security Agency (NSA)
document declared that virtual games provide a “target-rich communication network” that allows intelligence
suspects a way to communicate and “hide in plain sight.”4

Biographies
Each chapter includes a short biography of someone who has made a significant
contribution to computing as we know it. The people honored in these sections range from
those who contributed to the data layer, such as George Boole and Ada Lovelace, to those
who have contributed to the communication layer, such as Doug Engelbart and Tim
Berners-Lee. These biographies give students a taste of history and introduce them to the

23

men and women who are pioneers in the world of computing.

Did You Know
Our second feature (the “Did You Know?” sections indicated by a question mark)
comprises sidebars that include interesting tidbits of information from the past, present,
and future. They are garnered from history, current events, and the authors’ personal
experiences. These little vignettes are designed to amuse, inspire, intrigue, and, of course,
educate.

Ethical Issues
Our third feature is an “Ethical Issues” section that is included in each chapter. These
sections illustrate the fact that along with the advantages of computing come
responsibilities for and consequences of its use. Privacy, hacking, viruses, and free speech
are among the topics discussed. Following the exercises in each chapter, a “Thought
Questions” section asks stimulating questions about these ethical issues as well as chapter
content.

Color and Typography Are Signposts
The layers into which the book is divided are color coded within the text. The opening
spread for each chapter shows an image of the onion in which the outermost color
corresponds to the current layer. This color is repeated in header bars and section numbers
throughout the layer. Each opening spread also visually indicates where the chapter is
within the layer and the book.

We have said that the first and last chapters form bookends. Although they are not part
of the layers of the computing onion, these chapters are color coded like the others. Open

24

the book anywhere and you can immediately tell where you are within the layers of
computing.

To visually separate the abstract from the concrete in the programming layer, we use
different fonts for algorithms, including identifiers in running text, and program code. You
know at a glance whether the discussion is at the logical (algorithmic) level or at the
programming-language level. In order to distinguish visually between an address and the
contents of an address, we color addresses in orange.

Color is especially useful in Chapter 6, “Low-Level Programming Languages and
Pseudocode.” Instructions are color coded to differentiate the parts of an instruction. The
operation code is blue, the register designation is clear, and the addressing mode specifier is
green. Operands are shaded gray. As in other chapters, addresses are in orange.

Instructor Resources
For the instructor, slides in PowerPoint format, a test bank, and answers to the book’s end-
of-chapter exercises are available for free download at http://go.jblearning.com/CSI6e.

25

http://go.jblearning.com/CSI6e

ACKNOWLEDGMENTS

Our adopters have been most helpful during this revision. To those who took the time to
respond to our online survey: Thanks to all of you. We are also grateful to the reviewers of
the previous editions of the text:

Tim Bower, Kansas State University
Mikhail Brikman, Salem State College
Jacques Carette, McMaster University
Howard Francis, Pikeville College
Jim Jones, Graceland University
Murray Levy, West Los Angeles College
Lew Lowther, York University
Jeffrey McConnell, Canisius College
Richard Schlesinger, Kennesaw State University
Richard Spinello, Boston College
Herman Tavani, Rivier College
Amy Woszczynski, Kennesaw State University
C. Michael Allen, UNC Charlotte
Lofton Bullard, Florida Atlantic University
Cerian Jones, University of Alberta
Calvin Ribbens, Virginia Tech
Susan Sells, Wichita State University
R. Mark Meyer, Canisius College
Tom Wiggen, University of North Dakota
Mary Dee Harris, Chris Edmonson-Yurkanan, Ben Kuipers, and Glenn Downing, The

University of Texas at Austin
Dave Stauffer, Penn State
John McCormick, University of Northern Iowa
Dan Joyce, Villanova University
Mike Goldwasser, St. Louis University
Andrew Harrington, Loyola University Chicago
Daniel R. Collins, Mass Bay Community College
J. Stanley Warford, Pepperdine University
Richard C. Detmer, Middle Tennessee State University
Chip Weems, University of Massachusetts Amherst
Heather Chandler, Westwood College
Mark Holthouse, Westwood High School
Robert Vermilyer, St. Thomas Aquinas College
Bob Blucher, Lane Community College
Dale Fletter, Folsom Lake College

26

Dr. Jerry Westfall, Liberty University
Dwayne Towell, Abilene Christian University
Kara Nance, University of Alaska
Lisa Michaud, Merrimack College
Jeffrey Bergamini, Mendocino College
Johanna Horowitz, Siena College
Lonnie R. Nelson, Hannibal-LaGrange University
Marie Hartlein, Montgomery County Community College
Mark Terwilliger, Lake Superior State University
Patricia Roth Pierce, Southern Polytechnic State University
Quentin J. White, Sr., Palomar College
Rakesh Arya, University of Maryland Eastern Shore
William Honig, Loyola University Chicago
Barbara Zimmerman, Villanova University
Maria Jump, PhD, King’s College
Joe Pistone, Palomar College
Derek Merck, Georgia Perimeter College.

Special thanks to Jeffrey McConnell of Canisius College, who wrote the graphics
section in Chapter 14; Herman Tavani of Rivier College, who helped us revise the “Ethical
Issues” sections; Richard Spinello of Boston College for his essay on the ethics of blogging;
and Paul Toprac, Associate Director of Game Development at The University of Texas at
Austin, for his contributions on gaming.

We appreciate and thank our reviewers and colleagues who provided advice and
recommendations for the content in this Sixth Edition:

David Adams, Grove City College
Marie Arvi, Salisbury University
Bill Cole, Sierra College-Rocklin
Richard Croft, Eastern Oregon University
Linda Ehley, Alverno College
Janet Helwig, Dominican University
James Hicks, Los Angeles Southwest College
Aparna Mahadev, Worcester State University
Mia Moore, Clark Atlanta University
S. Monisha Pulimood, The College of New Jersey
Warren W. Sheaffer, Saint Paul College
Robert Yacobellis, Loyola University Chicago

We also thank the many people at Jones & Bartlett Learning who contributed so much,
especially Laura Pagluica, Acquisitions Editor; Taylor Ferracane, Editorial Assistant; and
Amy Rose, Director of Production.

I must also thank my tennis buddies for keeping me fit, my bridge buddies for keeping my
mind alert, and my family for keeping me grounded.
—ND

27

I’d like to thank my family for their support.
—JL

28

SPECIAL FEATURES

Interspersed throughout Computer Science Illuminated, Sixth Edition are two special features
of note: Ethical Issues and Biographies. A list of each is provided below for immediate
access.

ETHICAL ISSUES
Digital Divide

The FISA Court

The Fallout from Snowden’s Revelations

Codes of Ethics

Is Privacy a Thing of the Past?

Software Piracy

Open-Source Software

Workplace Monitoring

Hoaxes and Scams

Medical Privacy: HIPAA

Privacy: Opt-In or Opt-Out?

Politics and the Internet: The Candidate’s View

Initial Public Offerings

Gaming as an Addiction

The Effects of Social Networking

Gambling and the Internet

Blogging

Therac-25: Anatomy of a Disaster

BIOGRAPHIES
Ada Lovelace, the First Programmer

Grace Murray Hopper

29

Bob Bemer

George Boole

John Vincent Atanasoff

Konrad Zuse

George Polya

John von Neumann

Edsger Dijkstra

Steve Jobs

Tony Hoare

Daniel Bricklin

Herbert A. Simon

Ivan Sutherland

Doug Engelbart

Tim Berners-Lee

Mavis Batey

Alan Turing

30

LAYING THE GROUNDWORK

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits
5 Computing Components

The Programming Layer
6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages

The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer
15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion
18 Limitations of Computing

31

1 THE BIG PICTURE

This book is a tour through the world of computing. We explore how computers work—
what they do and how they do it, from bottom to top, inside and out. Like an orchestra, a
computer system is a collection of many different elements, which combine to form a
whole that is far more than the sum of its parts. This chapter provides the big picture,
giving an overview of the pieces that we slowly dissect throughout the book and putting
those pieces into historical perspective.

Hardware, software, programming, web surfing, and email are probably familiar terms to
you. Some of you can define these and many more computer-related terms explicitly,
whereas others may have only a vague, intuitive understanding of them. This chapter gets
everyone on relatively equal footing by establishing common terminology and creating the
platform from which we will dive into our exploration of computing.

GOALS
After studying this chapter, you should be able to:

■ describe the layers of a computer system.
■ describe the concept of abstraction and its relationship to computing.
■ describe the history of computer hardware and software.
■ describe the changing role of the computer user.
■ distinguish between systems programmers and applications programmers.
■ distinguish between computing as a tool and computing as a discipline.

1.1 Computing Systems
In this book we explore various aspects of computing systems. Note that we use the term
computing system, not just computer. A computer is a device. A computing system, by
contrast, is a dynamic entity, used to solve problems and interact with its environment. A
computing system is composed of hardware, software, and the data that they manage.
Computer hardware is the collection of physical elements that make up the machine and
its related pieces: boxes, circuit boards, chips, wires, disk drives, keyboards, monitors,
printers, and so on. Computer software is the collection of programs that provide the
instructions that a computer carries out. And at the very heart of a computer system is the
information that it manages. Without data, the hardware and software are essentially
useless.

32

Computing system Computer hardware, software, and data, which interact to solve problems

Computer hardware The physical elements of a computing system

Computer software The programs that provide the instructions that a computer executes

The general goals of this book are threefold:

■ To give you a solid, broad understanding of how a computing system works
■ To develop an appreciation for and understanding of the evolution of modern

computing systems
■ To give you enough information about computing so that you can decide whether

you wish to pursue the subject further

The rest of this section explains how computer systems can be divided into abstract
layers and how each layer plays a role. The next section puts the development of computing
hardware and software into historical context. This chapter concludes with a discussion
about computing as both a tool and a discipline of study.

Layers of a Computing System
A computing system is like an onion, made up of many layers. Each layer plays a specific
role in the overall design of the system. These layers are depicted in FIGURE 1.1 and form
the general organization of this book. This is the “big picture” that we will continually
return to as we explore different aspects of computing systems.

You rarely, if ever, take a bite out of an onion as you would an apple. Rather, you
separate the onion into concentric rings. Likewise, in this book we explore aspects of
computing one layer at a time. We peel each layer separately and explore it by itself. Each
layer, in itself, is not that complicated. In fact, a computer actually does only very simple
tasks—it just does them so blindingly fast that many simple tasks can be combined to
accomplish larger, more complicated tasks. When the various computer layers are all
brought together, each playing its own role, amazing things result from the combination of
these basic ideas.

Let’s discuss each of these layers briefly and identify where in this book these ideas are
explored in more detail. We essentially work our way from the inside out, which is
sometimes referred to as a bottom-up approach.

33

FIGURE 1.1 The layers of a computing system

The innermost layer, information, reflects the way we represent information on a
computer. In many ways this is a purely conceptual level. Information on a computer is
managed using binary digits, 1 and 0. So to understand computer processing, we must first
understand the binary number system and its relationship to other number systems (such as
the decimal system, the one humans use on a daily basis). Then we can turn our attention
to how we take the myriad types of information we manage—numbers, text, images, audio,
and video—and represent them in a binary format. Chapters 2 and 3 explore these issues.

The next layer, hardware, consists of the physical hardware of a computer system.
Computer hardware includes devices such as gates and circuits, which control the flow of
electricity in fundamental ways. This core electronic circuitry gives rise to specialized
hardware components such as the computer’s central processing unit (CPU) and memory.
Chapters 4 and 5 of the book discuss these topics in detail.

The programming layer deals with software, the instructions used to accomplish
computations and manage data. Programs can take many forms, be performed at many
levels, and be implemented in many languages. Yet, despite the enormous variety of
programming issues, the goal remains the same: to solve problems. Chapters 6 through 9
explore many issues related to programming and the management of data.

Every computer has an operating system (OS) to help manage the computer’s resources.
Operating systems, such as Windows XP, Linux, or Mac OS, help us interact with the
computer system and manage the way hardware devices, programs, and data interact.
Knowing what an operating system does is key to understanding the computer in general.
These issues are discussed in Chapters 10 and 11.

The previous (inner) layers focus on making a computer system work. The applications
layer, by contrast, focuses on using the computer to solve specific real-world problems. We
run application programs to take advantage of the computer’s abilities in other areas, such
as helping us design a building or play a game. The spectrum of area-specific computer
software tools is far-reaching and involves specific subdisciplines of computing, such as
information systems, artificial intelligence, and simulation. Application systems are
discussed in Chapters 12, 13, and 14.

Computers no longer exist in isolation on someone’s desktop. We use computer
technology to communicate, and that communication is a fundamental layer at which

34

computing systems operate. Computers are connected into networks so that they can share
information and resources. The Internet, for example, evolved into a global network, so
there is now almost no place on Earth that you cannot communicate with via computing
technology. The World Wide Web makes that communication relatively easy; it has
revolutionized computer use and made it accessible to the general public. Chapters 15 and
16 discuss these important issues of computing communication.

The use of computing technology can result in increased security hazards. Some issues
of security are dealt with at low levels throughout a computer system. Many of them,
though, involve keeping our personal information secure. Chapter 17 discusses several of
these issues.

Most of this book focuses on what a computer can do and how it does it. We conclude
with a discussion of what a computer cannot do, or at least cannot do well. Computers have
inherent limitations on their ability to represent information, and they are only as good as
their programming makes them. Furthermore, it turns out that some problems cannot be
solved at all. Chapter 18 examines these limitations of computers.

Sometimes it is easy to get so caught up in the details that we lose perspective on the
big picture. Try to keep that in mind as you progress through the information in this book.
Each chapter’s opening page reminds you of where we are in the various layers of a
computing system. The details all contribute a specific part to a larger whole. Take each
step in turn and you will be amazed at how well it all falls into place.

Abstraction
The levels of a computing system that we just examined are examples of abstraction. An
abstraction is a mental model, a way to think about something, that removes or hides
complex details. An abstraction leaves only the information necessary to accomplish our
goal. When we are dealing with a computer on one layer, we don’t need to be thinking
about the details of the other layers. For example, when we are writing a program, we don’t
have to concern ourselves with how the hardware carries out the instructions. Likewise,
when we are running an application program, we don’t have to be concerned with how that
program was written.

Abstraction A mental model that removes complex details

Numerous experiments have shown that a human being can actively manage about
seven (plus or minus two, depending on the person) pieces of information in short-term
memory at one time. This is called Miller’s Law, based on the psychologist who first
investigated it.1 Other pieces of information are available to us when we need them, but
when we focus on a new piece, something else falls back into secondary status.

This concept is similar to the number of balls a juggler can keep in the air at one time.
Human beings can mentally juggle about seven balls at once, and when we pick up a new
one, we have to drop another. Seven may seem like a small number, but the key is that each
ball can represent an abstraction, or a chunk of information. That is, each ball we are
juggling can represent a complex topic as long as we can think about it as one idea.

We rely on abstractions every day of our lives. For example, we don’t need to know

35

how a car works to drive one to the store. That is, we don’t really need to know how the
engine works in detail. We need to know only some basics about how to interact with the
car: how the pedals and knobs and steering wheel work. And we don’t even have to be
thinking about all of those things at the same time. See FIGURE 1.2.

FIGURE 1.2 A car engine and the abstraction that allows us to use it
© aospan/Shutterstock, Inc.; © Syda Productions/Shutterstock, Inc.

Even if we do know how an engine works, we don’t have to think about it while
driving. Imagine if, while driving, we had to constantly think about how the spark plugs
ignite the fuel that drives the pistons that turn the crankshaft. We’d never get anywhere! A
car is much too complicated for us to deal with all at once. All the technical details would
be too many balls to juggle at the same time. But once we’ve abstracted the car down to the
way we interact with it, we can deal with it as one entity. The irrelevant details are ignored,
at least for the moment.

Information hiding is a concept related to abstraction. A computer programmer often
tries to eliminate the need or ability of one part of a program to access information located
in another part. This technique keeps the pieces of the program isolated from each other,
which reduces errors and makes each piece easier to understand. Abstraction focuses on the
external view—the way something behaves and the way we interact with it. Information
hiding is a design feature that gives rise to the abstractions that make something easier to
work with. Information hiding and abstraction are two sides of the same coin.

Information hiding A technique for isolating program pieces by eliminating the ability for one piece to access the
information in another

Abstract art, as the name implies, is another example of abstraction. An abstract
painting represents something but doesn’t get bogged down in the details of reality.
Consider the painting shown in FIGURE 1.3, entitled Nude Descending a Staircase. You
can see only the basic hint of the woman and the staircase, because the artist is not
interested in the details of exactly how the woman or the staircase looks. Those details are
irrelevant to the effect the artist is trying to create. In fact, the realistic details would get in
the way of the issues that the artist thinks are important.

Abstraction is the key to computing. The layers of a computing system embody the idea
of abstraction. And abstractions keep appearing within individual layers in various ways as

36

well. In fact, abstraction can be seen throughout the entire evolution of computing systems,
which we explore in the next section.

FIGURE 1.3 Marcel Duchamp discussing his abstract painting Nude Descending a Staircase
© CBS/Landov

1.2 The History of Computing
The historical foundation of computing goes a long way toward explaining why computing
systems today are designed as they are. Think of this section as a story whose characters and
events have led to the place we are now and form the foundation of the exciting future to
come. We examine the history of computing hardware and software separately because each
has its own impact on how computing systems evolved into the layered model we use as the
outline for this book.

This history is written as a narrative, with no intent to formally define the concepts
discussed. In subsequent chapters, we return to these concepts and explore them in more
detail.

A Brief History of Computing Hardware
The devices that assist humans in various forms of computation have their roots in the
ancient past and have continued to evolve until the present day. Let’s take a brief tour
through the history of computing hardware.

37

Early History
Many people believe that Stonehenge, the famous collection of rock monoliths in Great
Britain, is an early form of a calendar or astrological calculator. The abacus, which appeared
in the sixteenth century BC, was developed as an instrument to record numeric values and
on which a human can perform basic arithmetic.

In the middle of the seventeenth century, Blaise Pascal, a French mathematician, built
and sold gear-driven mechanical machines, which performed whole-number addition and
subtraction. Later in the seventeenth century, a German mathematician, Gottfried Wilhelm
von Leibniz, built the first mechanical device designed to do all four whole-number
operations: addition, subtraction, multiplication, and division. Unfortunately, the state of
mechanical gears and levers at that time was such that the Leibniz machine was not very
reliable.

In the late eighteenth century, Joseph Jacquard developed what became known as
Jacquard’s loom, used for weaving cloth. The loom used a series of cards with holes punched
in them to specify the use of specific colored thread and therefore dictate the design that
was woven into the cloth. Although not a computing device, Jacquard’s loom was the first
to make use of an important form of input: the punched card.

?
Beyond all dreams

“Who can foresee the consequences of such an invention? The Analytical Engine weaves algebraic patterns just as
the Jacquard loom weaves flowers and leaves. The engine might compose elaborate and scientific pieces of music of
any degree of complexity or extent.”
—Ada, Countess of Lovelace, 18432

Stonehenge Is Still a Mystical Place

© vencavolrab/iStock/Thinkstock

Stonehenge, a Neolithic stone structure that rises majestically out of the Salisbury Plain
in England, has fascinated humans for centuries. It is believed that Stonehenge was
erected over several centuries beginning in about 2180 BC. Its purpose is still a mystery,
although theories abound. At the summer solstice, the rising sun appears behind one of
the main stones, giving the illusion that the sun is balancing on the stone. This has led

38

to the early theory that Stonehenge was a temple. Another theory, first suggested in the
middle of the twentieth century, is that Stonehenge could have been used as an
astronomical calendar, marking lunar and solar alignments. Yet a third theory is that
Stonehenge was used to predict eclipses. The latest research now shows that Stonehenge
was intended for and used as a cemetery.3 Human remains, from about 3000 BC until
2500 BC when the first large stones were raised, have been found. Regardless of why it
was built, there is a mystical quality about the place that defies explanation.

It wasn’t until the nineteenth century that the next major step was taken, this time by a
British mathematician. Charles Babbage designed what he called his analytical engine. His
design was too complex for him to build with the technology of his day, so it was never
implemented. His vision, however, included many of the important components of today’s
computers. Babbage’s design was the first to include a memory so that intermediate values
did not have to be reentered. His design also included the input of both numbers and
mechanical steps, making use of punched cards similar to those used in Jacquard’s loom.

Ada Augusta, Countess of Lovelace, was a very romantic figure in the history of
computing. Ada, the daughter of Lord Byron (the English poet), was a skilled
mathematician. She became interested in Babbage’s work on the analytical engine and
extended his ideas (as well as correcting some of his errors). Ada is credited with being the
first programmer. The concept of the loop—a series of instructions that repeat—is
attributed to her. The programming language Ada, used largely by the U.S. Department of
Defense, is named for her.

During the later part of the nineteenth century and the beginning of the twentieth
century, computing advances were made rapidly. William Burroughs produced and sold a
mechanical adding machine. Dr. Herman Hollerith developed the first electro-mechanical
tabulator, which read information from a punched card. His device revolutionized the
census taken every ten years in the United States. Hollerith later formed a company known
today as IBM.

In 1936, a theoretical development took place that had nothing to do with hardware
per se but profoundly influenced the field of computer science. Alan M. Turing, another
British mathematician, invented an abstract mathematical model called a Turing machine,
laying the foundation for a major area of computing theory. The most prestigious award
given in computer science (equivalent to the Fielding Medal in mathematics or a Nobel
Prize in other sciences) is the Turing Award, named for Alan Turing. A recent Broadway
play deals with his life. Analysis of the capabilities of Turing machines is a part of the
theoretical studies of all computer science students.

In the mid to late 1930s, work on building a computing machine continued around the
world. In 1937, George Stibitz constructed a 1-bit binary adder using relays. (See Chapter
4.) Later that year, Claude E. Shannon published a paper about implementing symbolic
logic using relays. In 1938, Konrad Zuse of Berlin built the first mechanical binary
programmable computer. (See biography of Konrad Zuse in Chapter 6.)

By the outbreak of World War II, several general-purpose computers were under design
and construction. In London in 1943, Thomas Flowers built the Colossus, considered by
many to be the first all-programmable electronic digital computer (FIGURE 1.4). In 1944,
the IBM Automatic Sequence Controlled Calculator was given to Harvard; it was

39

subsequently known as the Harvard Mark I. The ENIAC, pictured in FIGURE 1.5, was
unveiled in 1946. John von Neumann, who had served as a consultant on the ENIAC
project, started work on another machine known as EDVAC, which was completed in
1950. In 1951, the first commercial computer, UNIVAC I, was delivered to the U.S.
Bureau of the Census. The UNIVAC I was the first computer used to predict the outcome
of a presidential election.4

The early history that began with the abacus ended with the delivery of the UNIVAC I.
With the building of that machine, the dream of a device that could rapidly manipulate
numbers was realized; the search was ended. Or was it? Some experts predicted at that time
that a small number of computers would be able to handle the computational needs of
mankind. What they didn’t realize was that the ability to perform fast calculations on large
amounts of data would radically change the very nature of fields such as mathematics,
physics, engineering, and economics. That is, computers made those experts’ assessments of
what needed to be calculated entirely invalid.5

FIGURE 1.4 The Colossus, the first all-programmable digital computer
© Pictorial Press Ltd/Alamy Images

40

FIGURE 1.5 The ENIAC, a World War II–era computer
Courtesy of U.S. Army.

After 1951, the story becomes one of the ever-expanding use of computers to solve
problems in all areas. From that point, the search has focused not only on building faster,
bigger devices, but also on developing tools that allow us to use these devices more
productively. The history of computing hardware from this point on is categorized into
several “generations” based on the technology they employed.

Counting Precedes Writing
It took about 4000 years to fully reduce three-dimensional tokens to written signs. It all
began about 7500 BC, when farmers made counters of clay in a dozen shapes to help
keep track of their goods. For example, a cone stood for a small measure of grain, a
sphere for a large measure of grain, and a cylinder for an animal. Four small measures of
grain were represented by four cones. Approximately 8000 of these tokens have been
found from Palestine, Anatolia, Syria, Mesopotamia, and Iran.

Approximately 3500 BC, after the rise of the city-states, administrators started using
clay balls as envelopes to hold the tokens. Some of these envelopes bore impressions of
the tokens they contained. The next step occurred between 3300 and 3200 BC, when
record keepers started just using the impression of the tokens on clay balls, dispensing
with the tokens themselves. Thus it took approximately 4000 years to reduce three-
dimensional tokens to written signs.

Around 3100 BC, styluses were used to draw the tokens rather than impressing the
tokens on the tables. This change led to the breaking of the one-to-one correspondence
between symbol and object. Ten jars of oil were represented by a jar of oil and a symbol
for ten. New signs were not created to express abstract numbers, but old signs took on
new meaning. For example, the cone sign, formerly representing a small measure of
grain, became the symbol for “1,” and the sphere (a large measure of grain) came to
mean “10.” Now 33 jars of oil could be represented by 10 + 10 + 10 + 1 + 1 + 1 and the

41

symbol for “oil.”
Once abstract numerals were created, the signs for goods and the signs for numbers

could evolve in different ways. Thus writing was derived from counting.6

First Generation (1951–1959)
Commercial computers in the first generation (from approximately 1951 to 1959) were
built using vacuum tubes to store information. A vacuum tube, shown in FIGURE 1.6,
generated a great deal of heat and was not very reliable. The machines that used them
required heavy-duty air conditioning and frequent maintenance. They also required very
large, specially built rooms.

FIGURE 1.6 A vacuum tube
© SPbPhoto/Shutterstock, Inc.

The primary memory device of this first generation of computers was a magnetic drum
that rotated under a read/write head. When the memory cell that was being accessed
rotated under the read/write head, the data was written to or read from that place.

The input device was a card reader that read the holes punched in an IBM card (a
descendant of the Hollerith card). The output device was either a punched card or a line
printer. By the end of this generation, magnetic tape drives had been developed that were
much faster than card readers. Magnetic tapes are sequential storage devices, meaning that
the data on the tape must be accessed one after another in a linear fashion.

Storage devices external to the computer memory are called auxiliary storage devices.
The magnetic tape was the first of these devices. Collectively, input devices, output devices,
and auxiliary storage devices became known as peripheral devices.

Second Generation (1959–1965)
The advent of the transistor (for which John Bardeen, Walter H. Brattain, and William B.
Shockley won a Nobel Prize) ushered in the second generation of commercial computers.
The transistor replaced the vacuum tube as the main component in the hardware. The

42

transistor, as shown in FIGURE 1.7, was smaller, more reliable, faster, more durable, and
cheaper.

The second generation also witnessed the advent of immediate-access memory. When
accessing information from a drum, the CPU had to wait for the proper place to rotate
under the read/write head. The second generation used memory made from magnetic cores,
tiny doughnut-shaped devices, each capable of storing one bit of information. These cores
were strung together with wires to form cells, and cells were combined into a memory unit.
Because the device was motionless and was accessed electronically, information was
available instantly.

FIGURE 1.7 A transistor, which replaced the vacuum tube
Courtesy of Dr. Andrew Wylie

Ada Lovelace, the First Programmer7

On December 10, 1815 (the same year that George Boole was born), a daughter—
Augusta Ada Byron—was born to Anna Isabella (Annabella) Byron and George
Gordon, Lord Byron. At that time in England, Byron’s fame derived not only from his
poetry but also from his wild and scandalous behavior. The marriage was strained from
the beginning, and Annabella left Byron shortly after Ada’s birth. By April of 1816, the
two had signed separation papers. Byron left England, never to return. Throughout the
rest of his life he regretted that he was unable to see his daughter. At one point he wrote
of her,

I see thee not. I hear thee not.
But none can be so wrapt in thee.

Before he died in Greece, at age 36, he exclaimed,

43

Oh my poor dear child! My dear Ada!
My God, could I but have seen her!

Meanwhile, Annabella, who eventually was to become a baroness in her own right,
and who was educated as both a mathematician and a poet, carried on with Ada’s
upbringing and education. Annabella gave Ada her first instruction in mathematics, but
it soon became clear that Ada was gifted in the subject and should receive more
extensive tutoring. Ada received further training from Augustus DeMorgan, today
famous for one of the basic theorems of Boolean algebra. By age eight, Ada had
demonstrated an interest in mechanical devices and was building detailed model boats.

When she was 18, Ada visited the Mechanics Institute to hear Dr. Dionysius
Lardner’s lectures on the Difference Engine, a mechanical calculating machine being
built by Charles Babbage. She became so interested in the device that she arranged to be
introduced to Babbage. It was said that, upon seeing Babbage’s machine, Ada was the
only person in the room to understand immediately how it worked and to recognize its
significance. Ada and Charles Babbage became lifelong friends. She worked with him,
helping to document his designs, translating writings about his work, and developing
programs for his machines. In fact, Ada today is recognized as the first computer
programmer in history.

When Babbage designed his Analytical Engine, Ada foresaw that it could go beyond
arithmetic computations and become a general manipulator of symbols, thus having far-
reaching capabilities. She even suggested that such a device eventually could be
programmed with rules of harmony and composition so that it could produce
“scientific” music. In effect, Ada foresaw the field of artificial intelligence more than 150
years ago.

In 1842, Babbage gave a series of lectures in Turin, Italy, on his Analytical Engine.
One of the attendees was Luigi Menabrea, who was so impressed that he wrote an
account of Babbage’s lectures. At age 27, Ada decided to translate the account into
English, with the intent to add a few of her own notes about the machine. In the end,
her notes were twice as long as the original material, and the document, “The Sketch of
the Analytical Engine,” became the definitive work on the subject.

It is obvious from Ada’s letters that her “notes” were entirely her own and that
Babbage was acting as a sometimes unappreciated editor. At one point, Ada wrote to
him,

I am much annoyed at your having altered my Note. You know I am always willing
to make any required alterations myself, but that I cannot endure another person to
meddle with my sentences.

Ada gained the title “Countess of Lovelace” when she married Lord William
Lovelace. The couple had three children, whose upbringing was left to Ada’s mother
while Ada pursued her work in mathematics. Her husband was supportive of her work,
but for a woman of that day such behavior was considered almost as scandalous as some
of her father’s exploits.

Ada died in 1852, just one year before a working Difference Engine was built in
Sweden from one of Babbage’s designs. Like her father, Ada lived only to age 36, and

44

even though they led very different lives, she undoubtedly admired him and took
inspiration from his unconventional and rebellious nature. In the end, Ada asked to be
buried beside him at the family’s estate.

The magnetic disk, a new auxiliary storage device, was also developed during the second
computer hardware generation. The magnetic disk is faster than magnetic tape because each
data item can be accessed directly by referring to its location on the disk. Unlike a tape,
which cannot access a piece of data without accessing everything on the tape that comes
before it, a disk is organized so that each piece of data has its own location identifier, called
an address. The read/write heads of a magnetic disk can be sent directly to the specific
location on the disk where the desired information is stored.

Third Generation (1965–1971)
In the second generation, transistors and other components for the computer were
assembled by hand on printed circuit boards. The third generation was characterized by
integrated circuits (ICs), solid pieces of silicon that contained the transistors, other
components, and their connections. Integrated circuits were much smaller, cheaper, faster,
and more reliable than printed circuit boards. Gordon Moore, one of the co-founders of
Intel, noted that from the time of the invention of the IC, the number of circuits that could
be placed on a single integrated circuit was doubling each year. This observation became
known as Moore’s law.8

Transistors also were used for memory construction, where each transistor represented
one bit of information. Integrated-circuit technology allowed memory boards to be built
using transistors. Auxiliary storage devices were still needed because transistor memory was
volatile; that is, the information went away when the power was turned off.

The terminal, an input/output device with a keyboard and screen, was introduced
during this generation. The keyboard gave the user direct access to the computer, and the
screen provided an immediate response.

?
Scientists build first nanotube computer

Scientists are examining the possibility of using carbon nanotubes, seamless cylinders of ultrapure carbon, as a basis
for future computers. As electrical conduction speeds of conventional silicon transistors begin to reach the limits of
the technology, the search is on for replacements that are faster than silicon. In 2013, scientists at Stanford
University built a working, although primitive, prototype of a computer using nanotube transistors made with these
unusual carbon fibers.9

Fourth Generation (1971–?)
Large-scale integration characterizes the fourth generation. From several thousand transistors
on a silicon chip in the early 1970s, we had moved to a whole microcomputer on a chip by
the middle of this decade. Main memory devices are still made almost exclusively out of

45

chip technology. Over the previous 40 years, each generation of computer hardware had
become more powerful in a smaller package at lower cost. Moore’s law was modified to say
that chip density was doubling every 18 months.

By the late 1970s, the phrase personal computer (PC) had entered the vocabulary.
Microcomputers had become so cheap that almost anyone could have one, and a
generation of kids grew up playing Pac-Man.

The fourth generation found some new names entering the commercial market. Apple,
Tandy/Radio Shack, Atari, Commodore, and Sun joined the big companies of earlier
generations—IBM, Remington Rand, NCR, DEC (Digital Equipment Corporation),
Hewlett-Packard, Control Data, and Burroughs. The best-known success story of the
personal computer revolution is that of Apple. Steve Wozniak, an engineer, and Steve Jobs,
a high school student, created a personal computer kit and marketed it out of a garage. This
was the beginning of Apple Computer, a multibillion-dollar company.

The IBM PC was introduced in 1981 and was soon followed by compatible machines
manufactured by many other companies. For example, Dell and Compaq were successful in
making PCs that were compatible with IBM PCs. Apple introduced its very popular
Macintosh microcomputer line in 1984.

In the mid-1980s, larger, more powerful machines were created; they were referred to
as workstations. Workstations were generally meant for business, not personal, use. The idea
was for each employee to have his or her own workstation on the desktop. These
workstations were connected by cables, or networked, so that they could interact with one
another. Workstations were made more powerful by the introduction of the RISC
(reduced-instruction-set computer) architecture. Each computer was designed to
understand a set of instructions, called its machine language. Conventional machines such as
the IBM 370/168 had an instruction set containing more than 200 instructions.
Instructions were fast and memory access was slow, so specialized instructions made sense.
As memory access got increasingly faster, using a reduced set of instructions became
attractive. Sun Microsystems introduced a workstation with a RISC chip in 1987. Its
enduring popularity proved the feasibility of the RISC chip. These workstations were often
called UNIX workstations because they used the UNIX operating system.

?
From a garage to the Fortune 500

Boyhood friends Steve Jobs and Steve Wozniak sold their Volkswagen van and programmable calculator,
respectively, to raise the money to finance their new computer company. Their first sale was 50 Apple Is, the
computer that they had designed and built in a garage.
In six short years Apple was listed in the Fortune 500.

Because computers are still being made using circuit boards, we cannot mark the end of
this generation. However, several things have occurred that so dramatically affected how we
use machines that they certainly have ushered in a new era. Moore’s law was once again
restated in the following form: “Computers will either double in power at the same price or
halve in cost for the same power every 18 months.”10

46

Parallel Computing
Although computers that use a single primary processing unit continue to flourish, radically
new machine architectures began appearing in the late 1980s. Computers that use these
parallel architectures rely on a set of interconnected central processing units.

One class of parallel machines is organized so that the processors all share the same
memory unit. In another class of machines, each central processor has its own local
memory and communicates with the others over a very fast internal network.

Parallel architectures offer several ways to increase the speed of execution. For example,
a given step in a program can be separated into multiple pieces, and those pieces can be
executed simultaneously on several individual processors. These machines are called SIMD
(single-instruction, multiple-data-stream) computers. A second class of machines can work
on different parts of a program simultaneously. These machines are called MIMD
(multiple-instruction, multiple-data-stream) computers.

The potential of hundreds or even thousands of processors combined in one machine is
enormous, and the challenge of programming for such machines is equally daunting.
Software designed for parallel machines is different from software designed for sequential
machines. Programmers have to rethink the ways in which they approach problem solving
and programming to exploit parallelism.

?
Jobs and Wozniak can’t give it away

“So we went to Atari and said, ‘Hey, we’ve got this amazing thing, even built with some of your parts, and what do
you think about funding us? Or we’ll give it to you. We just want to do it. Pay our salary, we’ll come work for you.’
And they said, ‘No.’ So then we went to Hewlett-Packard, and they said, ‘Hey, we don’t need you. You haven’t got
through college yet.’ ”11

Networking
In the 1980s, the concept of a large machine with many users gave way to a network of
smaller machines connected so that they can share resources such as printers, software, and
data. Ethernet, invented by Robert Metcalfe and David Boggs in 1973, used a cheap coaxial
cable to connect the machines and a set of protocols to allow the machines to communicate
with one another. By 1979, DEC, Intel, and Xerox joined to establish Ethernet as a
standard.

Workstations were designed for networking, but networking personal computers didn’t
become practical until a more advanced Intel chip was introduced in 1985. By 1989,
Novell’s Netware connected PCs together with a file server, a PC with generous mass
storage and good input/output capability. Placing data and office automation software on
the server rather than each PC having its own copy allowed for a measure of central control
while giving each machine a measure of autonomy. Workstations or personal computers
networked together became known as LANs (local area networks).

The Internet as we know it today is descended from the ARPANET, a government-
sponsored network begun in the late 1960s, which originally consisted of 11 nodes

47

concentrated mainly in the Los Angeles and Boston areas. Like ARPANET and LANs, the
Internet uses packet switching, a way for messages to share lines. The Internet, however, is
made up of many different networks across the world that communicate by using a
common protocol, TCP/IP (Transmission Control Protocol/Internet Protocol).

Paul E. Ceruzzi, in A History of Modern Computing, comments on the relationship
between Ethernet and the Internet:

If the Internet of the 1990s became the Information Superhighway, then Ethernet
became the equally important network of local roads to feed it. As a descendent of
ARPA research, the global networks we now call the Internet came into existence
before the local Ethernet was invented at Xerox. But Ethernet transformed the
nature of office and personal computing before the Internet had a significant
effect.12

A Brief History of Computing Software
The hardware of a computer can be turned on, but it does nothing until it is directed to do
so by the programs that make up the computer’s software. The manner in which software
evolved is crucial to understanding how software works in a modern computing system.

?
Computer History Museum

The first computer museum opened in 1979, located in the corporate headquarters of Digital Equipment
Corporation (DEC) in Marlborough, Massachusetts. After several incarnations, in 2005 the Computer History
Museum moved into a permanent home in Mountain View, California, in the heart of Silicon Valley.13

First-Generation Software (1951–1959)
The first programs were written using machine language, the instructions built into the
electrical circuitry of a particular computer. Even the small task of adding two numbers
together used three instructions written in binary (1s and 0s), and the programmer had to
remember which combination of binary digits meant what. Programmers using machine
language had to be very good with numbers and very detail oriented. It’s not surprising that
the first programmers were mathematicians and engineers. Nevertheless, programming in
machine language is both time-consuming and prone to errors.

Because writing in machine code is so tedious, some programmers took the time to
develop tools to help with the programming process. Thus the first artificial programming
languages were developed. These languages, called assembly languages, used mnemonic
codes to represent each machine-language instruction.

Because every program that is executed on a computer eventually must be in the form
of the computer’s machine language, the developers of assembly language also created
software translators to translate programs written in assembly language into machine code.
A program called an assembler reads each of the program’s instructions in mnemonic form

48

and translates it into the machine-language equivalent. These mnemonics are abbreviated
and sometimes difficult to read, but they are much easier to use than long strings of binary
digits.

The programmers who wrote these tools to make programming easier for others were
the first systems programmers. So, even in first-generation software, there was the division
between those programmers who wrote tools and those programmers who used the tools.
The assembly language acted as a buffer between the programmer and the machine
hardware. See FIGURE 1.8. Sometimes, when efficient code is essential, programs today
may be written in assembly language. Chapter 6 explores an example of machine code and
a corresponding assembly language in detail.

FIGURE 1.8 Layers of languages at the end of the first generation

Second-Generation Software (1959–1965)
As hardware became more powerful, more powerful tools were needed to use it effectively.
Assembly languages certainly presented a step in the right direction, but the programmer
still was forced to think in terms of individual machine instructions. The second generation
saw more powerful languages developed. These high-level languages allowed the
programmer to write instructions using more English-like statements.

Two of the languages developed during the second generation are still used today:
FORTRAN (a language designed for numerical applications) and COBOL (a language
designed for business applications). FORTRAN and COBOL developed quite differently.
FORTRAN started out as a simple language and grew as additional features were added to
it over the years. In contrast, COBOL was designed first and then implemented. It has
changed little over time.

Another language that was designed during this period that remains in use today is
Lisp. Lisp differs markedly from FORTRAN and COBOL and was not widely accepted. It
was used mainly in artificial intelligence applications and research. Indeed, dialects of Lisp
are among the languages of choice today in artificial intelligence. Scheme, a dialect of Lisp,
is used at some schools as an introductory programming language.

The introduction of high-level languages provided a vehicle for running the same
program on more than one computer. Each high-level language has a translating program
that goes with it, a program that takes statements written in the high-level language and
converts them to the equivalent machine-code instructions. In the earliest days, the high-
level language statements were often translated into an assembly language, and then the
assembly-language statements were translated into machine code. A program written in
FORTRAN or COBOL can be translated and run on any machine that has a translating

49

program called a compiler.
At the end of the second generation, the role of the systems programmer was becoming

more well-defined. Systems programmers wrote tools like assemblers and compilers; those
people who used the tools to write programs were called applications programmers. The
applications programmer was becoming even more insulated from the computer hardware
as the software surrounding the hardware became more sophisticated. See FIGURE 1.9.

FIGURE 1.9 Layers of language at the end of the second generation

Third-Generation Software (1965–1971)
During the third generation of commercial computers, it became apparent that the human
was slowing down the computing process. Computers were sitting idle while waiting for the
computer operator to prepare the next job. The solution was to put the computer resources
under the control of the computer—that is, to write a program that would determine
which programs were run when. This kind of program is called an operating system.

During the first two computer software generations, utility programs had been written
to handle often-needed tasks. Loaders loaded programs into memory and linkers linked
pieces of large programs together. In the third generation, these utility programs were
refined and put under the direction of the operating system. This group of utility programs,
the operating system, and the language translators (assemblers and compilers) became
known as systems software.

The introduction of computer terminals as input/output devices gave users ready access
to computers, and advances in systems software gave machines the ability to work much
faster. However, inputting and outputting data from keyboards and screens was a slow
process, much slower than carrying out instructions in memory. The problem was how to
make better use of the machine’s greater capabilities and speed. The solution was time
sharing—many different users, each at a terminal, communicating (inputting and
outputting) with a single computer all at the same time. Controlling this process was an
operating system that organized and scheduled the different jobs.

For the user, time sharing is much like having his or her own machine. Each user is
assigned a small slice of central processing time and then is put on hold while another user
is serviced. Users generally aren’t even aware that there are other users. However, if too
many people try to use the system at the same time, there can be a noticeable wait for a job
to be completed.

As part of the third generation, general-purpose application programs were being

50

written. One example was the Statistical Package for the Social Sciences (SPSS), which was
written in FORTRAN. SPSS had a special language, and users wrote instructions in that
language as input to the program. This language allowed the user, who was often not a
programmer, to describe some data and the statistics to be computed on that data.

At the beginning of the computer era, the computer user and the programmer were the
same person. By the end of the first generation, programmers had emerged who wrote tools
for other programmers to use, giving rise to the distinction between systems programmers
and applications programmers. However, the programmer was still the user. In the third
generation, systems programmers were writing programs—software tools—for others to
use. Suddenly, there were computer users who were not programmers in the traditional
sense.

The separation between the user and the hardware was growing wider. The hardware
had become an even smaller part of the picture. A computer system—a combination of
hardware, software, and the data managed by them—had emerged. See FIGURE 1.10.
Although the layers of languages kept getting deeper, programmers continued (and still
continue) to use some of the very inner layers. If a small segment of code must run as
quickly as possible and take up as few memory locations as possible, it may still be
programmed in an assembly language or even machine code.

Fourth Generation (1971–1989)
The 1970s saw the introduction of better programming techniques called structured
programming, a logical, disciplined approach to programming. The languages Pascal and
Modula-2 were built on the principles of structured programming. BASIC, a language
introduced for third-generation machines, was refined and upgraded to more structured
versions. C, a language that allows the user to intersperse assembly-language statements in a
high-level program, was also introduced. C++, a structured language that allows the user
access to low-level statements as well, became the language of choice in the industry.

FIGURE 1.10 The layers of software surrounding the hardware continue to grow

51

Better and more powerful operating systems were being developed, too. UNIX,
developed at AT&T™ as a research tool, has become standard in many university settings.
PC-DOS, developed for the IBM PC, and MS-DOS, developed for PC compatibles,
became standards for personal computers. Apple capitalized on research done at Xerox
PARC by incorporating a mouse and point-and-click graphical interface into the operating
system for the Macintosh, which ushered in an important change to computer–user
interaction on personal computers.

High-quality, reasonably priced applications software packages became available at
neighborhood stores. These programs allow the user with no computer experience to
perform a specific task. Three typical kinds of application packages are spreadsheets, word
processors, and database management systems. Lotus 1-2-3 was the first commercially
successful spreadsheet that allowed a novice user to enter and analyze all kinds of data.
WordPerfect was one of the first word processors, and dBase IV was a system that let the
user store, organize, and retrieve data.

?
From computers to books

Former Microsoft executive John Wood left his job to start a nonprofit that builds schools and libraries in
developing countries. He said, “Education is the ticket out of poverty, and it produces better family health and
better treatment of women. Every day, 250 million kids worldwide wake up with no school to go to. Two-thirds of
them are girls.” By 2013, Room to Read had built 1752 schools and 16,060 libraries.14,15

Fifth Generation (1990–Present)
The fifth generation is notable for three major events: the rise of Microsoft® as a dominant
player in computer software, object-oriented design and programming, and the World
Wide Web.

Microsoft’s Windows operating system emerged as a major force in the PC market
during this period. Although WordPerfect continued to improve, Microsoft Word became
the most used word processing program. In the mid-1990s, word processors, spreadsheet
programs, database programs, and other application programs were bundled together into
super packages called office suites.

Object-oriented design became the design of choice for large programming projects.
Whereas structured design is based on a hierarchy of tasks, object-oriented design is based
on a hierarchy of data objects. Java™, a language designed by Sun Microsystems for object-
oriented programming, began to rival C++.

In 1990, Tim Berners-Lee, a British researcher at the CERN physics lab in Geneva,
Switzerland, created a set of technical rules for what he hoped would be a universal Internet
document center called the World Wide Web. Along with these rules, he created HTML, a
language for formatting documents, and a rudimentary, text-only browser, a program that
allows a user to access information from websites worldwide. In 1993, Marc Andreesen and
Eric Bina released Mosaic, the first graphics-capable browser. To quote Newsweek: “Mosaic
just may have been the most important computer application ever.”16

There were now two giants in the browser market: Netscape Navigator (derived from

52

Mosaic) and Microsoft’s Internet Explorer (IE). Microsoft bundled IE with its Windows
operating system, which made IE the winner in the browser wars. This bundling led to a
monopoly lawsuit filed by the U.S. government, the 2001 settlement of which required
Microsoft to be more open with its competitors. Netscape’s future became uncertain after
America Online purchased it in 1998. AOL stopped supporting Netscape products ten
years later. Mozilla Firefox, a web browser that retained some of the flavor of Mosaic, was
released in November 2004. As of 2014, Firefox had captured 25% of the browser market.

Although the Internet had been around for decades, the World Wide Web made it easy
to use the Internet to share information around the world (see FIGURE 1.11). Around
2002, the Web began changing. Social networking sites such as Facebook and Twitter have
become wildly popular. Online blogging has turned anyone and everyone into an author or
social critic. User-generated and -edited content characterizes these new websites. For
example, Wikipedia is an online encyclopedia for which anyone can enter or edit content.
The term Web 2.0 has been used by some to describe these emerging sites and uses.

The fifth generation must be characterized most of all by the changing profile of the
user. The first user was the programmer who wrote programs to solve specific problems—
his or her own or someone else’s. Then the systems programmer emerged, who wrote more
and more complex tools for other programmers. By the early 1970s, applications
programmers were using these complex tools to write applications programs for non-
programmers to use. With the advent of the personal computer, computer games,
educational programs, and user-friendly software packages, many people became computer
users. With the birth and expansion of the World Wide Web, web surfing has become the
recreation of choice, so even more people have become computer users. The user is a first-
grade child learning to read, a teenager downloading music, a college student writing a
paper, a homemaker planning a budget, and a banker looking up a customer’s loan record.
The user is all of us.

FIGURE 1.11 Sharing information on the World Wide Web

53

In our brief history of hardware and software, we have focused our attention on
traditional computers and computing systems. Paralleling this history is the growing use of
integrated circuits, or chips, to run or regulate everything from toasters to cars to intensive
care monitors to satellites. Such computing technology is called an embedded system.
Although these chips are not actually computers in the sense that we are going to study in
this book, they are certainly a product of the technology revolution of the last 55 years.

Predictions
We end this brief history of computing with a few predictions about computers that didn’t
come true:17–19

“I think there is a world market for maybe five computers.”—Thomas Watson,
chair of IBM, 1943.

“Where … the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tons,
computers in the future may have only 1,000 vacuum tubes and weigh only 1.5
tons.”—Popular Mechanics, 1949.

“I have traveled the length and breadth of this country and talked with the best
people, and I can assure you that data processing is a fad that won’t last out the
year.”—The editor in charge of business books for Prentice Hall, 1957.

“But what … is it good for?”—Engineer at the Advanced Computing Systems
division of IBM, commenting on the microchip, 1968.

“There is no reason anyone would want a computer in their home.”—Ken Olsen,
president, chairman, and founder of Digital Equipment Corporation, 1977.

“$100 million is way too much to pay for Microsoft.”—IBM, 1982.

“I predict the Internet … will go spectacularly supernova and in 1996
catastrophically collapse.”—Bob Metcalfe, 3Com founder and inventor, 1995.

“Folks, the Mac platform is through—totally.”—John C. Dvorak, PC Magazine,
1998.

1.3 Computing as a Tool and a Discipline
In the previous section on the history of computer software, we pointed out the ever-
changing role of the user. At the end of the first generation, users were split into two
groups: systems programmers, who developed tools to make programming easier, and
applications programmers, who used those tools. Later, applications programmers built
large domain-specific programs such as statistical packages, word processors, spreadsheets,
intelligent browsers, virtual environments, and medical diagnosis applications on top of the
traditional language tools. These application programs were, in turn, used by practitioners

54

with no computer background.
So who is using the computer as a tool? Everyone, except for those people who are

creating the tools for others. For these toolmakers, either computing is a discipline (low-
level tools) or the discipline of computing has made their tools possible (applications built
upon applications).

A discipline is defined as a field of study. Peter Denning defines the discipline of
computer science as “the body of knowledge and practices used by computing professionals
in their work…. This discipline is also called computer science and engineering,
computing, and informatics.”20 He continues, “The body of knowledge of computing is
frequently described as the systematic study of algorithmic processes that describe and
transform information: their theory, analysis, design, efficiency, implementation, and
application. The fundamental question underlying all of computing is, What can be
(efficiently) automated?”

Denning states that each practitioner must be skilled in four areas:

■ Algorithmic thinking, in which one is able to express problems in terms of step-by-
step procedures to solve them

■ Representation, in which one is able to store data in a way that it can be processed
efficiently

■ Programming, in which one is able to combine algorithmic thinking and
representation into computer software

■ Design, in which the software serves a useful purpose

A debate has long raged about whether computing is a mathematical discipline, a
scientific discipline, or an engineering discipline. Computing certainly has strong roots in
mathematical logic. The theorems of Turing tell us that certain problems cannot be solved,
Boolean algebra describes computer circuits, and numerical analysis plays an important role
in scientific computing. Scientific disciplines attempt to understand how their systems
work. The natural sciences exist to “fill in the instruction book that God forgot to leave
us.”21 Thus computing is a scientific discipline, as we use them to build and test models of
natural phenomena. As we design and build larger and larger computing systems, we are
using techniques from engineering.

In 1989, a task force of computer science educators proposed a curriculum model that
covered the subareas of computing from the three perspectives represented in our history:
theory (mathematics); experimentation, called abstraction by computer scientists (sciences);
and design (engineering).22 Theory refers to the building of conceptual frameworks and
notations for understanding relationships among objects in a domain. Experimentation
(abstraction) refers to exploring models of systems and architectures within different
application domains and determining whether the models predict new behaviors. Design
refers to constructing computer systems that support work in different application
domains.

TABLE 1.1 shows the topic areas outlined by the task force. Of the nine subject topic
areas, six relate to understanding and building computing tools in general: Algorithms and
Data Structures, Programming Languages, (Computer) Architecture, Operating Systems,
Software Methodology and Engineering, and Human–Computer Communication. Not

55

surprisingly, these are called systems areas. Three of the subareas relate to the computer’s use
as a tool: Database and Information Retrieval, Artificial Intelligence and Robotics, and
Graphics. These areas are called applications areas.

TABLE 1.1 Topic Areas of the Computing Discipline, 1989
Algorithms and Data Structures
Programming Languages
Architecture
Operating Systems
Software Methodology and Engineering
Database and Information Retrieval
Artificial Intelligence and Robotics
Human–Computer Communication
Graphics

?
Computers go to college

The first departments of computer science were established in 1962 at Purdue and Stanford Universities. The first
PhD in computer science was awarded by the University of Pennsylvania in 1965. The first curriculum effort in
computer science was published by the ACM in 1968.23

Revised curriculum documents, published in 2001, reorganized and expanded the topic
areas to a total of 14. Algorithms and Data Structures has been expanded and put under the
title “Programming Fundamentals.” With the rise of the Web, networks get their own
category: Net-Centric Computing. Artificial Intelligence and Robotics has been expanded
to include all Intelligent Systems. Databases and Information Retrieval are now called
Information Management.

The new topics include Discrete Structures, an area of mathematics that is important to
computing, and Algorithms and Complexity, the formal study of algorithms rather than
the study of how to write them. These would be systems areas. Computational Science
includes the application of numerical techniques and simulation to fields such as molecular
dynamics, celestial mechanics, economic forecasting, and bioinformatics. The last new
topic is Social and Professional Issues, which relates to professionals in both systems and
applications areas. This area is now called the Tenth Strand. We have more to say about this
in the Ethical Issues section. TABLE 1.2 shows a listing of the topic areas as of 2001. The
report “Computer Science Curriculum 2008: An Interim Revision of CS 2001,” published
in December 2008, leaves these 14 topic areas unchanged.

TABLE 1.2 Topic Areas of the Computing Discipline, 2001
Discrete Structures
Programming Fundamentals

56

Algorithms and Complexity
Architecture and Organization
Operating Systems
Net-Centric Computing
Programming Languages
Human-Computer Interaction
Graphics and Visual Computing
Intelligent Systems
Information Management
Social and Professional Issues
Software Engineering
Computational Science

Research is ongoing in both systems and applications. Systems research produces better
general tools; applications research produces better tools for the domain-specific
applications. There is no doubt that the relationships between the people who investigate
computing topics as a discipline directly affect those who use computers as a tool.
Computing research fuels the applications people use daily, and the turnaround for the
technology is amazingly fast. This symbiotic relationship is more dynamic in computing
than in any other discipline.

In this book we explain, at an introductory level, the ideas underlying computing as a
discipline. This book does not aim to make you a better user of a computer, although it
should undoubtedly have that side effect. Instead, we want you to walk away with a
thorough knowledge of how computer systems work, where they are now, and where they
may go in the future. For this reason, we examine both systems and applications.

SUMMARY

This book is a broad study of computer systems, including the hardware that makes up the
devices, the software programs executed by the machine, and the data managed and
manipulated by both. Computing systems can be divided into layers, and our organization
of this book follows those layers from the inside out.

The history of computing reveals the roots from which modern computing systems
grew. This history spans four generations, each characterized by the components used to
build the hardware and the software tools developed to allow the programmer to make
more productive use of the hardware. These tools have formed layers of software around
the hardware.

Throughout the rest of this book, we examine the different layers that make up a
computing system, beginning with the information layer and ending with the
communication layer. Our goal is to give you an appreciation and understanding of all
aspects of computing systems.

57

You may go on to study computer science in depth and contribute to the future of
computing systems. Or you may go on to be an application specialist within other
disciplines, using the computer as a tool. Whatever your future holds, given how prevalent
computing systems are, a fundamental understanding of how they work is imperative.

ETHICAL ISSUES
Digital Divide

Over the past three decades, the dependence of U.S. society on computer technology
has increased dramatically. At the beginning of the 21st century, it was estimated that
51% of U.S. households had a personal computer and 42% had Internet access.24 By
2011, 75.6% of households had a computer and 71.7% had Internet access. These
statistics also show that 24.4% still did not have a computer and 28.3% did not have
Internet access. The term digital divide has come to represent this disparity between
Information Age haves and have nots.

Although this gap is narrowing, it is still of social concern. As groups, rural
communities, minority households, low-income families, and people with disabilities do
not have the same levels of Internet access as more advantaged people. In educational
settings, Web connections and the quantity and quality of computers vary greatly across
demographic regions. Programs such as the federally supported E-Rate Program,
established in 1996 and funded by fees charged to companies that provide interstate
and/or international telecommunications services, respond to these inequalities by
providing financial discounts to schools and libraries in need.

In 2005, Nicholas Negroponte, in collaboration with MIT, launched the One
Laptop per Child (OLPC) program. Working from the philosophy that every child—
even those in the most remote regions of the world—should have access to a computer,
OLPC set out to produce a low-cost laptop for children who otherwise could not afford
one. OLPC designed a basic laptop that sells for less than $200 and has a battery that
can be charged by human power. By 2011, more than two million children and teachers
in 42 countries were using these XO laptops.25

The digital divide encompasses an additional challenge that developing nations must
face. Without the necessary telecommunication infrastructures to support Internet
access, emerging countries are at a serious disadvantage. This is reflected in statistics that
show how Internet access varies throughout the world. In 2012, the percentages of
people who have Internet access per continent or region were 15.6% in Africa, 27.5% in
Asia, 40.2% in the Middle East, 42.9% in South America, 63.2% in Europe, 67.6% in
Australia, and 78.6% in North America. The world figure is 34.3%; that is, 34.3% of
people worldwide have Internet access.26

With the advent of smartphones, computer usage and Internet access no longer
parallel each other. You no longer need a computer to be an Internet user.

A thought to ponder: Those without Internet access do not know what is happening
around the world, and the world has no access to what they are thinking. They are
invisible to the rest of the world, and the rest of the world is invisible to them.

58

KEY TERMS

Abstraction
Computer hardware
Computer software
Computing system

EXERCISES

For Exercises 1–10, choose from the following list of people.
A. Leibniz
B. Pascal
C. Babbage
D. Lovelace
E. Hollerith
F. Byron
G. Turing
H. Jacquard

 1. What French mathematician built and sold the first gear-driven mechanical
machine that did addition and subtraction?

 2. Who built the first mechanical machine that did addition, subtraction,
multiplication, and division?

 3. Who designed the first mechanical machine that included memory?
 4. Who was considered the first programmer?
 5. Who proposed that a punched card be used for counting the census?
 6. Who edited Babbage’s work?
 7. Who was Ada Lovelace’s father?
 8. Who would have been mentioned in the book the Code Breakers?
 9. Who developed the concept of punched holes used in weaving cloth?
10. Who is associated with IBM?

For Exercises 11–23, match the hardware listed to the appropriate generation.
A. First
B. Second
C. Third
D. Fourth
E. Fifth

11. Circuit boards
12. Transistor
13. Magnetic core memory
14. Card input/output
15. Parallel computing
16. Magnetic drum

59

17. Magnetic tape drives
18. Integrated circuits
19. Personal computer
20. Vacuum tube
21. Large-scale integration
22. Magnetic disk
23. Networking

For Exercises 24–38, match the software or software concepts listed to the appropriate
generation.

A. First
B. Second
C. Third
D. Fourth
E. Fifth

24. Assemblers
25. FORTRAN
26. Operating systems
27. Structured programming
28. Time sharing
29. HTML (for the Web)
30. Loaders
31. Spreadsheets
32. Word processors
33. Lisp
34. PC-DOS
35. Loaders/linkers bundled into an operating system
36. Java
37. SPSS
38. C++

Exercises 39–59 are short-answer questions.
39. What do we mean by the statement that “the 1980s and 1990s must be

characterized by the changing profile of the user”?
40. Why was Mosaic important?
41. Discuss the browser wars.
42. Describe how the Web changed after 2002.
43. Of the predictions listed in this chapter on page 25, which do you consider the

biggest error in judgment? Explain.
44. Name the four areas in which the practitioner must be skilled.
45. Distinguish between computing as a tool and computing as a discipline.
46. Is computing a mathematical discipline, a scientific discipline, or an engineering

discipline? Explain.
47. Distinguish between systems areas and applications areas in computing as a

discipline.
48. Define the word abstraction and relate it to the drawing in Figure 1.2.
49. Compare Tables 1.1 and 1.2. Which trends do you see?

60

50. Define the word protocol and explain how it is used in computing.
51. Distinguish between machine language and assembly language.
52. Distinguish between assembly language and high-level languages.
53. FORTRAN and COBOL were two high-level languages defined during the

second generation of computer software. Compare and contrast these languages in
terms of their history and their purpose.

54. Distinguish between an assembler and a compiler.
55. Distinguish between a systems programmer and an applications programmer.
56. What was the rationale behind the development of operating systems?
57. What constitutes systems software?
58. What do the following pieces of software do?

a. Loader
b. Linker
c. Editor

59. How was the program SPSS different from the programs that came before it?

THOUGHT QUESTIONS

 1. Identify five abstractions in your school environment. Indicate which details are
hidden by the abstraction and how the abstraction helps manage complexity.

 2. Discuss the role of abstraction in the history of computer software.
 3. Did you have a computer in your home when you were growing up? If so, did it

have Internet access? Did you use it for any of your high school classwork?
 4. Do you know anyone today who does not have Internet access?

61

THE INFORMATION LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits
5 Computing Components

The Programming Layer
6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages

The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer
15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion
18 Limitations of Computing

62

2 BINARY VALUES AND NUMBER
SYSTEMS

Now that we’ve established history and some common terminology in Chapter 1, our
exploration of computing technology can begin in earnest. This chapter describes binary
values—the way in which computer hardware represents and manages information. This
chapter also puts binary values in the context of all number systems, reminding us of grade
school concepts that we now take for granted. You probably already know many of the
concepts about binary numbers described in this chapter, but you might not realize that
you know them! The rules of all number systems are the same; it’s just a matter of going
back to those underlying concepts and applying them in a new base. By making sure we
have an understanding of binary values, we pave the way to understanding how computing
systems use the binary number system to accomplish their tasks.

GOALS
After studying this chapter, you should be able to:

■ distinguish among categories of numbers.
■ describe positional notation.
■ convert numbers in other bases to base 10.
■ convert base-10 numbers to numbers in other bases.
■ describe the relationship between bases 2, 8, and 16.
■ explain the importance to computing of bases that are powers of 2.

2.1 Numbers and Computing
Numbers are crucial to computing. In addition to using a computer to execute numeric
computations, all types of information that we store and manage using a computer are
ultimately stored as numbers. At the lowest level, computers store all information using just
the digits 0 and 1. So to begin our exploration of computers, we need to first begin by
exploring numbers.

First, let’s recall that numbers can be classified into all sorts of categories. There are
natural numbers, negative numbers, rational numbers, irrational numbers, and many others
that are important in mathematics but not to the understanding of computing. Let’s review
the relevant category definitions briefly.

First, let’s define the general concept of a number: A number is a unit belonging to an

63

abstract mathematical system and is subject to specified laws of succession, addition, and
multiplication. That is, a number is a representation of a value, and certain arithmetic
operations can be consistently applied to such values.

Number A unit of an abstract mathematical system subject to the laws of arithmetic

Now let’s separate numbers into categories. A natural number is the number 0 or any
number obtained by repeatedly adding 1 to this number. Natural numbers are the ones we
use in counting. A negative number is less than zero and is opposite in sign to a positive
number. An integer is any of the natural numbers or any of the negatives of these numbers.
A rational number is an integer or the quotient of two integers—that is, any value that can
be expressed as a fraction.

Natural number The number 0 and any number obtained by repeatedly adding 1 to it

Negative number A value less than 0, with a sign opposite to its positive counterpart

Integer A natural number, a negative of a natural number, or zero

Rational number An integer or the quotient of two integers (division by zero excluded)

In this chapter, we focus on natural numbers and the ways that they are represented in
various number systems. As part of our discussion, we establish how all number systems
relate to each other. In Chapter 3, we examine the computer representation of negative and
rational numbers, as well as how we use numbers to represent other forms of data such as
characters and images.

Some of the material in this chapter may already be familiar to you. Certainly some of
the underlying ideas should be. You probably take for granted some basic principles of
numbers and arithmetic because you’ve become so used to them. Part of our goal in this
chapter is to remind you of those underlying principles and to show you that they apply to
all number systems. Then the idea that a computer uses binary values—that is, 1s and 0s—
to represent information should be less mysterious.

2.2 Positional Notation
How many ones are there in 943? That is, how many actual things does the number 943
represent? Well, in grade school terms, you might say there are 9 hundreds plus 4 tens plus
3 ones. Or, said another way, there are 900 ones plus 40 ones plus 3 ones. So how many
ones are there in 754? 700 ones plus 50 ones plus 4 ones. Right? Well, maybe. The answer
depends on the base of the number system you are using. This answer is correct in the base-
10, or decimal, number system, which is the number system humans use every day. But
that answer is not correct in other number systems.

The base of a number system specifies the number of digits used in the system. The
digits always begin with 0 and continue through one less than the base. For example, there
are 2 digits in base 2: 0 and 1. There are 8 digits in base 8: 0 through 7. There are 10 digits
in base 10: 0 through 9. The base also determines what the positions of digits mean. When

64

you add 1 to the last digit in the number system, you have a carry to the digit position to
the left.

Base The foundational value of a number system, which dictates the number of digits and the value of digit
positions

Numbers are written using positional notation. The rightmost digit represents its value
multiplied by the base to the zeroth power. The digit to the left of that one represents its
value multiplied by the base to the first power. The next digit represents its value
multiplied by the base to the second power. The next digit represents its value multiplied
by the base to the third power, and so on. You are so familiar with positional notation that
you probably don’t think about it. We used it instinctively to calculate the number of ones
in 943.

Positional notation A system of expressing numbers in which the digits are arranged in succession, the position of
each digit has a place value, and the number is equal to the sum of the products of each digit by its place value1

?
The importance of zero

Positional notation is possible only because of the concept of zero. Zero was the fundamental concept at the
intersection of all branches of modern mathematics. As Georges Ifrah noted in his book The Universal History of
Computing: “To sum up, the vital discovery of zero gave the human mind an extraordinarily powerful potential. No
other human creation has exercised such an influence on the development of mankind’s intelligence.”2

A more formal way of defining positional notation is to say that the value is represented
as a polynomial in the base of the number system. But what is a polynomial? A polynomial
is a sum of two or more algebraic terms, each of which consists of a constant multiplied by
one or more variables raised to a nonnegative integral power. When defining positional
notation, the variable is the base of the number system. Thus 943 is represented as a
polynomial as follows, with x acting as the base:

Let’s express this idea formally. If a number in the base-R number system has n digits, it
is represented as follows, where di represents the digit in the ith position in the number:

Look complicated? Let’s look at a concrete example: 63578 in base 10. Here n is 5 (the

65

number has five digits), and R is 10 (the base). The formula says that the fifth digit (last
digit on the left) is multiplied by the base to the fourth power; the fourth digit is multiplied
by the base to the third power; the third digit is multiplied by the base to the second power;
the second digit is multiplied by the base to the first power; and the first digit is not
multiplied by anything.

In the previous calculation, we assumed that the number base is 10. This is a logical
assumption because our number system is base 10. However, there is no reason why the
number 943 couldn’t represent a value in base 13. If so, to determine the number of ones,
we would have to convert it to base 10.

Therefore, 943 in base 13 is equal to 1576 in base 10. Keep in mind that these two
numbers have an equivalent value. That is, both represent the same number of things. If
one bag contains 943 (base 13) beans and a second bag contains 1576 (base 10) beans, then
both bags contain the exact same number of beans. Number systems just allow us to
represent values in various ways.

Note that in base 10, the rightmost digit is the “ones” position. In base 13, the
rightmost digit is also the “ones” position. In fact, this is true for any base, because
anything raised to the power 0 is 1.

Why would anyone want to represent values in base 13? It isn’t done very often,
granted, but it is sometimes helpful to understand how it works. For example, a computing
technique called hashing takes numbers and scrambles them, and one way to scramble
numbers is to interpret them in a different base.

Other bases, such as base 2 (binary), are particularly important in computer processing.
Let’s explore these bases in more detail.

Binary, Octal, and Hexadecimal
The base-2 (binary) number system is particularly important in computing. It is also
helpful to be familiar with number systems that are powers of 2, such as base 8 (octal) and
base 16 (hexadecimal). Recall that the base value specifies the number of digits in the
number system. Base 10 has ten digits (0–9), base 2 has two digits (0–1), and base 8 has
eight digits (0–7). Therefore, the number 943 could not represent a value in any base less
than base 10, because the digit 9 doesn’t exist in those bases. It is, however, a valid number
in base 10 or any base higher than that. Likewise, the number 2074 is a valid number in
base 8 or higher, but it simply does not exist (because it uses the digit 7) in any base lower
than that.

What are the digits in bases higher than 10? We need symbols to represent the digits
that correspond to the decimal values 10 and beyond. In bases higher than 10, we use
letters as digits. We use the letter A to represent the number 10, B to represent 11, C to

66

represent 12, and so forth. Therefore, the 16 digits in base 16 are:

Let’s look at values in octal, hexadecimal, and binary to see what they represent in base
10. For example, let’s calculate the decimal equivalent of 754 in octal (base 8). As before,
we just expand the number in its polynomial form and add up the numbers.

Let’s convert the hexadecimal number ABC to decimal:

Note that we perform the exact same calculation to convert the number to base 10. We
just use a base value of 16 this time, and we have to remember what the letter digits
represent. After a little practice you won’t find the use of letters as digits that strange.

Finally, let’s convert a binary (base-2) number 1010110 to decimal. Once again, we
perform the same steps—only the base value changes:

The Abacus
In our brief history of computing in Chapter 1, we mentioned the abacus as an early
computing device. More specifically, the abacus is a device that uses positional notation
to represent a decimal number. The beads in any one column represent the digit in that
column. All columns combined represent a complete number.

67

Courtesy of Theresa DiDonato

The beads above the middle bar represent units of 5 and the beads below the bar each
represent 1. Beads pushed away from the middle bar do not contribute to the number.
The following diagram shows the number 27,091 represented on an abacus:

Courtesy of Theresa DiDonato

The user performs calculations by moving the beads in specific ways to reflect the basic
arithmetic operations of addition, subtraction, multiplication, and division.

Though ancient, the abacus is still used today in many Asian cultures. In stores, a
checkout clerk might use an abacus instead of an electronic cash register. Although
lacking some of the advantages of electronic devices, the abacus is more than sufficient
for the kinds of calculations needed for basic business transactions. Skilled users of an
abacus can rival anyone with a calculator in terms of both speed and accuracy.

Children in these cultures learn rote operations on the abacus, much as you were
drilled in your multiplication tables. To perform an operation on a number, the user
executes a series of movements using only the thumb, pointing finger, and middle finger
of one hand. These movements correspond to individual digits and depend on the
operation being performed. For example, to add the digit 7 to the digit 5 already
showing on the abacus, the user clears the five marker (pushes it to the top), pushes 2
onto the bar from below, and increments 1 in the next column. Though this move
corresponds to the basic addition operation we do on paper, the abacus user is not
thinking about the mathematics. The user is conditioned to execute a specific
movement when specific digits are encountered for a specific operation. When the
calculation is complete, the user reads the result as shown on the abacus.

Recall that the digits in any number system go up to one less than the base value. To
represent the base value in any base, you need two digits. A 0 in the rightmost position and
a 1 in the second position represent the value of the base itself. Thus 10 is ten in base 10,
10 is eight in base 8, and 10 is sixteen in base 16. Think about it. The consistency of
number systems is actually quite elegant.

Bi-quinary Number Representation
The console of the IBM 650, a popular commercial computer in the late 1950s, allowed
the operator to read the contents of memory using the bi-quinary system. This number
representation system uses seven lights to represent the 10 decimal digits.

68

Courtesy of IBM Corporate Archives, © International Business Machines Corporation

Each digit is represented by two lights, one of the top two and one of the bottom five. If
the upper-left light is on, the five other lights represent 0, 1, 2, 3, and 4, respectively,
from top to bottom. If the upper-right light is on, the five other lights represent 5, 6, 7,
8, and 9. The following configuration represents the number 7:

The IBM 650 was called the Ford Tri-Motor of computers: Like the Ford Tri-
Motor, old IBM 650s were shipped to Latin America where they enjoyed an extended
life.

Addition and subtraction of numbers in other bases are performed exactly like they are
on decimal numbers.

Arithmetic in Other Bases
Recall the basic idea of arithmetic in decimal: 0 + 1 is 1, 1 + 1 is 2, 2 + 1 is 3, and so on.
Things get interesting when you try to add two numbers whose sum is equal to or larger
than the base value—for example, 1 + 9. Because there isn’t a symbol for 10, we reuse the
same digits and rely on position. The rightmost digit reverts to 0, and there is a carry into
the next position to the left. Thus 1 + 9 equals 10 in base 10.

The rules of binary arithmetic are analogous, but we run out of digits much sooner.
That is, 0 + 1 is 1, and 1 + 1 is 0 with a carry. Then the same rule is applied to every
column in a larger number, and the process continues until we have no more digits to add.
The example below adds the binary values 101110 and 11011. The carry value is marked

69

above each column in color.

We can convince ourselves that this answer is correct by converting both operands to
base 10, adding them, and comparing the result: 101110 is 46, 11011 is 27, and the sum is
73. Of course, 1001001 is 73 in base 10.

The subtraction facts that you learned in grade school were that 9 – 1 is 8, 8 – 1 is 7,
and so on, until you try to subtract a larger digit from a smaller one, such as 0 – 1. To
accomplish this feat, you have to “borrow one” from the next left digit of the number from
which you are subtracting. More precisely, you borrow one power of the base. So, in base
10, when you borrow, you borrow 10. The same logic applies to binary subtraction. Every
time you borrow in a binary subtraction, you borrow 2. Here are two examples with the
borrowed values marked above.

Once again, you can check the calculation by converting all values to base 10 and
subtracting to see if the answers correspond.

Power-of-2 Number Systems
Binary and octal numbers share a very special relationship: Given a number in binary, you
can read it off in octal; given a number in octal, you can read it off in binary. For example,
take the octal number 754. If you replace each digit with the binary representation of that
digit, you have 754 in binary. That is, 7 in octal is 111 in binary, 5 in octal is 101 in
binary, and 4 in octal is 100 in binary, so 754 in octal is 111101100 in binary.

To facilitate this type of conversion, the table below shows counting in binary from 0
through 10 with their octal and decimal equivalents.

BINARY OCTAL DECIMAL

 0 0 0

 1 1 1

 10 2 2

 11 3 3

 100 4 4

 101 5 5

 110 6 6

 111 7 7

1000 10 8

1001 11 9

70

1010 12 10

?
Can you count to three?

Not instinctively! Cognitive psychologists have demonstrated that preschool children do not identify more than
three sets: a set of one object, two objects, and three or more objects (also called many). Until some two centuries
ago, numerous languages had only two or three number words: words for single, pair, and many. We still have such
words in English: gang, pile, bunch, flock, herd, school, fleet, pride, pack, and gaggle.3

To convert from binary to octal, you start at the rightmost binary digit and mark the
digits in groups of threes. Then you convert each group of three to its octal value.

Let’s convert the binary number 1010110 to octal, and then convert that octal value to
decimal. The answer should be the equivalent of 1010110 in decimal, or 86.

The reason that binary can be immediately converted to octal and octal to binary is that
8 is a power of 2. There is a similar relationship between binary and hexadecimal. Every
hexadecimal digit can be represented in four binary digits. Let’s take the binary number
1010110 and convert it to hexadecimal by marking the digits from right to left in groups of
four.

Now let’s convert ABC in hexadecimal to binary. It takes four binary digits to represent
each hex digit. A in hexadecimal is 10 in decimal and therefore is 1010 in binary. Likewise,
B in hexadecimal is 1011 in binary, and C in hexadecimal is 1100 in binary. Therefore,
ABC in hexadecimal is 101010111100 in binary.

Rather than confirming that 101010111100 is 2748 in decimal directly, let’s mark it
off in octal and convert the octal.

71

Thus 5274 in octal is 2748 in decimal.
In the next section, we show how to convert base-10 numbers to the equivalent number

in another base.

Converting from Base 10 to Other Bases
The rules for converting base-10 numbers involve dividing by the base into which you are
converting the number. From this division, you get a quotient and a remainder. The
remainder becomes the next digit in the new number (going from right to left), and the
quotient replaces the number to be converted. The process continues until the quotient is
zero. Let’s write the rules in a different form.

WHILE (the quotient is not zero)
Divide the decimal number by the new base
Make the remainder the next digit to the left in the answer
Replace the decimal number with the quotient

These rules form an algorithm for converting from base 10 to another base. An
algorithm is a logical sequence of steps that solves a problem. We have much more to say
about algorithms in later chapters. Here we show one way of describing an algorithm and
then apply it to perform the conversions.

The first line of the algorithm tells us to repeat the next three lines until the quotient
from our division becomes zero. Let’s convert the decimal number 2748 to hexadecimal. As
we’ve seen in previous examples, the answer should be ABC.

The remainder (12) is the first digit in the hexadecimal answer, represented by the digit
C. So the answer so far is C. Since the quotient is not zero, we divide it (171) by the new
base.

The remainder (11) is the next digit to the left in the answer, which is represented by

72

the digit B. Now the answer so far is BC. Since the quotient is not zero, we divide it (10)
by the new base.

The remainder (10) is the next digit to the left in the answer, which is represented by
the digit A. Now the answer is ABC. The quotient is zero, so we are finished, and the final
answer is ABC.

Binary Values and Computers
Although some of the early computers were decimal machines, modern computers are
binary machines. That is, numbers within the computer are represented in binary form. In
fact, all information is somehow represented using binary values. The reason is that each
storage location within a computer contains either a low-voltage signal or a high-voltage
signal. Because each location can have only one of two states, it is logical to equate those
states to 0 and 1. A low-voltage signal is equated with a 0, and a high-voltage signal is
equated with a 1. In fact, you can forget about voltages and think of each storage location
as containing either a 0 or a 1. Note that a storage location cannot be empty: It must
contain either a 0 or a 1.

Grace Murray Hopper

© Cynthia Johnson/Getty Images

From 1943 until her death on New Year’s Day in 1992, Admiral Grace Murray Hopper
was intimately involved with computing. In 1991, she was awarded the National Medal
of Technology “for her pioneering accomplishments in the development of computer
programming languages that simplified computer technology and opened the door to a
significantly larger universe of users.”

Admiral Hopper was born Grace Brewster Murray in New York City on December
9, 1906. She attended Vassar and received a PhD in mathematics from Yale. For the

73

next 10 years, she taught mathematics at Vassar.
In 1943, Admiral Hopper joined the U.S. Navy and was assigned to the Bureau of

Ordnance Computation Project at Harvard University as a programmer on the Mark I.
After the war, she remained at Harvard as a faculty member and continued work on the
Navy’s Mark II and Mark III computers. She loved to tell the story of how, while she
was working on the Mark II, one of the operators discovered the first computer “bug”—
a moth caught in one of the relays. In 1949, she joined Eckert-Mauchly Computer
Corporation and worked on the UNIVAC I.

Admiral Hopper had a working compiler in 1952, a time when the conventional
wisdom was that computers could do only arithmetic. Although not on the committee
that designed the computer language COBOL, she was active in its design,
implementation, and use. COBOL (which stands for Common Business-Oriented
Language) was developed in the early 1960s and is still widely used in business data
processing.

Admiral Hopper retired from the Navy in 1966, only to be recalled within a year to
full-time active duty. Her mission was to oversee the Navy’s efforts to maintain
uniformity in programming languages. It has been said that just as Admiral Hyman
Rickover was the father of the nuclear navy, Rear Admiral Hopper was the mother of
computerized data automation in the Navy. She served with the Naval Data
Automation Command until she retired again in 1986 with the rank of Rear Admiral.
At the time of her death, she was a senior consultant at Digital Equipment Corporation.

Admiral Hopper loved young people and enjoyed giving talks on college and
university campuses. She often handed out colored wires, which she called nanoseconds
because they were cut to a length of about one foot—the distance that light travels in a
nanosecond (billionth of a second). Her advice to the young was, “You manage things,
you lead people. We went overboard on management and forgot about the leadership.”

During her lifetime, Admiral Hopper received honorary degrees from more than 40
colleges and universities. She was honored by her peers on several occasions, including
the first Computer Sciences Man of the Year award given by the Data Processing
Management Association, and the Contributors to Computer Science Education Award
given by the Special Interest Group for Computer Science Education (SIGCSE), which
is part of the ACM (Association for Computing Machinery).

Nell Dale, when notifying Admiral Hopper of the SIGCSE award, asked of which
of her many accomplishments she was most proud. She answered, “All the young people
I have trained over the years.”

Each storage unit is called a binary digit, or bit for short. Bits are grouped together into
bytes (8 bits), and bytes are grouped together into units called words. The number of bits
in a word is known as the word length of the computer. For example, IBM 370
architecture in the late 1970s had half words (2 bytes or 16 bits), full words (4 bytes), and
double words (8 bytes).

Binary digit A digit in the binary number system; a 0 or a 1

Bit Binary digit

Byte Eight binary digits

74

Word A group of one or more bytes; the number of bits in a word is the word length of the computer

Modern computers are often 32-bit machines (such as Intel’s Pentium IV processor) or
64-bit machines (such as Hewlett-Packard’s Alpha processors and Intel’s Itanium 2
processor). However, some microprocessors that are used in applications such as pagers are
8-bit machines. The computing machine you are using—whatever it is—is ultimately
supported by the binary number system.

We have much more to explore about the relationship between computers and binary
numbers. In the next chapter, we examine many kinds of data and see how they are
represented in a computer. In Chapter 4, we see how to control electrical signals that
represent binary values. In Chapter 6, we see how binary numbers are used to represent
program commands that the computer executes.

SUMMARY

Numbers are written using positional notation, in which the digits are arranged in
succession, the position of each digit has a place value, and the number is equal to the sum
of the products of each digit by its place value. The place values are powers of the base of
the number system. Thus, in the decimal number system, the place values are powers of 10;
in the binary number system, the place values are powers of 2.

Arithmetic can be performed on numbers in any base represented in positional
notation. The same operational rules apply to other bases as they do to base 10. Adding 1
to the largest digit in the base causes a carry into the next position.

Base 2, base 8, and base 16 are all related because these bases are powers of 2. This
relationship provides a quick way to convert between numbers in these bases. Computer
hardware is designed using numbers in base 2. A low-voltage signal is equated with 0, and a
high-voltage signal is equated with 1.

ETHICAL ISSUES
The FISA Court

The United States Foreign Intelligence Surveillance Court is a U.S. federal court that
was established under the Foreign Intelligence Surveillance Act of 1978 (FISA). The
Court handles requests by federal law enforcement agencies for surveillance warrants
against suspected foreign intelligence agents operating inside the United States.4

Before 2013, when Edward Snowden leaked that the Court had ordered a subsidiary
of Verizon to provide detailed call records to the National Security Agency (NSA), most
people had never heard of the FISA Court. The next chapter examines the controversy
surrounding it.

The FISA Court comprises 11 judges who sit for 7-year terms. The Chief Justice of
the Supreme Court appoints the judges, without confirmation. An application for an

75

electronic surveillance warrant is made before one of the judges. The court may amend
this application before granting the warrant. If the application is denied, the government
may not take the same request to another judge. If the U.S. Attorney General
determines that an emergency exists, he or she may authorize the electronic surveillance
but must notify a Court judge not more than 72 hours after the authorization. The USA
PATRIOT Act of 2001 expanded the time periods during which surveillance may be
authorized.5

In December 2012, President Obama signed the FISA Amendments Act
Reauthorization Act of 2012, which extends Title VII of FISA until December 31,
2017.

Title VII of FISA, added by the FISA Amendments Act of 2008, created separate
procedures for targeting suspected foreign intelligence agents, including non-U.S.
persons and U.S. persons reasonably believed to be outside the United States.6

Note that the stated intent of the FISA Court is to protect the United States as well
as the rights of U.S. citizens.

KEY TERMS

Base
Binary digit
Bit
Byte
Integer
Natural number
Negative number
Number
Positional notation
Rational number
Word

EXERCISES

For Exercises 1–5, match the following numbers with their definition.
A. Number
B. Natural number
C. Integer number
D. Negative number
E. Rational number

 1. A unit of an abstract mathematical system subject to the laws of arithmetic
 2. A natural number, a negative of a natural number, or zero
 3. The number zero and any number obtained by repeatedly adding one to it
 4. An integer or the quotient of two integers (division by zero excluded)

76

 5. A value less than zero, with a sign opposite to its positive counterpart

For Exercises 6–11, match the solution with the problem.
A. 10001100
B. 10011110
C. 1101010
D. 1100000
E. 1010001
F. 1111000

 6. 1110011 + 11001 (binary addition)
 7. 1010101 + 10101 (binary addition)
 8. 1111111 + 11111 (binary addition)
 9. 1111111 – 111 (binary subtraction)
10. 1100111 – 111 (binary subtraction)
11. 1010110 – 101 (binary subtraction)

For Exercises 12–17, mark the answers true or false as follows:
A. True
B. False

12. Binary numbers are important in computing because a binary number can be
converted into every other base.

13. Binary numbers can be read off in hexadecimal but not in octal.
14. Starting from left to right, every grouping of four binary digits can be read as one

hexadecimal digit.
15. A byte is made up of six binary digits.
16. Two hexadecimal digits cannot be stored in one byte.
17. Reading octal digits off as binary produces the same result whether read from right

to left or from left to right.

Exercises 18–47 are problems or short-answer questions.
18. Distinguish between a natural number and a negative number.
19. Distinguish between a natural number and a rational number.
20. Label the following numbers as natural, negative, or rational.

a. 1.333333
b. –1/3
c. 1066
d. 2/5
e. 6.2
f. π (pi)

21. How many ones are there in 891 if it is a number in each of the following bases?
a. Base 10
b. Base 8
c. Base 12
d. Base 13
e. Base 16

22. Express 891 as a polynomial in each of the bases in Exercise 21.
23. Convert the following numbers from the base shown to base 10.

77

a. 111 (base 2)
b. 777 (base 8)
c. FEC (base 16)
d. 777 (base 16)
e. 111 (base 8)

24. Explain how base 2 and base 8 are related.
25. Explain how base 8 and base 16 are related.
26. Expand the table on page 43 to include the decimals from 11 through 16.
27. Expand the table in Exercise 26 to include hexadecimal numbers.
28. Convert the following binary numbers to octal.

a. 111110110
b. 1000001
c. 10000010
d. 1100010

29. Convert the following binary numbers to hexadecimal.
a. 10101001
b. 11100111
c. 01101110
d. 01121111

30. Convert the following hexadecimal numbers to octal.
a. A9
b. E7
c. 6E

31. Convert the following octal numbers to hexadecimal.
a. 777
b. 605
c. 443
d. 521
e. 1

32. Convert the following decimal numbers to octal.
a. 901
b. 321
c. 1492
d. 1066
e. 2001

33. Convert the following decimal numbers to binary.
a. 45
b. 69
c. 1066
d. 99
e. 1

34. Convert the following decimal numbers to hexadecimal.
a. 1066
b. 1939
c. 1
d. 998

78

e. 43
35. If you were going to represent numbers in base 18, which symbols might you use

to represent the decimal numbers 10 through 17 other than letters?
36. Convert the following decimal numbers to base 18 using the symbols you

suggested in Exercise 35.
a. 1066
b. 99099
c. 1

37. Perform the following octal additions.
a. 770 + 665
b. 101 + 707
c. 202 + 667

38. Perform the following hexadecimal additions.
a. 19AB6 + 43
b. AE9 + F
c. 1066 + ABCD

39. Perform the following octal subtractions.
a. 1066 – 776
b. 1234 – 765
c. 7766 – 5544

40. Perform the following hexadecimal subtractions.
a. ABC – 111
b. 9988 – AB
c. A9F8 – 1492

41. Why are binary numbers important in computing?
42. How many bits does a byte contain?
43. How many bytes are there in a 64-bit machine?
44. Why do microprocessors such as pagers have only 8-bit words?
45. Why is it important to study how to manipulate fixed-size numbers?
46. How many ones are there in the number AB98 in base 13?
47. Describe how a bi-quinary number representation works.

THOUGHT QUESTIONS

 1. Exercise 20 asked you to classify π as one of the options. π does not belong in any
of the categories named; π (and e) are transcendental numbers. Look up
transcendental numbers in the dictionary or in an old math book and give the
definition in your own words.

 2. Complex numbers are another category of numbers that are not discussed in this
chapter. Look up complex numbers in a dictionary or an old math book and give
the definition in your own words.

 3. Many everyday occurrences can be represented as a binary bit. For example, a door
is open or closed, the stove is on or off, and the dog is asleep or awake. Could
relationships be represented as a binary value? Discuss the question, giving

79

examples.
 4. Had you heard of the FISA Court before reading this chapter? Do you now have a

better understanding of what it is?

80

THE INFORMATION LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits
5 Computing Components

The Programming Layer
6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages

The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer
15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion
18 Limitations of Computing

81

3 DATA REPRESENTATION

When you go on a trip, you might make use of a road map—either the old-fashioned, fold-
out kind or an electronic version presented by a navigation system. Whatever form it takes,
the map is not the land over which you travel, but rather a representation of that land. The
map has captured some of the information needed to accomplish the goal of getting from
one place to another.

Likewise, the data we need to store and manage on a computer must be represented in a
way that captures the essence of the information we care about, and it must do so in a form
convenient for computer processing. Building on the fundamental concepts of the binary
number system established in Chapter 2, this chapter explores how we represent and store
the various kinds of data a computer manages.

GOALS
After studying this chapter, you should be able to:

■ distinguish between analog and digital data.
■ explain data compression and calculate compression ratios.
■ explain the binary formats for negative and floating-point values.
■ describe the characteristics of the ASCII and Unicode character sets.
■ perform various types of text compression.
■ explain the nature of sound and its representation.
■ explain how RGB values define a color.
■ distinguish between raster and vector graphics.
■ explain temporal and spatial video compression.

3.1 Data and Computers
Without data, computers would be useless. Every task a computer undertakes deals with
managing data in some way. Therefore, our need to represent and organize data in
appropriate ways is paramount.

Let’s start by distinguishing the terms data and information. Although these terms are
often used interchangeably, making the distinction is sometimes useful, especially in
computing. Data is basic values or facts, whereas information is data that has been
organized and/or processed in a way that is useful in solving some kind of problem. Data
can be unstructured and lack context. Information helps us answer questions (it “informs”).
This distinction, of course, is relative to the needs of the user, but it captures the essence of
the role that computers play in helping us solve problems.

82

Data Basic values or facts

Information Data that has been organized or processed in a useful manner

In this chapter, we focus on representing different types of data. In later chapters, we
discuss the various ways to organize data so as to solve particular types of problems.

In the not-so-distant past, computers dealt almost exclusively with numeric and textual
data. Today, however, computers are truly multimedia devices, dealing with a vast array of
information categories. Computers store, present, and help us modify many different types
of data:

Multimedia Several different media types

■ Numbers
■ Text
■ Audio
■ Images and graphics
■ Video

Ultimately, all of this data is stored as binary digits. Each document, picture, and sound
bite is somehow represented as strings of 1s and 0s. This chapter explores each of these
types of data in turn and discusses the basic ideas behind the ways in which we represent
these types of data on a computer.

We can’t discuss data representation without also talking about data compression—
reducing the amount of space needed to store a piece of data. In the past, we needed to
keep data small because of storage limitations. Today, computer storage is relatively cheap
—but now we have an even more pressing reason to shrink our data: the need to share it
with others. The Web and its underlying networks have inherent bandwidth restrictions
that define the maximum number of bits or bytes that can be transmitted from one place to
another in a fixed amount of time.

Data compression Reducing the amount of space needed to store a piece of data

Bandwidth The number of bits or bytes that can be transmitted from one place to another in a fixed amount of
time

The compression ratio gives an indication of how much compression occurs. The
compression ratio is the size of the compressed data divided by the size of the original data.
The values could be in bits or characters (or whatever is appropriate), as long as both values
measure the same thing. The ratio should result in a number between 0 and 1. The closer
the ratio is to zero, the tighter the compression.

Compression ratio The size of the compressed data divided by the size of the uncompressed data

83

A data compression technique can be lossless, which means the data can be retrieved
without losing any of the original information, or it can be lossy, in which case some
information is lost in the process of compaction. Although we never want to lose
information, in some cases this loss is acceptable. When dealing with data representation
and compression, we always face a tradeoff between accuracy and size.

Lossless compression A data compression technique in which there is no loss of information

Lossy compression A data compression technique in which there is loss of information

Analog and Digital Data
The natural world, for the most part, is continuous and infinite. A number line is
continuous, with values growing infinitely large and small. That is, you can always come up
with a number that is larger or smaller than any given number. Likewise, the numeric space
between two integers is infinite. For instance, any number can be divided in half. But the
world is not just infinite in a mathematical sense. The spectrum of colors is a continuous
rainbow of infinite shades. Objects in the real world move through continuous and infinite
space. Theoretically, you could always close the distance between you and a wall by half,
and you would never actually reach the wall.

Computers, by contrast, are finite. Computer memory and other hardware devices have
only so much room to store and manipulate a certain amount of data. We always fail in our
attempt to represent an infinite world on a finite machine. The goal, then, is to represent
enough of the world to satisfy our computational needs and our senses of sight and sound.
We want to make our representations good enough to get the job done, whatever that job
might be.

Data can be represented in one of two ways: analog or digital. Analog data is a
continuous representation, analogous to the actual information it represents. Digital data is
a discrete representation, breaking the information up into separate elements.

Analog data A continuous representation of data

Digital data A discrete representation of data

A mercury thermometer is an analog device. The mercury rises in a continuous flow in
the tube in direct proportion to the temperature. We calibrate and mark the tube so that
we can read the current temperature, usually as an integer such as 75 degrees Fahrenheit.
However, the mercury in such a thermometer is actually rising in a continuous manner
between degrees. At some point in time, the temperature is actually 74.568 degrees
Fahrenheit, and the mercury is accurately indicating that, even if our markings are not
detailed enough to note such small changes. See FIGURE 3.1.

84

FIGURE 3.1 A mercury thermo meter continually rises in direct proportion to the
temperature

Analog data is directly proportional to the continuous, infinite world around us.
Computers, therefore, cannot work well with analog data. Instead, we digitize data by
breaking it into pieces and representing those pieces separately. Each of the representations
discussed in this chapter takes a continuous entity and separates it into discrete elements.
Those discrete elements are then individually represented using binary digits.

Digitize The act of breaking information down into discrete pieces

But why do we use the binary system? We know from Chapter 2 that binary is just one
of many equivalent number systems. Couldn’t we use, say, the decimal number system,
with which we are already more familiar? We could. In fact, it’s been done. Computers
have been built that are based on other number systems. However, modern computers are
designed to use and manage binary values because the devices that store and manage the
data are far less expensive and far more reliable if they have to represent only one of two
possible values.

Also, electronic signals are far easier to maintain if they transfer only binary data. An
analog signal continually fluctuates up and down in voltage, but a digital signal has only a
high or low state, corresponding to the two binary digits. See FIGURE 3.2.

All electronic signals (both analog and digital) degrade as they move down a line. That
is, the voltage of the signal fluctuates due to environmental effects. The trouble is that as
soon as an analog signal degrades, information is lost. Because any voltage level within the
range is valid, it’s impossible to know what the original signal state was or even that it
changed at all.

Digital signals, by contrast, jump sharply between two extremes—a behavior referred to
as pulse-code modulation (PCM). A digital signal can become degraded by quite a bit

85

before any information is lost, because any voltage value above a certain threshold is
considered a high value, and any value below that threshold is considered a low value.
Periodically, a digital signal is reclocked to regain its original shape. As long as it is
reclocked before too much degradation occurs, no information is lost. FIGURE 3.3 shows
the degradation effects of analog and digital signals.

Pulse-code modulation Variation in a signal that jumps sharply between two extremes

Reclock The act of reasserting an original digital signal before too much degradation occurs

FIGURE 3.2 An analog signal and a digital signal

FIGURE 3.3 Degradation of analog and digital signals

Binary Representations
As we investigate the details of representing particular types of data, it’s important to
remember the inherent nature of using binary. One bit can be either 0 or 1. There are no
other possibilities. Therefore, one bit can represent only two things. For example, if we
wanted to classify a food as being either sweet or sour, we would need only one bit to do it.
We could say that if the bit is 0, the food is sweet, and if the bit is 1, the food is sour. But if
we want to have additional classifications (such as spicy), one bit is not sufficient.

To represent more than two things, we need multiple bits. Two bits can represent four
things because four combinations of 0 and 1 can be made from two bits: 00, 01, 10, and
11. For instance, if we want to represent which of four possible gears a car is in (park, drive,
reverse, or neutral), we need only two bits: Park could be represented by 00, drive by 01,
reverse by 10, and neutral by 11. The actual mapping between bit combinations and the
thing each combination represents is sometimes irrelevant (00 could be used to represent
reverse, if you prefer), although sometimes the mapping can be meaningful and important,
as we discuss in later sections of this chapter.

If we want to represent more than four things, we need more than two bits. For
example, three bits can represent eight things because eight combinations of 0 and 1 can be
made from three bits. Likewise, four bits can represent 16 things, five bits can represent 32
things, and so on. See FIGURE 3.4. In the figure, note that the bit combinations are

86

simply counting in binary as you move down a column.
In general, n bits can represent 2n things because 2n combinations of 0 and 1 can be

made from n bits. Every time we increase the number of available bits by 1, we double the
number of things we can represent.

Let’s turn the question around. How many bits do you need to represent, say, 25
unique things? Well, four bits wouldn’t be enough because four bits can represent only 16
things. We would have to use at least five bits, which would allow us to represent 32 things.
Given that we need to represent only 25 things, some of the bit combinations would not
have a valid interpretation.

87

FIGURE 3.4 Bit combinations

Keep in mind that even though we may technically need only a certain minimum
number of bits to represent a set of items, we may allocate more than that for the storage of

88

data. There is a minimum number of bits that a computer architecture can address and
move around at one time, and it is usually a power of 2, such as 8, 16, or 32 bits.
Therefore, the minimum amount of storage given to any type of data is allocated in
multiples of that value.

3.2 Representing Numeric Data
Numeric values are the most prevalent type of data used in a computer system. Unlike with
other types of data, there may seem to be no need to come up with a clever mapping
between binary codes and numeric data. Because binary is a number system, a natural
relationship exists between the numeric data and the binary values that we store to
represent them. This is true, in general, for positive integer data. The basic issues regarding
integer conversions were covered in Chapter 2 in the general discussion of the binary
system and its equivalence to other bases. However, we have other issues regarding the
representation of numeric data to consider at this point. Integers are just the beginning in
terms of numeric data. This section discusses the representation of negative and noninteger
values.

Representing Negative Values
Aren’t negative numbers just numbers with a minus sign in front? Perhaps. That is certainly
one valid way to think about them. Let’s explore the issue of negative numbers and discuss
appropriate ways to represent them on a computer.

Signed-Magnitude Representation
You have used the signed-magnitude representation of numbers since you first learned
about negative numbers in grade school. In the traditional decimal system, a sign (+ or –) is
placed before a number’s value, although the positive sign is often assumed. The sign
represents the ordering, and the digits represent the magnitude of the number. The classic
number line looks something like this, in which a negative sign means that the number is to
the left of zero and the positive number is to the right of zero:

Signed-magnitude representation Number representation in which the sign represents the ordering of the number
(negative and positive) and the value represents the magnitude

Performing addition and subtraction with signed integer numbers can be described as
moving a certain number of units in one direction or another. To add two numbers, you

89

find the first number on the scale and move in the direction of the sign of the second as
many units as specified. Subtraction is done in a similar way, moving along the number line
as dictated by the sign and the operation. In grade school, you soon graduated to doing
addition and subtraction without using the number line.

There is a problem with the signed-magnitude representation: There are two
representations of zero—plus zero and minus zero. The idea of a negative zero doesn’t
necessarily bother us; we just ignore it. However, two representations of zero within a
computer can cause unnecessary complexity, so other representations of negative numbers
are used. Let’s examine another alternative.

Fixed-Sized Numbers
If we allow only a fixed number of values, we can represent numbers as just integer values,
where half of them represent negative numbers. The sign is determined by the magnitude
of the number. For example, if the maximum number of decimal digits we can represent is
two, we can let 1 through 49 be the positive numbers 1 through 49 and let 50 through 99
represent the negative numbers –50 through –1. Let’s take the number line and number
the negative values on the top according to this scheme:

To perform addition within this scheme, you just add the numbers together and discard
any carry. Adding positive numbers should be okay. Let’s try adding a positive number and
a negative number, a negative number and a positive number, and two negative numbers.
These are shown in the following table in signed-magnitude and in this scheme (the carries
are discarded):

What about subtraction, using this scheme for representing negative numbers? The key is
in the relationship between addition and subtraction: A – B = A + (–B). We can subtract
one number from another by adding the negative of the second to the first:

90

In this example, we have assumed a fixed size of 100 values and kept our numbers small
enough to use the number line to calculate the negative representation of a number.
However, you can also use a formula to compute the negative representation:

Negative(I) = 10k – I, where k is the number of digits

Let’s apply this formula to –3 in our two-digit representation:

What about a three-digit representation?

This representation of negative numbers is called the ten’s complement. Although humans
tend to think in terms of sign and magnitude to represent numbers, the complement
strategy is actually easier in some ways when it comes to electronic calculations. Because we
store everything in a modern computer in binary, we use the binary equivalent of the ten’s
complement, called the two’s complement.

Ten’s complement A representation of negative numbers such that the negative of I is 10 raised to k minus I

Two’s Complement
Let’s assume that a number must be represented in eight bits, seven for the number and one
for the sign. To make it easier to look at long binary numbers, we make the number line
vertical:

91

Would the ten’s complement formula work with the 10 replaced by 2? That is, could
we compute the negative binary representation of a number using the formula negative(I) =
2k – I? Let’s try it and see:

Decimal 126 is octal 176, which is 1111110 in binary—but the number line has one more
1 digit to the left. What’s wrong? Nothing. This is a negative number. The leftmost digit
determines whether the number is negative or positive. A 0 bit in the leftmost digit says
that the number is positive; a 1 bit says the number is negative. Thus, –(2) is 11111110.

There is an easier way to calculate the two’s complement: invert the bits and add 1.
That is, take the positive value and change all the 1 bits to 0 and all the 0 bits to 1, and
then add 1.

Addition and subtraction are accomplished the same way as in ten’s complement
arithmetic:

With this representation, the leftmost bit in a negative number is always a 1. Therefore,

92

you can tell immediately whether a binary number in two’s complement is negative or
positive.

Number Overflow
Overflow occurs when the value that we compute cannot fit into the number of bits we
have allocated for the result. For example, if each value is stored using eight bits, adding
127 to 3 would produce an overflow:

Overflow A situation where a calculated value cannot fit into the number of digits reserved for it

In our scheme 10000010 represents –126, not +130. If we were not representing negative
numbers, however, the result would be correct.

Overflow is a classic example of the type of problems we encounter by mapping an
infinite world onto a finite machine. No matter how many bits we allocate for a number,
there is always the potential need to represent a number that doesn’t fit. How overflow
problems are handled varies by computer hardware and by the differences in programming
languages.

Representing Real Numbers
In computing, we call all noninteger values (that can be represented) real values. For our
purposes here, we define a real number as a value with a potential fractional part. That is,
real numbers have a whole part and a fractional part, either of which may be zero. For
example, some real numbers in base 10 are 104.32, 0.999999, 357.0, and 3.14159.

As we explored in Chapter 2, the digits represent values according to their position, and
those position values are relative to the base. To the left of the decimal point, in base 10, we
have the ones position, the tens position, the hundreds position, and so forth. These
position values come from raising the base value to increasing powers (moving from the
decimal point to the left). The positions to the right of the decimal point work the same
way, except that the powers are negative. So the positions to the right of the decimal point
are the tenths position (10−1 or one tenth), the hundredths position (10−2 or one
hundredth), and so forth.

In binary, the same rules apply but the base value is 2. Since we are not working in base
10, the decimal point is referred to as a radix point, a term that can be used in any base.
The positions to the right of the radix point in binary are the halves position (2−1 or one
half), the quarters position (2−2 or one quarter), and so forth.

Radix point The dot that separates the whole part from the fractional part in a real number in any base

93

How do we represent a real value in a computer? We store the value as an integer and
include information showing where the radix point is. That is, any real value can be
described by three properties: the sign (positive or negative; the mantissa, which is made up
of the digits in the value with the radix point assumed to be to the right; and the exponent,
which determines how the radix point is shifted relative to the mantissa. A real value in base
10 can, therefore, be defined by the following formula:

sign * mantissa * 10exp

The representation is called floating point because the number of digits is fixed but the
radix point floats. When a value is in floating-point form, a positive exponent shifts the
decimal point to the right, and a negative exponent shifts the decimal point to the left.

Floating point A representation of a real number that keeps track of the sign, mantissa, and exponent

Let’s look at how to convert a real number expressed in our usual decimal notation into
floating-point notation. As an example, consider the number 148.69. The sign is positive,
and two digits appear to the right of the decimal point. Thus the exponent is –2, giving us
14869 * 10–2. TABLE 3.1 shows other examples. For the sake of this discussion, we assume
that only five digits can be represented.

How do we convert a value in floating-point form back into decimal notation? The
exponent on the base tells us how many positions to move the radix point. If the exponent
is negative, we move the radix point to the left. If the exponent is positive, we move the
radix point to the right. Apply this scheme to the floating-point values in Table 3.1.

Notice that in the last example in Table 3.1, we lose information. Because we are
storing only five digits to represent the significant digits (the mantissa), the whole part of
the value is not accurately represented in floating-point notation.

TABLE 3.1 Values in decimal notation and floating-point notation (five
digits)

Real Value Floating-Point Value

12001.00 12001 * 100

–120.01 –12001 * 10–2

0.12000 12000 * 10–5

–123.10 –12310 * 10–2

155555000.00 15555 * 104

Likewise, a binary floating-point value is defined by the following formula:

sign * mantissa * 2exp

Note that only the base value has changed. Of course, in this scheme the mantissa would
contain only binary digits. To store a floating-point number in binary on a computer, we
can store the three values that define it. For example, according to one common standard, if
we devote 64 bits to the storage of a floating-point value, we use 1 bit for the sign, 11 bits
for the exponent, and 52 bits for the mantissa. Internally, this format is taken into account

94

whenever the value is used in a calculation or is displayed.
But how do we get the correct value for the mantissa if the value is not a whole

number? In Chapter 2, we discussed how to change a natural number from one base to
another. Here we have shown how real numbers are represented in a computer, using
decimal examples. We know that all values are represented in binary in the computer. How
do we change the fractional part of a decimal value to binary?

To convert a whole value from base 10 to another base, we divide by the new base,
recording the remainder as the next digit to the left in the result and continuing to divide
the quotient by the new base until the quotient becomes zero. Converting the fractional
part is similar, but we multiply by the new base rather than dividing. The carry from the
multiplication becomes the next digit to the right in the answer. The fractional part of the
result is then multiplied by the new base. The process continues until the fractional part of
the result is zero. Let’s convert .75 to binary.

.75 * 2 = 1.50

.50 * 2 = 1.00

Thus, .75 in decimal is .11 in binary. Let’s try another example.

.435 * 2 = 0.870 .870
* 2 = 1.740 .740
* 2 = 1.480 .480
* 2 = 0.960 .960
* 2 = 1.920 .920
* 2 = 1.840

…

Thus, .435 is 011011 … in binary. Will the fractional part ever become zero? Keep
multiplying it out and see.

Now let’s go through the entire conversion process by converting 20.25 in decimal to
binary. First we convert 20.

95

20 in binary is 10100. Now we convert the fractional part:

.25 * 2 = 0.50

.50 * 2 = 1.00

Thus 20.25 in decimal is 10100.01 in binary.
Scientific notation is a term with which you may already be familiar, so we mention it

here. Scientific notation is a form of floating-point representation in which the decimal
point is kept to the right of the leftmost digit. That is, there is one whole number. In many
programming languages, if you print out a large real value without specifying how to print
it, the value is printed in scientific notation. Because exponents could not be printed in
early machines, an “E” was used instead. For example, “12001.32708” would be written as
“1.200132708E+4” in scientific notation.

Scientific notation An alternative floating-point representation

3.3 Representing Text
A text document can be decomposed into paragraphs, sentences, words, and ultimately
individual characters. To represent a text document in digital form, we simply need to be
able to represent every possible character that may appear. The document is the continuous
(analog) entity, and the separate characters are the discrete (digital) elements that we need
to represent and store in computer memory.

96

At this point, we should distinguish between the basic idea of representing text and the
more involved concept of word processing. When we create a document in a word
processing program such as Microsoft® Word, we can specify all kinds of formatting: fonts,
margins, tabs, color, and so on. Many word processors also let us add art, equations, and
other elements. This extra information is stored along with the rest of the text so that the
document can be displayed and printed the way you want it. The core issue, however, is the
way we represent the characters themselves; therefore, those techniques remain our focus at
this point.

There are a finite number of characters to represent. The general approach for
representing characters is to list all of them and then assign a binary string to each
character. For example, to store a particular letter, we store the appropriate bit string.

So which characters do we need to represent? The English language includes 26 letters.
But uppercase and lowercase letters have to be treated separately, so that’s really 52 unique
characters. Punctuation characters also have to be represented, as do the numeric digits (the
actual characters ‘0’, ‘1’, through ‘9’). Even the space character must have a representation.
And what about languages other than English? The list of characters we may want to
represent starts to grow quickly once you begin to think about it. Keep in mind that, as we
discussed earlier in this chapter, the number of unique things (characters, in this case) we
want to represent determines how many bits we’ll need to represent any one of them.

A character set is simply a list of characters and the codes used to represent each one.
Several character sets have been used over the years, though a few have dominated. By
agreeing to use a particular character set, computer manufacturers have made the processing
of text data easier. We explore two character sets in the following sections: ASCII and
Unicode.

Character set A list of the characters and the codes used to represent each one

?
Character set maze

In 1960, an article in Communications of the ACM reported on a survey of character sets in use. Sixty distinct sets
were described. Nine character sets, with differences in both content and ordering, existed in IBM’s line of
computers.1

The ASCII Character Set
ASCII stands for American Standard Code for Information Interchange. The ASCII character
set originally used seven bits to represent each character, allowing for 128 unique
characters. The eighth bit in each character byte was originally used as a check bit, which
helped ensure proper data transmission. Later ASCII evolved so that all eight bits were used
to represent a character. This eight-bit version is formally called the Latin-1 Extended ASCII
character set. The extended ASCII set allows for 256 characters and includes accented letters
as well as several other special symbols. FIGURE 3.5 shows the ASCII character set.

97

FIGURE 3.5 The ASCII character set

The codes in Figure 3.5 are expressed as decimal numbers, but these values get
translated to their binary equivalent for storage in the computer. Note that the ASCII
characters have a distinct order based on the codes used to store them. Each character has a
relative position (before or after) every other character. This property is helpful in several
different ways. For example, note that both the uppercase and lowercase letters are in order.
Therefore, we can use the character codes to help us put a list of words into alphabetical
order.

The first 32 characters in the ASCII character chart do not have a simple character
representation that you could print to the screen. These characters are reserved for special
purposes, such as carriage return and tab. They are usually interpreted in special ways by
whatever program is processing the data.

The Unicode Character Set
The extended version of the ASCII character set provides 256 characters, which is enough
for English but not enough for international use. This limitation gave rise to the Unicode
character set, which has a much stronger international influence.

The goal of the people who created Unicode is nothing less than to represent every
character in every language used in the entire world, including all of the Asian ideograms. It
also represents many special-purpose characters such as scientific symbols.

The Unicode character set is used by many programming languages and computer
systems today. In general, the encoding uses 16 bits per character, but is flexible so that it
can use more space per character if needed to represent additional characters. One
convenient aspect of Unicode is that it has the ASCII characters as a subset with the same
numeric values. FIGURE 3.6 shows a few characters from the non-ASCII portion of the
Unicode character set.

98

FIGURE 3.6 A few characters in the Unicode character set

For consistency, Unicode was designed to be a superset of ASCII. That is, the first 256
characters in the Unicode character set correspond exactly to the extended ASCII character
set, including the codes used to represent them. Therefore, programs that assume ASCII
values are unaffected even if the underlying system embraces the Unicode approach.

Text Compression
Alphabetic information (text) is a fundamental type of data. Therefore, it is important that
we find ways to store and transmit text efficiently between one computer and another. The
following sections examine three types of text compression:

■ Keyword encoding
■ Run-length encoding
■ Huffman encoding

As we discuss later in this chapter, some of the ideas underlying these text compression
techniques come into play when dealing with other types of data as well.

Keyword Encoding
Consider how often you use words such as “the,” “and,” “which,” “that,” and “what.” If
these words took up less space (that is, had fewer characters), our documents would shrink
in size. Even though the savings for each word would be small, they are used so often in a
typical document that the combined savings would add up quickly.

One fairly straightforward method of text compression is keyword encoding, in which
frequently used words are replaced with a single character. To decompress the document,
you reverse the process: You replace the single characters with the appropriate full word.

99

Keyword encoding Replacing a frequently used word with a single character

For example, suppose we used the following chart to encode a few words:

WORD SYMBOL
as ^
the ~
and +
that $
must &
well %
these #

Let’s encode the following paragraph:

The human body is composed of many independent systems, such as the
circulatory system, the respiratory system, and the reproductive system. Not only
must all systems work independently, but they must interact and cooperate as well.
Overall health is a function of the well-being of separate systems, as well as how
these separate systems work in concert.

The encoded paragraph is:

The human body is composed of many independent systems, such ^ ~ circulatory
system, ~ respiratory system, + ~ reproductive system. Not only & each system
work independently, but they & interact + cooperate ^ %. Overall health is a
function of ~ %-being of separate systems, ^ % ^ how # separate systems work in
concert.

There are a total of 352 characters in the original paragraph, including spaces and
punctuation. The encoded paragraph contains 317 characters, resulting in a savings of 35
characters. The compression ratio for this example is 317/352 or approximately 0.9.

There are several limitations to keyword encoding. First, note that the characters we use
to encode the keywords cannot be part of the original text. If, for example, the ‘$’ were part
of the original paragraph, the resulting encoding would be ambiguous. We wouldn’t know
whether ‘$’ represented the word “that” or if it was the actual dollar-sign character. This
limits the number of words we can encode as well as the nature of the text that we are
encoding.

?
Expensive night

If you stayed at a Holiday Inn, Holiday Inn Express, or Crowne Plaza hotel and checked out between October 24
and 26, 2002, you were likely to have been one of 26,000 people who were charged 100 times what they owed,
such as $6,500 to $21,000 per night. A credit-processing error resulted in the decimal points being dropped.

100

Also, note that the word “The” in the example is not encoded by the ‘~’ character
because the word “The” and the word “the” contain different letters. Remember, the
uppercase and lowercase versions of the same letter are different characters when it comes to
storing them on a computer. We would have to use a separate symbol for “The” if we
wanted to encode it—or employ a more sophisticated substitution scheme.

Finally, note that we would not gain anything by encoding words such as “a” and “I”
because that would simply be replacing one character for another. The longer the word, the
more compression we get per word. Unfortunately, the most frequently used words are
often short. Of course, some documents use certain words more frequently than others
depending on the subject matter. For example, we would have realized some nice savings if
we had chosen to encode the word “system” in our example, but it might not be worth
encoding in a general situation.

An extension of keyword encoding is to replace specific patterns of text with special
characters. The encoded patterns are generally not complete words, but rather parts of
words such as common prefixes and suffixes—“ex,” “ing,” and “tion,” for instance. An
advantage of this approach is that patterns being encoded generally appear more often than
whole words (because they occur in many different words). A disadvantage is that they are
generally short patterns and, therefore, the replacement savings per word is small.

Run-Length Encoding
In some situations, a single character may be repeated over and over again in a long
sequence. This type of repetition doesn’t generally take place in English text, but often
occurs in large data streams, such as DNA sequences. A text compression technique called
run-length encoding capitalizes on these situations. Run-length encoding is sometimes
called recurrence coding.

Run-length encoding Replacing a long series of a repeated character with a count of the repetition

In run-length encoding, a sequence of repeated characters is replaced by a flag character,
followed by the repeated character, followed by a single digit that indicates how many times
the character is repeated. For example, consider the following string of seven repeated ‘A’
characters:

AAAAAAA

If we use the ‘*’ character as our flag, this string would be encoded as

*A7

The flag character indicates that the series of three characters (including the flag) should be
decoded into the appropriate repetitious string. All other text is treated regularly. Therefore,
the encoded string

*n5*x9ccc*h6 some other text *k8eee

101

would be decoded into the following original text:

nnnnnxxxxxxxxxccchhhhhh some other text kkkkkkkkeee

The original text contains 51 characters and the encoded string contains 35 characters,
giving us a compression ratio in this example of 35/51, or approximately 0.68.

In this example the three repeated ‘c’ characters and the three repeated ‘e’ characters are
not encoded. Because it takes three characters to encode a repetition sequence, it is not
worth it to encode strings of two or three. In fact, in the case of two repeated characters,
encoding would actually make the string longer!

Given that we are using one character for the repetition count, it seems that we can’t
encode repetition lengths greater than nine. But keep in mind that each character is
represented by a series of bits based on some character set. For example, the character ‘5’ is
represented as ASCII value 53, which in an eight-bit binary string is 00110101. So, instead
of interpreting the count character as an ASCII digit, we could interpret it as a binary
number. We can then have repetition counts between 0 and 255, or even between 4 and
259, because runs of three or less are not represented.

Huffman Encoding
Another text compression technique, called Huffman encoding, is named after its creator,
Dr. David Huffman. Why should the character ‘X’, which is seldom used in text, take up
the same number of bits as the blank, which is used very frequently? Huffman codes
address this question by using variable-length bit strings to represent each character. That
is, a few characters may be represented by five bits, another few by six bits, yet another few
by seven bits, and so forth. This approach is contrary to the idea of a character set, in which
each character is represented by a fixed-length bit string (such as 8 or 16).

Huffman encoding Using a variable-length binary string to represent a character so that frequently used characters
have short codes

The idea behind this approach is that if we use only a few bits to represent characters
that appear often and reserve longer bit strings for characters that don’t appear often, the
overall size of the document being represented is small.

For example, suppose we use the following Huffman encoding to represent a few
characters:

Huffman Code Character
 00 A
 01 E
 100 L
 110 O
 111 R
1010 B
1011 D

102

Then the word “DOORBELL” would be encoded in binary as

1011110110111101001100100

If we used a fixed-size bit string to represent each character (say, 8 bits), then the binary
form of the original string would be 8 characters times 8 bits, or 64 bits. The Huffman
encoding for that string is 25 bits long, giving a compression ratio of 25/64, or
approximately 0.39.

What about the decoding process? When we use character sets, we just take the bits in
chunks of 8 or 16 bits to see what character the chunk represents. In Huffman encoding,
with its variable-length codes, it seems as if we might get confused when trying to decode a
string because we don’t know how many bits we should include for each character. In fact,
that potential source of confusion has been eliminated by the way the codes are created.

An important characteristic of any Huffman encoding is that no bit string used to
represent a character is the prefix of any other bit string used to represent a character.
Therefore, as we scan from left to right across a bit string, when we find a string that
corresponds to a character, that must be the character it represents. It can’t be part of a
larger bit string.

For example, if the bit string

1010110001111011

is created with the previous table, it must be decoded into the word “BOARD”. There is no
other possibility.

So how is a particular set of Huffman codes created? The details of that process are a bit
beyond the scope of this book, but let’s discuss the underlying issue. Because Huffman
codes use the shortest bit strings for the most common characters, we start with a table that
lists the frequency of the characters we want to encode. Frequencies may come from
counting characters in a particular document (352 E’s, 248 S’s, and so on) or from
counting characters in a sample of text from a particular content area. A frequency table
may also come from a general idea of how frequently letters occur in a particular language
such as English. Using those values, we can construct a structure from which the binary
codes can be read. The way the structure is created ensures that the most frequently used
characters get the shortest bit strings.

3.4 Representing Audio Data
We perceive sound when a series of air compressions vibrate a membrane in our ear, which
sends signals to our brain. Thus a sound is defined in nature by the wave of air that
interacts with our eardrum. See FIGURE 3.7. To represent a sound, we must somehow
represent the appropriate sound wave.

A stereo sends an electrical signal to a speaker to produce sound. This signal is an
analog representation of the sound wave. The voltage in the signal varies in direct
proportion to the sound wave. The speaker receives the signal and causes a membrane to
vibrate, which in turn vibrates the air (creating a sound wave), which in turn vibrates the
eardrum. The created sound wave should ideally be identical to the one that was captured

103

initially, or at least good enough to please the listener.

FIGURE 3.7 A sound wave vibrates our eardrums

To represent audio data on a computer, we must digitize the sound wave, somehow
breaking it into discrete, manageable pieces. One way to accomplish this task is to actually
digitize the analog representation of the sound. That is, we can take the electric signal that
represents the sound wave and represent it as a series of discrete numeric values.

An analog signal varies in voltage continuously. To digitize the signal, we periodically
measure the voltage of the signal and record the appropriate numeric value. This process is
called sampling. Instead of a continuous signal, we end up with a series of numbers
representing distinct voltage levels.

To reproduce the sound, we use the stored voltage values to create a new continuous
electronic signal. The assumption is that the voltage levels in the original signal changed
evenly between one stored voltage value and the next. If we take enough samples in a short
period of time, that assumption is reasonable. But certainly the process of sampling can lose
information, as shown in FIGURE 3.8.

In general, a sampling rate of around 40,000 times per second is enough to create a
reasonable sound reproduction. If the sampling rate is much lower than that, the human
ear begins to hear distortions. A higher sampling rate produces better-quality sound, but
after a certain point the extra data is irrelevant because the human ear can’t hear the
difference. The overall result is affected by many factors, including the quality of the
equipment, the type of sound, and the human listener.

104

FIGURE 3.8 Sampling an audio signal

A vinyl record album is an analog representation of the sound wave. The needle of a
record player (turntable) rides up and down in the spiral groove of the album. The rise and
fall of the needle is analogous to the voltage changes of the signal that represents the sound.

In contrast, a compact disk (CD) stores audio information digitally. On the surface of
the CD are microscopic pits that represent binary digits. A low-intensity laser is pointed at
the disk. The laser light reflects strongly if the surface is smooth and reflects poorly if the
surface is pitted. A receptor analyzes the reflection and produces the appropriate string of
binary data, which represents the numeric voltage values that were stored when the signal
was digitized. The signal is reproduced and sent to the speaker. See FIGURE 3.9.

FIGURE 3.9 A CD player reading binary data

?
Japan phone-answering competition

For more than fifty years, office workers across Japan have competed for the title of Japan’s best phone answerer.

105

Women dominate the competition, using the high-pitched voices preferred by many Japanese businessmen. They
are judged on their manners and business etiquette as well as their voices. Could the United States have a
competition for digital voices?

Audio Formats
Over the past few years, several formats for audio data have become popular, including
WAV, AU, AIFF, VQF, and MP3. All of these formats are based on the storage of voltage
values sampled from analog signals, but all recognize the details of the data in different ways
and all use various compression techniques to one extent or another.

Currently, the dominant format for compressing audio data is MP3. The popularity of
MP3 resulted mostly because it offered a stronger compression ratio than other formats
available at the time. Other formats may prove more efficient in the future, but for now
MP3 is the general favorite. In mid-1999, the term “MP3” was searched for more than any
other term, and it is still going strong today. Let’s look at the details of the MP3 format a
little more closely.

The MP3 Audio Format
MP3 is short for MPEG-2, audio layer 3 file. MPEG is an acronym for the Moving Picture
Experts Group, which is an international committee that develops standards for digital audio
and video compression.

MP3 employs both lossy and lossless compression. First, it analyzes the frequency
spread and compares it to mathematical models of human psychoacoustics (the study of the
interrelation between the ear and the brain). Then, it discards information that can’t be
heard by humans. Finally, the bit stream is compressed using a form of Huffman encoding
to achieve additional compression.

Many software tools are available on the Web to help you create MP3 files. These tools
generally require that the recording be stored in some other common format, such as
WAV, before that data is converted into MP3 format, significantly reducing the file size.

A variety of MP3 players interpret and play MP3 files. An MP3 player can be purely
software for an existing computer, or it can be a dedicated hardware device that stores and
plays the files, such as the popular Apple iPod. Most MP3 players allow users to organize
their files in several different ways and to display corresponding information and graphics
during playback.

3.5 Representing Images and Graphics
Images such as photographs and graphics such as line drawings have common issues when
it comes to their representation and compression. We first look at the general idea of
representing color, then turn to the various techniques for digitizing and representing visual
information.

Representing Color

106

Color is our perception of the various frequencies of light that reach the retinas of our eyes.
Our retinas have three types of color photoreceptor cone cells that respond to different sets
of frequencies. These photoreceptor categories correspond to the colors of red, green, and
blue. All other colors perceptible by the human eye can be made by combining various
amounts of these three colors.

In a computer, color is often expressed as an RGB (red-green-blue) value, which is
actually three numbers that indicate the relative contribution of each of these three primary
colors. If each number in the triple is given on a scale of 0 to 255, then 0 means no
contribution of that color and 255 means full contribution of that color. For example, an
RGB value of (255, 255, 0) maximizes the contribution of red and green and minimizes
the contribution of blue, which results in a bright yellow.

The concept of RGB values gives rise to a three-dimensional color space. FIGURE 3.10
shows one way to display such a color space.

FIGURE 3.10 A three-dimensional color space

The amount of data that is used to represent a color is called the color depth. It is usually
expressed in terms of the number of bits that are used to represent the color. High Color
indicates a 16-bit color depth. With this scheme, 5 bits are used for each number in an
RGB value and the extra bit is sometimes used to represent transparency. True Color
indicates a 24-bit color depth. With this scheme, each number in an RGB value gets 8 bits,
which gives the range of 0 to 255 for each. This results in the ability to represent more than
16.7 million unique colors.

The following chart shows a few true color RGB values and the colors they represent:

107

The 24-bit true color values provide more colors than the human eye can distinguish.
Furthermore, the monitors that display colors are restricted to a particular color depth. In
older hardware in which monitor colors are reduced to, say, 256 colors, any color that is
specified by a program is mapped into the closest color in the palette of colors that the
hardware is capable of displaying. FIGURE 3.11 shows such a restricted color palette.
When there are significant differences between the colors desired and the colors that can be
displayed, the results are usually unsatisfactory. Thankfully, most modern monitors provide
enough color range to greatly reduce these problems.

FIGURE 3.11 A restricted color palette

Digitized Images and Graphics
A photograph is an analog representation of an image. It is continuous across its surface,
with shades of one color blending into another. Digitizing a picture is the act of
representing it as a collection of individual dots called pixels, a term that stands for picture
elements. Each pixel is composed of a single color. The number of pixels used to represent a
picture is called the resolution. If enough pixels are used (high resolution) and are then
presented in the proper order side by side, the human eye can be fooled into thinking it’s
viewing a continuous picture. FIGURE 3.12 shows a digitized picture, with a small
portion of it magnified to show the individual pixels.

Pixels Individual dots used to represent a picture; stands for picture elements

108

Resolution The number of pixels used to represent a picture

The storage of image information on a pixel-by-pixel basis is called a raster-graphics
format. Several popular raster-graphics file formats are currently in use, including bitmap
(BMP), GIF, and JPEG.

Raster-graphics format Storing image information pixel by pixel

A bitmap file is one of the most straightforward graphic representations. In addition to a
few administrative details, a bitmap file contains the pixel color values of the image from
left to right and from top to bottom. A bitmap file supports 24-bit true color, although
usually the color depth can be specified to reduce the file size. Such a file may be
compressed using run-length encoding.

FIGURE 3.12 A digitized picture composed of many individual pixels
Courtesy of Amy Rose

Graphics Interchange Format (GIF), which was developed by CompuServe in 1987,
limits the number of available colors in the image to 256. That is, a GIF image can be
made up of only 256 colors, but each GIF image can be made up of a different set of 256
colors. This technique, called indexed color, results in smaller file sizes because there are
fewer colors to reference. If even fewer colors are required, the color depth can usually be
specified with fewer bits. GIF files are best used for graphics and images with few colors,
and are therefore considered optimal for line art. A version of the GIF format allows for
small animations to be defined by storing a series of images that a program such as a
browser displays in succession.

The JPEG format is designed to exploit the nature of our eyes. Humans are more
sensitive to gradual changes of brightness and color over distance than we are to rapid
changes. Therefore, the data that the JPEG format stores averages out the color hues over
short distances. This format is considered superior for photographic color images. A fairly
complicated compression scheme can significantly reduce the resulting file sizes.

PNG (pronounced “ping”) stands for Portable Network Graphics. The designers of the
PNG format wanted to improve upon, and ultimately replace, the GIF format. PNG
images can usually achieve a greater compression than GIFs, while offering a much wider
range of color depths. However, PNG images do not support animation, and they are not

109

yet as widely supported as GIFs.

?
Einstein describes the telegraph

“You see, wire telegraph is a kind of very, very long cat,” explained Albert Einstein. “You pull its tail in New York
and his head is meowing in Los Angeles….And radio operates exactly the same way: You send signals here, they
receive them there. The only difference is that there is no cat.”
How do you think he would describe the Web?

Vector Representation of Graphics
Vector graphics is another technique for representing images. Instead of assigning colors to
pixels as we do in raster graphics, a vector-graphics format describes an image in terms of
lines and geometric shapes. A vector graphic is a series of commands that describe a line’s
direction, thickness, and color. The file sizes produced with these formats tend to be small
because every pixel does not have to be accounted for. The complexity of the image, such as
the number of items in the picture, determines the file size.

Vector graphics Representation of an image in terms of lines and shapes

A raster graphic such as a GIF must be encoded multiple times to account for different
sizes and proportions. By contrast, vector graphics can be resized mathematically, and these
changes can be calculated dynamically as needed.

However, vector graphics images are not good for representing real-world images. JPEG
images are far superior in that regard, but vector graphics images are good for line art and
cartoon-style drawings.

The most popular vector-graphics format used on the Web today is called Flash. Flash
images are stored in a binary format and require a special editor to create. A new vector-
graphics format, called Scalable Vector Graphics (SVG), is under development. SVG is
expressed in plain text. When the SVG format is finalized, it is likely to make vector
graphics a popular approach for web-based imaging.

3.6 Representing Video
Video information is one of the most complex types of information to capture, compress,
and still get a result that makes sense to the human eye. Video clips contain the equivalent
of many still images, each of which must be compressed. The Web is full of video clips with
widely varying levels of quality. Some of the quality issues depend on the sophistication of
video compression techniques, which are referred to as video codecs.

Video Codecs

110

Codec stands for COmpressor/DECompressor. A video codec refers to the methods used to
shrink the size of a movie so that it can be played on a computer or over a network. Almost
all video codecs use lossy compression to minimize the huge amounts of data associated
with video. The goal, therefore, is not to lose information that affects the viewer’s senses.

Video codec Methods used to shrink the size of a movie

Most codecs are block oriented, meaning that each frame of a video is divided into
rectangular blocks. The various codecs differ in how the blocks are encoded. Some video
codecs are accomplished completely in software, whereas others require special hardware.

Video codecs employ two types of compression: temporal and spatial. Temporal
compression looks for differences between consecutive frames. If most of an image in two
frames hasn’t changed, why should we waste space by duplicating all of the similar
information? A keyframe is chosen as the basis on which to compare the differences, and its
entire image is stored. For consecutive images, only the changes (called delta frames) are
stored. Temporal compression is effective in video that changes little from frame to frame,
such as a scene that contains little movement.

Temporal compression Movie compression technique based on differences between consecutive frames

Spatial compression removes redundant information within a frame. This problem is
essentially the same as the one we face when compressing still images. Spatial video
compression often groups pixels into blocks (rectangular areas) that have the same color,
such as a portion of a clear blue sky. Instead of storing each pixel, the color and the
coordinates of the area are stored instead. This idea is similar to run-length encoding.

Spatial compression Movie compression technique based on the same compression techniques used for still images

Bob Bemer

Bob Bemer became a fixture in computing circles in 1945. His résumé reads like a list of

111

the most influential computing companies of the last half-century. He worked for
Douglas Aircraft, RKO Radio Pictures, the Rand Corporation, Lockheed Aircraft,
Marquardt Aircraft, Lockheed Missiles and Space, IBM, Univac Division of Sperry
Rand, Bull General Electric (Paris), GTE, Honeywell, and finally his own software
company, Bob Bemer Software.

The predominance of aircraft manufacturers on Bemer’s résumé is not surprising
because he studied mathematics and held a Certificate in Aeronautical Engineering from
Curtiss-Wright Technical Institute (1941). In the early days of computing, aircraft
manufacturers were pioneers in using computers in industry.

During his career, Bemer was active in programming language development. He
developed FORTRANSIT, an early FORTRAN compiler. He was actively involved in
the development of the COBOL language and the CODASYL language, an early
approach to database modeling and management. In addition, he was responsible for
authorizing funding for the development of SIMULA, a simulation language that
introduced many object-oriented features.

Bemer was also an active participant in committees formed to bring universal
standards into the new computing industry. He was U.S. representative on the IFIP
Computer Vocabulary Committee, Chairman of ISO/TC97/SC5 on Common
Programming Languages, and Chairman of X3/SPARC Study Group on Text
Processing.

However, Bemer is best known for his work on the ASCII computer code, which is
the standard internal code for 8-bit PCs today. Early on, Bemer recognized that if
computers were going to communicate with one another, they needed a standard code
for transmitting textual information. Bemer made and published a survey of more than
60 different computer codes, thus demonstrating a need for a standard code. He created
the program of work for the standards committee, forced the U.S. standard code to
correspond to the international code, wrote the bulk of the articles published about the
code, and pushed for a formal registry of ASCII-alternate symbol and control sets to
accommodate other languages.

Perhaps Bemer’s most important contribution is the concept of an escape character.
The escape character alerts the system processing the characters that the character(s)
following the escape character change the standard meaning of the characters to follow.
For example, ESC (N) alerts the system that the following characters are in the Cyrillic
equivalent of ASCII.

The first version of a 16-bit code called Unicode was published in October 1991.
Two factors drove the need for an enlarged code: 16-bit computer architecture was
becoming popular, and the expansion of the Internet and the World Wide Web drove
the need for a code that could directly include the world’s alphabets. ASCII, however,
has not gone away; it remains a subset of Unicode.

In May 2003, Bemer received the IEEE Computer Society’s Computer Pioneer
Award “for meeting the world’s needs for variant character sets and other symbols, via
ASCII, ASCII-alternate sets, and escape sequences.”

Bob Bemer died on June 22, 2004, at his home on Possum Kingdom Lake in
Texas.2

112

Various video codecs are popular today, including Sorenson, Cinepak, MPEG, and
Real Video. The details of how these codecs represent and compress video are beyond the
scope of this book.

SUMMARY

Computers are multimedia devices that manipulate data varying in form from numbers to
graphics to video. Because a computer can manipulate only binary values, all forms of data
must be represented in binary form. Data is classified as being either continuous (analog) or
discrete (digital).

Integer values are represented by their binary equivalent using one of several techniques
for representing negative numbers, such as a signed-magnitude or two’s complement. Real
numbers are represented by a triple made up of the sign, the digits in the number, and an
exponent that specifies the radix point.

A character set is a list of alphanumeric characters and the codes that represent each
character. The most commonly used character set today is Unicode (16 bits for each
character), which has ASCII as a subset. The 8-bit ASCII set is sufficient for English but
not for other (or multiple) languages. There are various ways for compressing text so that it
takes less space to store it or less time to transmit it from one machine to another.

Audio information is represented as digitized sound waves. Color is represented by
three values that represent the contributions of red, blue, and green, respectively. Two basic
techniques are used for representing pictures, bitmaps, and vector graphics. Video is broken
up into a series of still images, each of which is represented as a picture.

ETHICAL ISSUES
The Fallout from Snowden’s Revelations

Edward Snowden worked as a computer specialist for the Central Intelligence Agency
(CIA) and a contractor for the National Security Agency (NSA). In June of 2012, he
leaked a large number of classified documents to several media outlets. These documents
revealed the operational details of a global surveillance program of which NSA was a
partner. This surveillance program collected massive amounts of metadata—that is, data
about data—from leading Internet companies.

James Clapper, the U.S. director of national intelligence, explained that George W.
Bush first authorized this Internet spying just after 9/11. The program was disclosed in
2005 and was replaced by extensions of the Foreign Intelligence Surveillance Act
(FISA), which allowed the FISA Court to grant warrants for the collection of bulk data;
that is, metadata.3

After the public outcry resulting from Snowden’s revelations, a presidential advisory
committee was formed, which submitted 46 recommendations for changes to the NSA’s
operations.4 President Obama announced in early 2014 that the U.S. government
would scale back its eavesdropping on foreign leaders and its vast collection of

113

Americans’ phone data. The numbers and times of phone calls made by every American
will still be collected, but access to the metadata will be more restricted. Gaining access
to the collection will require approval from the FISA Court.5

In August 2013, Edward Snowden was granted one year of asylum in Russia,
renewable annually. In August of 2014, he was granted a three-year extension. He has
been variously called a criminal, a hero, a traitor, and a patriot. This is an ongoing story;
watch the daily news.6

KEY TERMS

Analog data
Bandwidth
Character set
Compression ratio
Data
Data compression
Digital data
Digitize
Floating point
Huffman encoding
Information
Keyword encoding
Lossless compression
Lossy compression
Multimedia
Overflow
Pixels
Pulse-code modulation
Radix point
Raster-graphics format
Reclock
Resolution
Run-length encoding
Scientific notation
Signed-magnitude representation
Spatial compression
Temporal compression
Ten’s complement
Vector graphics
Video codec

114

EXERCISES

For Exercises 1–20, mark the answers true or false as follows:
A. True
B. False

 1. Lossless compression means the data can be retrieved without losing any of the
original information.

 2. A computer represents information in an analog form.
 3. A computer must use the binary number system to represent information.
 4. A digital signal represents one of two values at any point in time.
 5. Four bits can be used to represent 32 unique things.
 6. The signed-magnitude representation of numbers has two representations for zero.
 7. Overflow occurs when the value that we compute cannot fit into the number of

bits we have allocated for the result.
 8. In the ASCII character set, no distinction is made between uppercase and

lowercase letters.
 9. The Unicode character set includes all of the characters in the ASCII character set.
10. Keyword encoding replaces frequently used words with a single character.
11. Run-length encoding is very good at compressing English text.
12. Huffman encoding uses variable-length binary strings to represent characters.
13. An audio signal is digitized by sampling it at regular intervals.
14. A CD stores audio information in a binary format.
15. The MP3 audio format discards information that cannot be heard by humans.
16. An RGB value represents a color using three numeric values.
17. Indexed color increases the number of colors that can be used in an image, and

thus increases the file size.
18. Bitmap, GIF, and JPEG are all examples of raster-graphics formats.
19. Vector graphics represent images in terms of lines and geometric shapes.
20. A keyframe is used in temporal compression to represent the changes from one

frame to another.

For Exercises 21–26, choose the correct term from the following list.
A. Signed-magnitude representation
B. Radix point
C. Frequency of use
D. Sampling
E. Analog
F. Digital

21. ______ data is a continuous representation of information.
22. The representation for numbers you’ve used since grade school is called ______.
23. If the number base is other than base 10, we call the decimal point the ______.
24. ______ data is a discrete representation of information.
25. Huffman codes are created based on the ______ of the character.
26. An audio signal is digitized by ______ its value at regular intervals.

Exercises 27–79 are problems or short-answer questions.

115

27. Why is data compression an important topic today?
28. What is the difference between lossless and lossy data compression?
29. Why do computers have difficulty with analog information?
30. Is a clock with a sweeping second hand an analog device or a digital device?

Explain.
31. What does it mean to digitize something?
32. What is pulse-code modulation?
33. How many things can be represented with

a. Four bits?
b. Five bits?
c. Six bits?
d. Seven bits?

34. Although you have been computing simple arithmetic operations since the second
grade, take the following quick test to confirm that you thoroughly understand
operations on signed integers. Evaluate the following expressions where W is 17, X
is 28, Y is –29, and Z is –13.
a. X + Y
b. X + W
c. Z + W
d. Y + Z
e. W – Z
f. X – W
g. Y – W
h. Z – Y

35. Use the base-10 number line to prove the solutions to the following operations,
where A is 5 and B is –7.
a. A + B
b. A – B
c. B + A
d. B – A

36. Given a fixed-sized number scheme where k in the formula for the ten’s
complement is 6 (see page 63), answer the following questions.
a. How many positive integers can be represented?
b. How many negative integers can be represented?
c. Draw the number line showing the three smallest and largest positive numbers,

the three smallest and largest negative numbers, and zero.
37. Use the number line in Exercise 36(c) to calculate the following expressions, where

A is –499999 and B is 3.
a. A + B
b. A – B
c. B + A
d. B – A

38. Use the formula for the ten’s complement to calculate the following numbers in
the scheme described on page 63.
a. 35768
b. –35768

116

c. –444455
d. –123456

39. In calculating the ten’s complement in Exercise 38, did you have trouble
borrowing from so many zeros? Such calculations are error prone. There is a trick
that you can use that makes the calculation easier and thus less prone to errors:
Subtract from all 9s and then add 1. A number subtracted from all 9s is called the
nine’s complement of the number.
a. Prove that the nine’s complement of a number plus one is equal to the ten’s

complement of the same number.
b. Use the nine’s complement plus one to calculate the values in Exercise 38(b),

(c), and (d).
c. Which did you find easier to use, the direct calculation of the ten’s complement

or the nine’s complement plus one? Justify your answer.
40. Evaluate the following expressions, where A is 11111110 and B is 00000010,

using the two’s complement.
a. A + B
b. A – B
c. B – A
d. –B
e. – (–A)

41. Is the two’s complement of a number always a negative number? Explain.
42. Devise a number system based on base 11.

a. Draw the number line.
b. Show examples of addition and subtraction.
c. Develop a representation of negative numbers based on the eleven’s

complement.
43. Convert the rules for subtraction in a signed-magnitude system to the algorithm

format.
44. Convert the following real numbers to binary (five binary places).

a. 0.50
b. 0.26
c. 0.10

45. Convert the following real numbers to octal (five octal places).
a. 0.50
b. 0.26
c. 0.10

46. Can fractional values be visually converted between octal and binary and back?
Explain.

47. How many bits would be needed to represent a character set containing 45
characters? Why?

48. How can the decimal number 175.23 be represented as a sign, mantissa, and
exponent?

49. What is the main difference between the ASCII and Unicode character sets?
50. Create a keyword encoding table that contains a few simple words. Rewrite a

paragraph of your choosing using this encoding scheme. Compute the compression
ratio you achieve.

117

51. How would the following string of characters be represented using run-length
encoding? What is the compression ratio? AAAABBBCCCCCCCCDDDD hi
there EEEEEEEEEFF

52. What does the code *X5*A9 represent using run-length encoding?
53. Given the following Huffman encoding table, decipher the bit strings that follow.

HUFFMAN CODE CHARACTER
 00 A
 11 E
 010 T
 0110 C
 0111 L
 1000 S
 1011 R
 10010 O
 10011 I
101000 N
101001
101010

F
H

101011 D

a. 1101110001011
b. 0110101010100101011111000
c. 101001001010000100010000101 00110110
d. 101000100101010001000111010 00100011

54. How do humans perceive sound?
55. Is a stereo speaker an analog device or a digital device? Explain.
56. What is an RGB value?
57. What does color depth indicate?
58. How does pixel resolution affect the visual impact of an image?
59. Explain temporal video compression.
60. Describe a situation in which spatial video compression would be effective.
61. Define sampling as it relates to digitizing sound waves.
62. Which produces better sound quality, higher sampling rates or lower sampling

rates?
63. What is the sampling rate per second that is enough to create reasonable sound

reproduction?
64. Do vinyl record albums and compact disks record sound in the same way?
65. What does an RGB value of (130, 0, 255) mean?
66. What color does an RGB value of (255, 255, 255) represent?
67. What is resolution?
68. The GIF format uses which technique?
69. What are GIF files best for?
70. How are the various video codecs alike?
71. How are the various video codecs different?
72. Name two types of video compression.
73. What do we call the perception of the various frequencies of light that reach the

retinas of our eyes?
74. What is the best format for photographic color images?

118

75. What are the techniques called that shrink the sizes of movies?
76. What is the technique in which an application supports only a certain number of

specific colors, creating a palette from which to choose?
77. What is the format that describes an image in terms of lines and geometric shapes?
78. Which format stores information on a pixel-by-pixel basis?
79. What is the difference between high color and true color?

THOUGHT QUESTIONS

 1. What are some advantages of using a common (standardized) character set? What
are some disadvantages?

 2. When converting whole numbers from one base to another, we divide by the new
base. When converting fractional parts from one base to another, we multiply by
the new base. Can positional notation be used to explain these algorithms?

 3. Technology is changing rapidly. What changes have occurred in data compression
since this book was written?

 4. Where is Edward Snowden now?
 5. What do you think history will call him?

119

THE HARDWARE LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits
5 Computing Components

The Programming Layer
6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages

The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer
15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion
18 Limitations of Computing

120

4 GATES AND CIRCUITS

Computers are electronic devices; the most fundamental hardware elements of a computer
control the flow of electricity. In a very primitive sense, we use technology to harness the
power of a lightning bolt, bending it to our will so that we can perform calculations and
make decisions. This chapter dances the fine line between computer science and electrical
engineering, examining the most basic hardware elements in a computer.

In Chapter 2, we looked at number systems in general and at the binary number system
in particular. As we saw in Chapter 3, the binary number system is of special interest
because it is used to represent data in a computer. In this chapter, we explore how
computers use electrical signals to represent and manipulate those binary values.

GOALS
After studying this chapter, you should be able to:

■ identify the basic gates and describe the behavior of each.
■ describe how gates are implemented using transistors.
■ combine basic gates into circuits.
■ describe the behavior of a gate or circuit using Boolean expressions, truth tables, and logic diagrams.
■ compare and contrast a half adder and a full adder.
■ describe how a multiplexer works.
■ explain how an S-R latch operates.
■ describe the characteristics of the four generations of integrated circuits.

4.1 Computers and Electricity
Any given electronic signal has a level of voltage. As we mentioned in the last chapter, we
distinguish between the two values of interest (binary 0 and 1) by the voltage level of a
signal. In general, a voltage level in the range of 0 to 2 volts is considered “low” and is
interpreted as a binary 0. A signal in the 2- to 5-volt range is considered “high” and is
interpreted as a binary 1. Signals in a computer are constrained to be within one range or
the other.

A gate is a device that performs a basic operation on electrical signals. It accepts one or
more input signals and produces a single output signal. Several types of gates exist; we
examine the six most fundamental types in this chapter. Each type of gate performs a
particular logical function.

121

Gate A device that performs a basic operation on electrical signals, accepting one or more input signals and
producing a single output signal

Gates are combined into circuits to perform more complicated tasks. For example,
circuits can be designed to perform arithmetic and to store values. In a circuit, the output
value of one gate often serves as the input value for one or more other gates. The flow of
electricity through a circuit is controlled by the carefully designed logic of the interacting
gates.

Circuit A combination of interacting gates designed to accomplish a specific logical function

Three different, but equally powerful, notational methods are used to describe the
behavior of gates and circuits:

■ Boolean expressions
■ Logic diagrams
■ Truth tables

We examine all three types of representation during our discussion of gates and circuits.
The English mathematician George Boole invented a form of algebra in which variables

and functions take on only one of two possible values (0 and 1). This algebra is
appropriately called Boolean algebra. Expressions in this algebraic notation are an elegant
and powerful way to demonstrate the activity of electrical circuits. Specific operations and
properties in Boolean algebra allow us to define and manipulate circuit logic using a
mathematical notation. Boolean expressions will come up again in our discussions of the
programming layer in Chapters 6 through 9.

Boolean algebra A mathematical notation for expressing two-valued logical functions

A logic diagram is a graphical representation of a circuit. Each type of gate is
represented by a specific graphical symbol. By connecting those symbols in various ways,
we can visually represent the logic of an entire circuit.

Logic diagram A graphical representation of a circuit; each type of gate has its own symbol

A truth table defines the function of a gate by listing all possible input combinations
that the gate could encounter, along with corresponding output. We can design more
complex truth tables with sufficient rows and columns to show how entire circuits perform
for any set of input values.

Truth table A table showing all possible input values and the associated output values

122

George Boole1

Boolean algebra is named for its inventor, English mathematician George Boole, born in
1815. His father, a tradesman, began teaching him mathematics at an early age. But
Boole was initially more interested in classical literature, languages, and religion—
interests he maintained through out his life. By the time he was 20, he had taught
himself French, German, and Italian. He was well versed in the writings of Aristotle,
Spinoza, Cicero, and Dante, and wrote several philosophical papers himself.

At 16 he took a position as a teaching assistant in a private school to help support
his family. His work there plus a second teaching job left him little time to study. A few
years later, he opened a school and began to learn higher mathematics on his own. In
spite of his lack of formal training, his first scholarly paper was published in the
Cambridge Mathematical Journal when he was just 24. In 1849, he was appointed
professor of mathematics at Queen’s College in Cork, Ireland. He became chair of
mathematics and spent the rest of his career there. Boole went on to publish more than
50 papers and several major works before he died in 1864, at the peak of his career.

Boole’s The Mathematical Analysis of Logic was published in 1847. It would
eventually form the basis for the development of digital computers. In the book, Boole
set forth the formal axioms of logic (much like the axioms of geometry) on which the
field of symbolic logic is built. Boole drew on the symbols and operations of algebra in
creating his system of logic. He associated the value 1 with the universal set (the set
representing everything in the universe) and the value 0 with the empty set, and
restricted his system to these quantities. He then defined operations that are analogous
to subtraction, addition, and multiplication.

In 1854, Boole published An Investigation of the Laws of Thought; on Which Are
Founded the Mathematical Theories of Logic and Probabilities. This book described
theorems built on his axioms of logic and extended the algebra to show how
probabilities could be computed in a logical system. Five years later, Boole published
Treatise on Differential Equations, followed by Treatise on the Calculus of Finite
Differences. The latter is one of the cornerstones of numerical analysis, which deals with
the accuracy of computations.

Boole received little recognition and few honors for his work. Given the importance
of Boolean algebra in modern technology, it is hard to believe that his system of logic

123

was not taken seriously until the early twentieth century. George Boole was truly one of
the founders of computer science.

?
What is nanoscience?

Nanoscience and nanotechnology are the study and application of extremely small things:
• There are 25,400,000 nanometers in an inch.
• A sheet of newspaper is about 100,000 nanometers thick.
• If a marble were a nanometer, one meter would be the size of the Earth.2

4.2 Gates
The gates in a computer are sometimes referred to as logic gates because each performs just
one logical function. That is, each gate accepts one or more input values and produces a
single output value. Because we are dealing with binary information, each input and output
value is either 0, corresponding to a low-voltage signal, or 1, corresponding to a high-
voltage signal. The type of gate and the input values determine the output value.

Let’s examine the processing of the following six types of gates. We then show how they
can be combined into circuits to perform arithmetic operations.

■ NOT
■ AND
■ OR
■ XOR
■ NAND
■ NOR

In this book we have colorized the logic diagram symbols for each gate to help you keep
track of the various types. When we examine full circuits with many gates, the colors will
help you distinguish among them. In the real world, however, logic diagrams are typically
black and white, and the gates are distinguished only by their shape.

NOT Gate
A NOT gate accepts one input value and produces one output value. FIGURE 4.1

shows a NOT gate represented in three ways: as a Boolean expression, as its logical diagram
symbol, and through a truth table. In each representation, the variable A represents the
input signal, which is either 0 or 1. The variable X represents the output signal, whose
value (0 or 1) is determined by the value of A.

By definition, if the input value for a NOT gate is 0, the output value is 1; if the input
value is 1, the output is 0. A NOT gate is sometimes referred to as an inverter because it
inverts the input value.

124

FIGURE 4.1 Representations of a NOT gate

In Boolean expressions, the NOT operation is represented by the ‘mark after the value
being negated. Sometimes this operation is shown as a horizontal bar over the value being
negated. In the Boolean expression in Figure 4.1, X is assigned the value determined by
applying the NOT operation to input value A. In such an assignment statement, the variable
on the left of the equal sign takes on the value of the expression on the right-hand side.
Assignment statements are discussed further in Chapter 6.

The logic diagram symbol for a NOT gate is a triangle with a small circle (called an
inversion bubble) on the end. The input and output are shown as lines flowing into and out
of the gate. Sometimes these lines are labeled, though not always.

The truth table in Figure 4.1 shows all possible input values for a NOT gate as well as
the corresponding output values. Because there is only one input signal to a NOT gate, and
that signal can be only a 0 or a 1, there are only two possibilities for the column labeled A
in the truth table. The column labeled X shows the output of the gate, which is the inverse
of the input. Note that of the three representations, only the truth table actually defines the
behavior of the gate for all situations.

These three notations are just different ways of representing the same thing. For
example, the result of the Boolean expression

0′

is always 1, and the result of the Boolean expression

1′

is always 0. This behavior is consistent with the values shown in the truth table.

AND Gate
FIGURE 4.2 depicts an AND gate. Unlike a NOT gate, which accepts one input signal,
an AND gate accepts two input signals. The values of both input signals determine what
the output signal will be. If the two input values for an AND gate are both 1, the output is
1; otherwise, the output is 0.

125

FIGURE 4.2 Representations of an AND gate

The AND operation in Boolean algebra is expressed using a single dot (.). Sometimes
an asterisk (*) is used to represent this operator. Often the operator itself is assumed. For
example, A·B is often written AB.

Because there are two inputs and two possible values for each input, four possible
combinations of 1 and 0 can be provided as input to an AND gate. Therefore, four
situations can occur when the AND operator is used in a Boolean expression:

0 · 0 equals 0
0 · 1 equals 0
1 · 0 equals 0
1 · 1 equals 1

Likewise, the truth table showing the behavior of the AND gate has four rows, showing all
four possible input combinations. The output column of the truth table is consistent with
results of these Boolean expressions.

OR Gate
FIGURE 4.3 shows an OR gate. Like the AND gate, the OR gate has two inputs. If both
input values are 0, the output value is 0; otherwise, the output is 1.

The Boolean algebra OR operation is expressed using a plus sign (+). The OR gate has
two inputs, each of which can be one of two values. Thus, as with an AND gate, there are
four input combinations and therefore four rows in the truth table.

XOR Gate
The XOR, or exclusive OR, gate is shown in FIGURE 4.4. An XOR gate produces a 0 if its
two inputs are the same, and a 1 otherwise. Note the difference between the XOR gate and
the OR gate; they differ in only one input situation. When both input signals are 1, the OR
gate produces a 1 and the XOR produces a 0.

126

FIGURE 4.3 Representations of an OR gate

FIGURE 4.4 Representations of an XOR gate

Sometimes the regular OR gate is referred to as the inclusive OR, because it produces a
1 if either or both of its inputs is a 1. The XOR produces a 1 only if its inputs are mixed
(one 1 and one 0). Think of the XOR gate as saying, “When I say or, I mean one or the
other, not both.”

The Boolean algebra symbol ⊕ is sometimes used to express the XOR operation. In
addition, the XOR operation can be expressed using the other operators; we leave that as an
exercise.

Note that the logic diagram symbol for the XOR gate is just like the symbol for an OR
gate except that it has an extra curved line connecting its input signals.

NAND and NOR Gates
The NAND gate is shown in FIGURE 4.5 and the NOR gate is shown in FIGURE 4.6.
Each accepts two input values. The NAND and NOR gates are essentially the opposites of
the AND and OR gates, respectively. That is, the output of a NAND gate is the same as if
you took the output of an AND gate and put it through an inverter (a NOT gate).

127

FIGURE 4.5 Representations of a NAND gate

FIGURE 4.6 Representations of a NOR gate

No specific symbols are used to express the NAND and NOR operations in Boolean
algebra. Instead, we rely on their definitions to express the concepts. That is, the Boolean
algebra expression for NAND is the negation of an AND operation. Likewise, the Boolean
algebra expression for NOR is the negation of an OR operation.

The logic diagram symbols for the NAND and NOR gates are the same as those for the
AND and OR gates except that the NAND and NOR symbols use an inversion bubble (to
indicate the negation). Compare the output columns for the truth tables for the AND and
NAND gates. They are opposites, when you look at them row by row. The same is true for
the OR and NOR gates.

?
The tenth strand

Computing Curricula 1991, a report by a joint task force of the Association for Computing Machinery (ACM) and
the Institute of Electrical and Electronics Engineers (IEEE), gave recommendations for the design of bachelor’s
degree curricula in computer science. Although the report had a section entitled “Social and Professional Context,”
which stated that students need “to understand the basic cultural, social, legal, and ethical issues inherent in
computing,” the study of ethics was not one of the nine subject areas, or strands. By 2001, social and professional
issues was included as a topic area in computing education and called the tenth strand.

Review of Gate Processing
We’ve looked at six specific types of gates. It may seem to be a difficult task to keep them
straight and remember how they all work—but that probably depends on how you think

128

about it. We definitely don’t encourage you to try to memorize truth tables. The processing
of these gates can be described briefly in general terms. If you think of them in that way,
you can produce the appropriate truth table any time you need it.

Let’s review the processing of each gate. Some of these descriptions are stated in terms
of which input values cause the gate to produce a 1 as output; in any other case, the gate
produces a 0.

■ A NOT gate inverts its single input value.
■ An AND gate produces 1 if both input values are 1.
■ An OR gate produces 1 if one or the other or both input values are 1.
■ An XOR gate produces 1 if one or the other (but not both) input values are 1.
■ A NAND gate produces the opposite results of an AND gate.
■ A NOR gate produces the opposite results of an OR gate.

FIGURE 4.7 Representations of a three-input AND gate

With these general processing rules in mind, all that’s left is to remember the Boolean
operators and the logic diagram symbols. Keep in mind that several logic diagram symbols
are variations on other logic diagram symbols. Also, remember that the coloring of the gates
in this book is meant to help you to keep track of the various gate types; traditionally, they
are simply black-and-white diagrams.

Gates with More Inputs
Gates can be designed to accept three or more input values. A three-input AND gate, for
example, produces an output of 1 only if all input values are 1. A three-input OR gate
produces an output of 1 if any input value is 1. These definitions are consistent with the
two-input versions of these gates. FIGURE 4.7 shows an AND gate with three input
signals.

There are 23, or 8, possible input combinations for a gate with three inputs. Recall from
Chapter 3 that there are 2n combinations of 1 and 0 for n distinct input values. This

129

number determines how many rows appear in the truth table.
For the logic diagram symbol, we simply add a third input signal to the original

symbol. For a Boolean expression, we repeat the AND operation to represent the third
value.

4.3 Constructing Gates
Before we examine how gates are connected to form circuits, let’s examine, at an even more
basic level, how a gate is constructed to control the flow of electricity.

Transistors
A gate uses one or more transistors to establish how the input values map to the output
value. A transistor is a device that acts, depending on the voltage level of the input signal,
either as a wire that conducts electricity or as a resistor that blocks the flow of electricity. A
transistor has no moving parts, yet it acts like a switch. It is made of a semiconductor
material, which is neither a particularly good conductor of electricity (unlike copper) nor a
particularly good insulator (unlike rubber). Usually silicon is used to create transistors.

Transistor A device that acts either as a wire or a resistor, depending on the voltage level of an input signal

Semiconductor Material such as silicon that is neither a good conductor nor a good insulator

In Chapter 1, we mentioned that the invention of transistors, which occurred in 1947
at Bell Labs, changed the face of technology, ushering in the second generation of computer
hardware. Before the advent of transistors, digital circuits used vacuum tubes, which
dissipated a great deal of heat and often failed, requiring replacement. Transistors are much
smaller than vacuum tubes and require less energy to operate. They can switch states in a
few nanoseconds. Computing, as we know it today, is largely due to the invention of the
transistor.

Before tackling the details of transistors, let’s discuss some basic principles of electricity.
An electrical signal has a source, such as a battery or an outlet in your wall. If the electrical
signal is grounded, it is allowed to flow through an alternative route to the ground (literally),
where it can do no harm. A grounded electrical signal is pulled down, or reduced, to 0
volts.

A transistor has three terminals: a source, a base, and an emitter. The emitter is
typically connected to a ground wire, as shown in FIGURE 4.8. For computers, the source
produces a high voltage value, approximately 5 volts. The base value regulates a gate that
determines whether the connection between the source and ground is made. If the source
signal is grounded, it is pulled down to 0 volts. If the base does not ground the source
signal, it stays high.

An output line is usually connected to the source line. If the source signal is pulled to
the ground by the transistor, the output signal is low, representing a binary 0. If the source
signal remains high, so does the output signal, representing a binary 1.

The transistor is either on, producing a high-output signal, or off, producing a low

130

output signal. This output is determined by the base electrical signal. If the base signal is
high (close to a +5 voltage), the source signal is grounded, which turns the transistor off. If
the base signal is low (close to a 0 voltage), the source signal stays high, and the transistor is
on.

Now let’s see how a transistor is used to create various types of gates. It turns out that,
because of the way a transistor works, the easiest gates to create are the NOT, NAND, and
NOR gates. FIGURE 4.9 shows how these gates can be constructed using transistors.

FIGURE 4.8 The connections of a transistor

FIGURE 4.9 Constructing gates using transistors

The diagram for the NOT gate is essentially the same as our original transistor diagram.
It takes only one transistor to create a NOT gate. The signal Vin represents the input signal
to the NOT gate. If it is high, the source is grounded and the output signal Vout is low. If
Vin is low, the source is not grounded and Vout is high. Thus the input signal is inverted,
which is exactly what a NOT gate does.

The NAND gate requires two transistors. The input signals V1 and V2 represent the
input to the NAND gate. If both input signals are high, the source is grounded and the
output Vout is low. If either input signal is low, however, one transistor or the other keeps
the source signal from being grounded and the output is high. Therefore, if V1 or V2 or
both carry a low signal (binary 0), the output is a 1. This is consistent with the processing

131

of a NAND gate.
The construction of a NOR gate also requires two transistors. Once again, V1 and V2

represent the input to the gate. This time, however, the transistors are not connected in
series. The source connects to each transistor separately. If either transistor allows the
source signal to be grounded, the output is 0. Therefore, the output is high (binary 1) only
when both V1 and V2 are low (binary 0), which is what we want for a NOR gate.

An AND gate produces output that is exactly opposite of the NAND output of a gate.
Therefore, to construct an AND gate, we simply pass the output of a NAND gate through
an inverter (a NOT gate). That’s why AND gates are more complicated to construct than
NAND gates: They require three transistors, two for the NAND and one for the NOT.
The same reasoning can be applied to understand the relationship between NOR and OR
gates.

4.4 Circuits
Now that we know how individual gates work and how they are constructed, let’s examine
how we combine gates to form circuits. Circuits can be classified into two general
categories. In a combinational circuit, the input values explicitly determine the output. In
a sequential circuit, the output is a function of the input values as well as the existing state
of the circuit. Thus sequential circuits usually involve the storage of information. Most of
the circuits we examine in this chapter are combinational circuits, although we briefly
mention sequential memory circuits.

Combinational circuit A circuit whose output is solely determined by its input values

Sequential circuit A circuit whose output is a function of its input values and the current state of the circuit

As with gates, we can describe the operations of entire circuits using three notations:
Boolean expressions, logic diagrams, and truth tables. These notations are different, but
equally powerful, representation techniques.

Combinational Circuits
Gates are combined into circuits by using the output of one gate as the input for another
gate. For example, consider the following logic diagram of a circuit:

The output of the two AND gates is used as the input to the OR gate. The input value A is
used as input to both AND gates. The dot indicates that two lines are connected. If the

132

intersection of two crossing lines does not have a dot, you should think of one as “jumping
over” the other without affecting each other.

What does this logic diagram mean? Well, let’s work backward to see what it takes to
get a particular result. For the final output X to be 1, either D must be 1 or E must be 1.
For D to be 1, A and B must both be 1. For E to be 1, both A and C must be 1. Both E
and D may be 1, but that isn’t necessary. Examine this circuit diagram carefully; make sure
that this reasoning is consistent with your understanding of the types of gates used.

Now let’s represent the processing of this entire circuit using a truth table:

Because there are three inputs to this circuit, eight rows are required to describe all possible
input combinations. Intermediate columns show the intermediate values (D and E) in the
circuit.

Finally, let’s express this same circuit using Boolean algebra. A circuit is a collection of
interacting gates, so a Boolean expression to represent a circuit is a combination of the
appropriate Boolean operations. We just have to put the operations together in the proper
form to create a valid Boolean algebra expression. In this circuit, there are two AND
expressions. The output of each AND operation is input to the OR operation. Thus this
circuit is represented by the following Boolean expression (in which the AND operator is
assumed):

(AB + AC)

When we write truth tables, it is often better to label columns using these kinds of Boolean
expressions rather than arbitrary variables such as D, E, and X. That makes it clear what
each column represents. In fact, we can use Boolean expressions to label our logic diagrams
as well, eliminating the need for intermediate variables altogether.

Now let’s go the other way: Let’s take a Boolean expression and draw the corresponding
logic diagram and truth table. Consider the following Boolean expression:

A(B + C)

In this expression, the OR operation is applied to input values B and C. The result of that
operation is used as input, along with A, to an AND operation, producing the final result.

133

The corresponding circuit diagram is:

Once again, we complete our series of representations by expressing this circuit as a
truth table. As in the previous example, there are three input values, so there are eight rows
in the truth table:

Pick a row from this truth table and follow the logic of the circuit diagram to make sure the
final results are consistent. Try it with a few rows to get comfortable with the process of
tracing the logic of a circuit.

Now compare the final result column in this truth table to the truth table for the
previous example. They are identical. We have just demonstrated circuit equivalence. That
is, both circuits produce exactly the same output for each input value combination.

Circuit equivalence The same output for each corresponding input–value combination for two circuits

In fact, this situation demonstrates an important property of Boolean algebra called the
distributive law:

A(B + C) = AB + AC

That’s the beauty of Boolean algebra: It allows us to apply provable mathematical
principles to design logical circuits. The following chart shows a few of the properties of
Boolean algebra:

PROPERTY AND OR

Commutative AB = BA A + B = B + A
Associative (AB) C = A (BC) (A + B) + C = A + (B + C)

134

Distributive A (B + C) = (AB) + (AC) A + (BC) = (A + B) (A + C)
Identity A1 = A A + 0 = A
Complement A(A′) = 0 A + (A′) = 1
De Morgan’s law (AB)′ = A′ OR B′ (A + B)′ = A′B′

?
De Morgan’s Law, named for Augustus De Morgan

De Morgan, a contemporary of George Boole, was the first professor of mathematics at the University of London in
1828, where he continued to teach for 30 years. He wrote elementary texts on arithmetic, algebra, trigonometry,
and calculus as well as papers on the possibility of establishing a logical calculus and the fundamental problem of
expressing thought by means of symbols. De Morgan did not discover the law bearing his name, but he is credited
with formally stating it as it is known today.3

These properties are consistent with our understanding of gate processing as well as with
the truth table and logic diagram representations. For instance, the commutative property,
in plain English, says that the order of the input signals doesn’t matter, which is true.
(Verify it using the truth tables of individual gates.) The complement property says that if
we put a signal and its inverse through an AND gate, we are guaranteed to get 0, but if we
put a signal and its inverse through an OR gate, we are guaranteed to get 1.

There is one very famous—and useful—theorem in Boolean algebra called De Morgan’s
law. This law states that the NOT operator applied to the AND of two variables is equal to
the NOT applied to each of the two variables with an OR between. That is, inverting the
output of an AND gate is equivalent to inverting the individual signals first and then
passing them through an OR gate:

(AB)′ = A′ OR B′

The second part of the law states that the NOT operator applied to the OR of two variables
is equal to the NOT applied to each of the two variables with an AND between. Expressed
in circuit terms, this means that inverting the output of an OR gate is equivalent to
inverting both signals first and then passing them through an AND gate:

(A + B)′ = A′B′

De Morgan’s law and other Boolean algebra properties provide a formal mechanism for
defining, managing, and evaluating logical circuit designs.

Adders
Perhaps the most basic operation a computer can perform is to add two numbers together.
At the digital logic level, this addition is performed in binary. Chapter 2 discusses this
process in depth. These types of addition operations are carried out by special circuits
called, appropriately, adders.

135

Adder An electronic circuit that performs an addition operation on binary values

Like addition in any base, the result of adding two binary digits could potentially
produce a carry value. Recall that 1 + 1 = 10 in base 2. A circuit that computes the sum of
two bits and produces the correct carry bit is called a half adder.

Half adder A circuit that computes the sum of two bits and produces the appropriate carry bit

Let’s consider all possibilities when adding two binary digits A and B: If both A and B
are 0, the sum is 0 and the carry is 0. If A is 0 and B is 1, the sum is 1 and the carry is 0. If
A is 1 and B is 0, the sum is 1 and the carry is 0. If both A and B are 1, the sum is 0 and
the carry is 1. This yields the following truth table:

In this case, we are actually looking for two output results, the sum and the carry. As a
consequence, our circuit has two output lines.

If you compare the sum and carry columns to the output of the various gates, you see
that the sum corresponds to the XOR gate and the carry corresponds to the AND gate.
Thus the following circuit diagram represents a half adder:

Test this diagram by assigning various combinations of input values and determining
the two output values produced. Do the results follow the rules of binary arithmetic? They
should. Now compare your results to the corresponding truth table. They should match the
results there as well.

What about the Boolean expression for this circuit? Because the circuit produces two
distinct output values, we represent it using two Boolean expressions:

sum = A ⊕ B
carry = AB

Note that a half adder does not take into account a possible carry value into the

136

calculation (carry-in). That is, a half adder is fine for adding two single digits, but it cannot
be used as is to compute the sum of two binary values with multiple digits each. A circuit
called a full adder takes the carry-in value into account.

Full adder A circuit that computes the sum of two bits, taking an input carry bit into account

We can use two half adders to make a full adder. How? Well, the input to the sum
must be the carry-in and the sum from adding the two input values. That is, we add the
sum from the half adder to the carry-in. Both of these additions have a carry-out. Could
both of these carry-outs be 1, yielding yet another carry? Fortunately, no. Look at the truth
table for the half adder. There is no case where the sum and the carry are both 1.

FIGURE 4.10 shows the logic diagram and the truth table for the full adder. This
circuit has three inputs: the original two digits (A and B) and the carry-in value. Thus the
truth table has eight rows. We leave the corresponding Boolean expression as an exercise.

To add two 8-bit values, we can duplicate a full-adder circuit eight times. The carry-out
from one place value is used as the carry-in to the next-highest place value. The value of the
carry-in for the rightmost bit position is assumed to be zero, and the carry-out of the
leftmost bit position is discarded (potentially creating an overflow error).

There are various ways to improve on the design of these adder circuits, but we do not
explore them in any more detail in this text.

FIGURE 4.10 A full adder

?
Errors

While developing his first program, in about 1949, Maurice Wilkes said, “The realization came over me with full
force that a good part of the remainder of my life was going to be spent in finding the errors in my own
programs.”4

Multiplexers

137

A multiplexer (often referred to as a mux) is a general circuit that produces a single output
signal. This output is equal to one of several input signals to the circuit. The multiplexer
selects which input signal to use as an output signal based on the value represented by a few
more input signals, called select signals or select control lines.

Multiplexer A circuit that uses a few input control signals to determine which of several input data lines is routed
to its output

Let’s look at an example to clarify how a multiplexer works. FIGURE 4.11 shows a
block diagram of a mux. The control lines S0, S1, and S2 determine which of eight other
input lines (D0 through D7) are routed to the output (F).

The values of the three control lines, taken together, are interpreted as a binary number,
which determines which input line to route to the output. Recall from Chapter 2 that three
binary digits can represent eight different values: 000, 001, 010, 011, 100, 101, 110, and
111. These values, which simply count in binary from 0 to 7, correspond to our output
values D0 through D7. Thus, if S0, S1, and S2 are all 0, the input line D0 would be the
output from the mux. If S0 is 1, S1 is 0, and S2 is 1, then D5 would be output from the
mux.

The following truth table shows how the input control lines determine the output for
this multiplexer:

The block diagram in Figure 4.11 hides a fairly complicated circuit that carries out the
logic of a multiplexer. Such a circuit could be shown using eight three-input AND gates
and one eight-input OR gate. We won’t get into the details of this circuit in this book.

FIGURE 4.11 A block diagram of a multiplexer with three select control lines

A multiplexer can be designed with various numbers of input lines and corresponding
control lines. In general, the binary values on n input control lines are used to determine
which of 2n other data lines are selected for output.

A circuit called a demultiplexer (demux) performs the opposite operation. That is, it
takes a single input and routes it to one of 2n outputs, depending on the values of the n
control lines.

138

4.5 Circuits as Memory
Digital circuits play another important role: They can store information. These circuits
form a sequential circuit, because the output of the circuit also serves as input to the circuit.
That is, the existing state of the circuit is used in part to determine the next state.

Many types of memory circuits have been designed. We examine only one type in this
book: the S-R latch. An S-R latch stores a single binary digit (1 or 0). An S-R latch circuit
could be designed using a variety of gates. One such circuit, using NAND gates, is pictured
in FIGURE 4.12.

The design of this circuit guarantees that the two outputs X and Y are always
complements of each other. That is, when X is 0, Y is 1, and vice versa. The value of X at
any point in time is considered to be the current state of the circuit. Therefore, if X is 1, the
circuit is storing a 1; if X is 0, the circuit is storing a 0.

Recall that a NAND gate produces an output of 1 unless both of its input values are 1.
Each gate in this circuit has one external input (S or R) and one input coming from the
output of the other gate. Suppose the current state of the circuit is storing a 1 (that is, X is
1), and suppose both S and R are 1. Then Y remains 0 and X remains 1. Now suppose that
the circuit is currently storing a 0 (X is 0) and that R and S are again 1. Then Y remains 1
and X remains 0. No matter which value is currently being stored, if both input values S
and R are 1, the circuit keeps its existing state.

This explanation demonstrates that the S-R latch maintains its value as long as S and R
are 1. But how does a value get stored in the first place? We set the S-R latch to 1 by
momentarily setting S to 0 while keeping R at 1. If S is 0, X becomes 1. As long as S is
returned to 1 immediately, the S-R latch remains in a state of 1. We set the latch to 0 by
momentarily setting R to 0 while keeping S at 1. If R is 0, Y becomes 0, and thus X
becomes 0. As long as R is immediately reset to 1, the circuit state remains 0.

By carefully controlling the values of S and R, the circuit can be made to store either
value. By scaling this idea to larger circuits, we can design memory devices with larger
capacities.

FIGURE 4.12 An S-R latch

4.6 Integrated Circuits
An integrated circuit (also called a chip) is a piece of silicon on which multiple gates have
been embedded. These silicon pieces are mounted on a plastic or ceramic package with pins
along the edges that can be soldered onto circuit boards or inserted into appropriate
sockets. Each pin connects to the input or output of a gate, or to power or ground.

139

Integrated circuit (chip) A piece of silicon on which multiple gates have been embedded

Integrated circuits (IC) are classified by the number of gates contained in them. These
classifications also reflect the historical development of IC technology:

Abbreviation Name Number of Gates
SSI Small-scale integration 1 to 10
MSI Medium-scale integration 10 to 100
LSI Large-scale integration 100 to 100,000

VLSI Very-large-scale integration more than 100,000

An SSI chip has a few independent gates, such as the one shown in FIGURE 4.13.
This chip has 14 pins: eight for inputs to gates, four for output of the gates, one for
ground, and one for power. Similar chips can be made with different gates.

How can a chip have more than 100,000 gates on it? That would imply the need for
300,000 pins! The key is that the gates on a VLSI chip are not independent, as they are in
small-scale integration. VLSI chips embed circuits with a high gate-to-pin ratio. That is,
many gates are combined to create complex circuits that require only a few input and
output values. Multiplexers are an example of this type of circuit.

FIGURE 4.13 An SSI chip containing independent NAND gates

?
What is computer ethics?

Be careful—the term computer ethics is ambiguous. The use of the term in the tenth strand of computer science
curricula refers to a code of ethics that computer professionals can apply within their own profession. Computer
ethics also refers to determinations made by contemporary philosophers to cases that involve computers or computer
networks.

140

4.7 CPU Chips
The most important integrated circuit in any computer is the central processing unit
(CPU). The processing of a CPU is discussed in the next chapter, but it is important to
recognize at this point that the CPU is, in one sense, merely an advanced circuit with input
and output lines.

Each CPU chip contains a large number of pins through which essentially all
communication in a computer system occurs. This communication connects the CPU to
memory and I/O devices, which are themselves, at fundamental levels, advanced circuits.

The explanation of CPU processing and its interaction with other devices takes us to
another level of computer processing, sometimes referred to as component architecture.
Although it is still primarily focused on hardware, computer component architecture
applies the principle of abstraction yet again, allowing us to temporarily ignore the details
of the gates and circuits discussed in this chapter and bringing us ever closer to a complete
understanding of computer processing.

SUMMARY

In this chapter we discussed how a computer operates at its lowest level by controlling the
flow of electricity. Because we are dealing with digital computers that use binary
information, we concern ourselves with only two voltage ranges, which we interpret as
binary 1 or 0. The flow of electricity is guided by electronic devices called gates, which
perform basic logical operations such as NOT, AND, and OR. A gate is created by using
one or more transistors, an invention that revolutionized computing.

Gates can be combined into circuits, in which the output of one gate serves as an input
to another gate. By designing these circuits carefully, we can create devices that perform
more complex tasks such as adding, multiplexing, and storing data. Collections of gates, or
complete circuits, are often embedded into a single integrated circuit, or chip, which leads to
the concept of a central processing unit (CPU).

ETHICAL ISSUES
Codes of Ethics5

There are two major organizations in computing: the Association of Computing
Machinery and the Institute of Electrical and Electronics Engineers. The IEEE
represents the hardware side and the ACM represents the software side. However, in
many universities, this distinction is blurred. We are presenting both codes of ethics so
you can compare and contrast them.

IEEE Code of Ethics
We, the members of the IEEE, in recognition of the importance of our technologies in

141

affecting the quality of life throughout the world, and in accepting a personal obligation
to our profession, its members and the communities we serve, do hereby commit
ourselves to the highest ethical and professional conduct and agree:

■ to accept responsibility in making decisions consistent with the safety, health, and
welfare of the public, and to disclose promptly factors that might endanger the public
or the environment;

■ to avoid real or perceived conflicts of interest whenever possible, and to disclose them
to affected parties when they do exist;

■ to be honest and realistic in stating claims or estimates based on available data;
■ to reject bribery in all its forms;
■ to improve the understanding of technology, its appropriate application, and

potential consequences;
■ to maintain and improve our technical competence and to undertake technological

tasks for others only if qualified by training or experience, or after full disclosure of
pertinent limitations;

■ to seek, accept, and offer honest criticism of technical work, to acknowledge and
correct errors, and to credit properly the contributions of others;

■ to treat fairly all persons regardless of such factors as race, religion, gender, disability,
age, or national origin;

■ to avoid injuring others, their property, reputation, or employment by false or
malicious action;

■ to assist colleagues and co-workers in their professional development and to support
them in following this code of ethics.

ACM Code of Ethics (abridged)
Rather than copy them, we show the flyer that the ACM produces.

142

KEY TERMS

Adder
Boolean algebra
Circuit
Circuit equivalence
Combinational circuit
Full adder
Gate
Half adder
Integrated circuit (also chip)
Logic diagram
Multiplexer
Semiconductor
Sequential circuit
Transistor

143

Truth table

EXERCISES

For Exercises 1–17, mark the answers true or false as follows:
A. True
B. False

 1. Logic diagrams and truth tables are equally powerful in expressing the processing
of gates and circuits.

 2. Boolean expressions are more powerful than logic diagrams in expressing the
processing of gates and circuits.

 3. A NOT gate accepts two inputs.
 4. The output value of an AND gate is 1 when both inputs are 1.
 5. The AND and OR gates produce opposite results for the same input.
 6. The output value of an OR gate is 1 when both inputs are 1.
 7. The output of an OR gate is 0 when one input is 0 and one input is 1.
 8. The output value of an XOR gate is 0 unless both inputs are 1.
 9. The NOR gate produces the opposite results of the XOR gate.
10. A gate can be designed to accept more than two inputs.
11. A transistor is made of semiconductor material.
12. Inverting the output of an AND gate is equivalent to inverting the individual

signals first, then passing them through an OR gate.
13. The sum of two binary digits (ignoring the carry) is expressed by an AND gate.
14. A full adder takes the carry-in value into account.
15. A multiplexer adds all of the bits on its input lines to produce its output.
16. Integrated circuits are classified by the number of gates contained in them.
17. A CPU is an integrated circuit.

For Exercises 18–29, match the gate with the description of the operation or the
diagram.

A. AND
B. NAND
C. XOR
D. OR
E. NOR
F. NOT

18. Inverts its input.
19. Produces a 1 only if all its inputs are 1 and a 0 otherwise.
20. Produces a 0 only if all its inputs are 0 and a 1 otherwise.
21. Produces a 0 only if its inputs are the same and a 1 otherwise.
22. Produces a 0 if all its inputs are 1 and a 1 otherwise.
23. Produces a 1 if all its inputs are 0 and a 0 otherwise.

24.

144

25.

26.

27.

28.

29.

Exercises 30–73 are short-answer or design questions.
30. How is voltage level used to distinguish between binary digits?
31. Distinguish between a gate and a circuit.
32. What are the three notational methods for describing the behavior of gates and

circuits?
33. Characterize the notations asked for in Exercise 32.
34. How many input signals can a gate receive, and how many output signals can a

gate produce?
35. Name six types of gates.
36. Give the three representations of a NOT gate and say in words what NOT means.
37. Give the three representations of an AND gate and say in words what AND

means.
38. Give the three representations of an OR gate and say in words what OR means.
39. Give the three representations of an XOR gate and say in words what XOR means.
40. Give the three representations of a NAND gate and say in words what NAND

means.
41. Give the three representations of a NOR gate and say in words what NOR means.
42. Compare and contrast the AND gate and the NAND gate.
43. Give the Boolean expression for a three-input AND gate, and then show its

behavior with a truth table.

44. Give the Boolean expression for a three-input OR gate, and then show its behavior
with a truth table.

45. What is used in a gate to establish how the input values map to the output value?
46. How does a transistor behave?
47. Of what is a transistor made?
48. What happens when an electric signal is grounded?
49. What are the three terminals in a transistor, and how do they operate?
50. How many transistors does it take for each of these gates?

145

a. NOT
b. AND
c. NOR
d. OR
e. XOR

51. Draw a transistor diagram for an AND gate. Explain the processing.
52. Draw a transistor diagram for an OR gate. Explain the processing.
53. How can gates be combined into circuits?
54. What are the two general categories of circuits, and how do they differ?
55. Draw a circuit diagram corresponding to the following Boolean expression: (A +

B)(B + C)
56. Draw a circuit diagram corresponding to the following Boolean expression: (AB +

C)D

57. Draw a circuit diagram corresponding to the following Boolean expression: A’B +
(B + C)’

58. Draw a circuit diagram corresponding to the following Boolean expression: (AB)’
+ (CD)’

59. Show the behavior of the following circuit with a truth table:

60. Show the behavior of the following circuit with a truth table:

61. Show the behavior of the following circuit with a truth table:

62. Show the behavior of the following circuit with a truth table:

146

63. What is circuit equivalence?
64. Name six properties of Boolean algebra and explain what each means.
65. Differentiate between a half adder and a full adder.
66. What is the Boolean expression for a full adder?
67. What is a multiplexer?
68. a. Circuits used for memory are what type of circuits?

b. How many digits does an S-R latch store?
c. The design for an S-R latch shown in Figure 4.12 guarantees what about the

outputs X and Y?
69. What is an integrated circuit or chip?
70. Define the abbreviations SSI, MSI, LSI, and VLSI.
71. In the chip shown in Figure 4.13, what are the pins used for?
72. Draw a circuit using two full adders that adds two two-bit binary values. Show its

corresponding truth table.
73. How can the XOR operation be expressed using other operators?

THOUGHT QUESTIONS

 1. Throughout this chapter we have used Boolean expressions, truth tables, and logic
diagrams to describe the same behavior. Is the relationship among these notational
methods clear to you? Which do you find the most intuitive? Which do you find
the least intuitive?

 2. Many situations can be described by the ideas in this chapter—for example, the
operation of a single light switch or a light that has two switches. Can you think of
other everyday occurrences that can be described by the notational methods
presented in this chapter?

 3. How do the two sets of codes of ethics differ? How are they similar?
 4. Have you ever sent email to someone, only to regret it immediately? Do you find

that you would say something in email that you would never say in person?
Consider the following premise: “Email has lowered the civility of personal
discourse.” Do you agree or disagree?

 5. If a person sends email from a school computer or a business computer, should
that message be considered private? Does the institution or person that owns the
computer from which email is sent have a right to inspect the message?

147

THE HARDWARE LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits
5 Computing Components

The Programming Layer
6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages

The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer
15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion
18 Limitations of Computing

148

5 COMPUTING COMPONENTS

Chapter 2 described the binary number system in which all information is represented on a
computer. Chapter 4 described how we control electricity at a fundamental level to manage
binary values. Now we can describe the primary components of a computer that capitalize
on these technologies. These primary components are like Lego pieces; they can be
combined to build a variety of different computers, just as Legos can form a variety of
buildings.

Although these components, such as main memory and the central processing unit
(CPU), are often thought of as the most fundamental parts of a computer, we know that
they are abstractions of even more fundamental concepts.

GOALS
After studying this chapter, you should be able to:

■ read an ad for a computer and understand the jargon.
■ list the components and their function in a von Neumann machine.
■ describe the fetch–decode–execute cycle of the von Neumann machine.
■ describe how computer memory is organized and accessed.
■ name and describe the various auxiliary storage devices.
■ define three alternative parallel computer configurations.
■ explain the concept of embedded systems and give examples from your own home.

5.1 Individual Computer Components
Computing, more than most fields, has its own special jargon and acronyms. We begin this
chapter by translating an ad for a desktop computer. We then examine the components of a
computer as a logical whole before looking at each component in some detail.

Consider the following ad for a laptop computer.

Insatavialion 640 Laptop
Exceptional Performance and Portability

• Intel® Core™ 2 Duo (2.66GHz/1066MHz FSB/6MB cache)
• 15.6 High Definition (1080p) LED Backlit LCD Display (1366 x 768)
• 512MB ATI Mobility Radeon Graphics

149

• Built-in 2.0MP Web Camera
• 4GB Shared Dual Channel DDR2 at 800MHz
• 500GB SATA Hard Drive at 5400RPM
• 8X Slot Load DL DVD+/- RW Drive
• 802.11 a/g/n and Bluetooth 3.0
• 85 WHr Lithium Ion Battery
• (2) USB 2.0, HDMI, 15-pin VGA, Ethernet 10/100/1000, IEEE 1394 Firewire, Express Card, Audio line-

in, line-out, mic-in
• 14.8 W X 1.2 H X 10.1 D, 5.6 lbs
• Microsoft® Windows 8® Professional
• Microsoft® Office Home and Student 2007
• 36-Month subscription to McAfee Security Center Anti-virus

There are two important and interesting things about this ad: The average person
hasn’t the foggiest idea what it all means, and by the time you are reading it, the machine
that it describes will be obsolete. In this chapter, we try to interpret the acronyms; we can’t
do anything about the speed at which computer hardware and software change.

Before we go on to describe computer components in the abstract, let’s go through this
specification and decipher the acronyms. After this exercise, we go through all of the
material again in more depth, so don’t be concerned if the terms seem confusing. You’ll see
all of them defined again later.

The first line describes the central processor inside the laptop. Core™ 2 is a type of
processor, and Duo refers to the presence of two of these processors (called cores) on a
single chip. The 2.66GHz tells how fast the processors are. The G in GHz is the
abbreviation for giga, a metric prefix indicating one billion. Hz stands for hertz, a unit of
frequency that measures cycles per second, named after Heinrich R. Hertz. In a computer,
a centrally generated series of electrical pulses, called the clock, is used to ensure that all of
its actions are coordinated. You can think of the clock like an orchestra conductor’s waving
baton, which keeps all of the musicians playing together at a particular tempo. The clock in
this processor pulses 2.66 billion times per second.

Following the clock speed number, we read 1066MHz FSB. Knowing that M in the
metric system stands for million, we can guess that something called FSB is pulsing 1066
million (or just over a billion) times per second. What is the FSB? A processor needs to
access memory and input/output devices and does so through a set of wires called a bus. A
computer has many different buses, but the one that makes the primary connection
between the processor and the outside world is called the front-side bus (FSB). Thus, these
processors can communicate with the outside world 1066 million times per second. But if
each of the processors is performing 2.66 billion operations per second, how can the FSB
keep up at only one billion accesses per second?

The answer is related to the “6MB cache.” MB stands for megabytes. A byte is a unit of
memory, and a megabyte is 220 (a little more than a million) bytes. So 6MB refers to six
megabytes of cache memory. Cache is a small, fast memory that is usually built into the
processor chip. Thus, the two processors have direct access to 6MB of memory without
using the FSB. Many of the processors’ attempts to access memory will find what they need
within the cache. They only activate the FSB when they need something that is not in
cache. Thus, the FSB can be slower than the processors and still not get in their way.

In general, a faster clock, faster FSB, and more cache would seem to make for a more
powerful computer. But as in all areas of engineering, there are tradeoffs. If the processor

150

runs faster it consumes more power, which can cause the circuitry to overheat and shut
down. A faster FSB requires faster devices in the outside world, which means their circuitry
is more expensive. As cache gets bigger, access to its data becomes slower, which slows
down the processors.

The next part of the ad describes the screen. The number 15.6″ refers to the diagonal
measurement of the display area. High Definition (1080p) means it is compatible with the
high-definition television standard, with 1080 horizontal lines of display elements. As we’ll
see, this isn’t completely true. The screen is described as an LED backlit LCD. LED stands
for light emitting diode, just like those found in some flashlights. A strip of these lights
shine up from the bottom to illuminate the display. LEDs are replacing the use of a
miniature fluorescent light bulb. The advantages are that LEDs last longer without growing
dim and do not contain the toxic metal mercury. Lastly, the numbers 1366 × 768 refer to
the screen’s resolution in picture elements (pixels). This screen is 1366 pixels wide and 768
pixels high. Note that the number of vertical pixels is less than the 1080 claimed earlier.
The computer compresses the 1080 lines from a high-definition source, such as a movie, to
fit the 768 lines in its screen. It takes an informed consumer to recognize marketing
exaggerations such as this.

Next the ad lists the brand and model of graphics processor unit (GPU). We also see
that it has 512MB of memory. The GPU is a separate computer that can be even more
powerful than the main processors. Games and other graphics software send commands to
the GPU that cause it to manipulate the image on the screen very quickly. It thus relieves
the main processors of this task. The GPU keeps the data for the screen image in its own
memory. The more it has, the better it is able to work with complex images, support
external displays, and so on.

The fourth line in the ad describes a built-in digital camera that faces the user from just
above the screen. This camera can be used for video conferencing over the Internet or
recording still images and videos. 2.0MP indicates that the camera has a resolution of 2
million pixels, which is sufficient for these tasks.

Next the ad lists the computer’s random access memory (RAM), also called main
memory. Random access means that each byte of memory can be accessed directly, rather
than having to begin at the beginning and access each byte in turn until you get to the one
you want. 4GB means that there are 4 × 230 bytes of storage (230 is just over one billion).
Shared means that both processors have access to this memory. Dual-channel DDR2 is the
type of memory. It provides two access paths (called channels), and DDR2 stands for
second generation, double-data rate. Through clever use of circuitry, memory designers
doubled the rate at which a memory could operate, compared with earlier designs. Their
achievement is acknowledged in this acronym.

This laptop contains a hard disk drive, which is the common name for the computer’s
secondary (also called auxiliary) storage device. It is listed as having 500GB (500 × 230

bytes) of storage. The disk uses an interface called SATA, which stands for Serial ATA.
Serial means that its data is transmitted to and from the computer as a stream of individual
bits, rather than the older approach of sending 16 bits at once over 16 wires (known as
Parallel ATA). The ATA acronym has a long history, referring to a means of attaching a
hard drive to the IBM PC/AT—a computer that was introduced in 1984. Serial ATA is
both faster and less costly to make, and it can transfer up to 300 MB per second, which is
more than most hard disks can supply. The ad also mentions 5400 RPM (revolutions per

151

minute), which is how fast the disk spins. Disks in laptops spin relatively slowly to conserve
battery power. Disks are also available that spin at 7200 RPM and 15,000 RPM, enabling
them to transfer data at a higher rate. Hard drives are gradually being replaced by all-
electronic secondary storage, called solid-state disks (SSDs). The technology of SSD is
similar to RAM, except that data isn’t lost when the power is turned off. Because it has no
moving parts, it is faster and consumes less power than a hard drive. At this early stage in
the transition, SSD is more expensive and has less storage capacity, but those factors can be
expected to change as the technology advances.

A DVD drive comes with the machine. The ad describes it as being 8×, which means it
can read data from a DVD as much as eight times faster than a DVD movie player. Slot
load means that you insert a DVD into a narrow slit in the edge of the laptop, rather than
pressing a button and having a drawer slide out to accept the disk. DL stands for dual layer,
which means that the drive can work with second-generation DVDs that store nearly twice
as much data by using two layers of recording surface. Following the DVD acronym are the
symbols +/-RW. The R indicates that the drive can record on special DVDs that are
writeable. There are actually two standards for how these disks are made, called -R and +R,
and the +/- indicates that the drive is compatible with both standards. A DVD+/-R can
have data written just once. After that, it can be read any number of times, but no more
writing is allowed. Another type of DVD, called RW (for rewritable) can be written more
than once. This laptop also supports RW disks. While DVD drives are still the most
popular, laptops are starting to shift to the newer Blu-Ray format, which has higher
capacity and is being used to distribute high-definition movies.

The next line of the ad describes its wireless networking support. 802.11 is the number
of a standard that has been defined by the Institute of Electrical and Electronics Engineers
(IEEE), an engineering professional society. There are three accepted versions of the
standard: a, g, and n. The original was 802.11a. The 802.11g version supports
communication over longer distances, but at a slightly slower speed. With 802.11n, both
greater speed and distance are achieved. This laptop is compatible with all three standards.
Bluetooth is another form of wireless network, but it operates at much shorter ranges with a
relatively weak signal. Typical uses for Bluetooth are to connect with a wireless keyboard,
mouse, earphones, or for transferring data to and from a cell phone. There have been
multiple versions of the Bluetooth standard, each adding various features.

Of course, laptops run on batteries. Even so, they still consume quite a bit of power.
When a laptop is idle, with the screen turned off, it will use just a few watts. But in playing
a game that makes heavy use of both processors and the GPU, it can draw 50 watts. That’s
far more energy than normal rechargeable batteries can supply, so special technology, based
on the metal lithium, provides high electrical storage capacity. This laptop’s battery can
store 85 watt-hours of energy, which means that it could supply 85 watts for one hour, or
42.5 watts for two hours, etc. More capacity means a longer time without recharging, but it
also adds size and weight to the laptop.

?
Putting sizes in perspective

Admiral Grace Murray Hopper demonstrated the relative sizes of computer jargon by displaying a coil of wire
nearly 1000 feet long, a short piece of wire about as long as your forearm, and a bag containing grains of pepper.

152

She would say that the wire coil was the distance traveled in the space of a microsecond. The short piece was the
distance traveled along the wire in the space of a nanosecond. The grains of pepper represented the distance traveled
by an electron in a picosecond. She would admonish the members of her audience to remember their nanoseconds.

Next the ad has a long list of external connections (often called ports). USB, or
universal serial bus, uses a cable to transfer data. As its name suggests, it can connect to just
about anything, including an external hard drive, a digital camera, a printer, a scanner, a
music player, and so on. This laptop has two second-generation USB ports, which transfer
data faster than USB 1.0. HDMI stands for high-definition multimedia interface, which
can send digital video and audio to, for example, a home theater system. A 15-pin VGA
port is used to connect the laptop to an external analog monitor or projector. An Ethernet
cable connects to a router or cable modem for wired network access. There are three
versions of Ethernet that provide 10, 100, and 1000 million bits per second of data transfer
capacity, and this laptop handles all three. IEEE 1394 is another communication standard,
also called Firewire. This port provides very fast digital data transfer and is commonly used
for connecting high-definition camcorders and high-performance disk drives. The express
card slot allows the user to insert a small circuit board to provide extra functionality, such
as a solid-state disk or wireless communication with a cellular phone network. Lastly, we
see that we can connect analog audio inputs and outputs, such as electronic musical
instruments and headphones, plus an external microphone.

Physical size and weight are important parameters for a laptop that will be carried
regularly. This is a mid-size, mid-weight model. At 5.6 pounds, it weighs over twice as
much as this book. A lightweight laptop has roughly the same weight as this book, and
heavier models, sometimes called desktop replacements, can weigh in at around 8 pounds.
Generally, to reduce weight, the size shrinks and we give up features and battery life.
However, it is also possible to reduce weight by replacing plastic in the case with
aluminum, but for greater cost.

Lastly, the ad lists software that is preinstalled on the laptop. These include the
operating system (Windows 8), the Microsoft® Office suite of programs that includes a
word processor, spreadsheet, and so on for performing common tasks, and a 3-year
subscription to updates for a malware detection package. Malware is software that intends
to do harm, and it comes in many forms, such as viruses that can take over your computer
when you open a downloaded file. Malware detection software constantly watches for such
programs in files and web content to prevent them from running. But hackers are
constantly creating new forms of malware, so it is necessary to regularly update the
detection software to keep up with the latest threats.

Within this ad, multiple size measures have been used. Let’s summarize the prefixes
that are used frequently in computing.

153

Did you notice that we used powers of 10 when referring to time and powers of 2 when
referring to storage? Time is expressed in multiples of seconds in decimal notation. Storage
capacity is expressed in multiples of bytes in binary notation. If you keep this distinction in
mind, it is clear that K is 1000 when referring to speed and 1024 when referring to storage.

We now move from the specific to the general. In the next several sections we look at
each of the pieces of hardware that make up a computer from the logical level, rather than
from a specific computer configuration.

?
Far-reaching discovery

Within six weeks of beginning to program, Maurice Wilkes made one of the most far-reaching discoveries of the
computer age: To get programs right is more difficult than it looks.1

5.2 The Stored-Program Concept
A major defining point in the history of computing was the realization in 1944–1945 that
data and instructions to manipulate the data were logically the same and could be stored in
the same place. The computer design built upon this principle, which became known as the
von Neumann architecture, is still the basis for computers today. Although the name honors
John von Neumann, a brilliant mathematician who worked on the construction of the
atomic bomb, the idea probably originated with J. Presper Eckert and John Mauchly, two
other early pioneers who worked on the ENIAC at the Moore School at the University of
Pennsylvania during the same time period.

John Vincent Atanasoff

154

Courtesy of ISU Photo Service

John Vincent Atanasoff was born in Hamilton, New York, on October 4, 1903, one of
nine children. When he was about ten, his father bought a new slide rule. After reading
the instructions, John Vincent became more interested in the mathematics involved
than in the slide rule itself. His mother picked up on his interest and helped him study
his father’s old college algebra book. He continued his interest in mathematics and
science and graduated from high school in two years. His family moved to Old Chicara,
Florida, where John Vincent graduated from the University of Florida in 1925 with a
degree in electrical engineering because the university didn’t offer a degree in theoretical
physics. A year later, he received a master’s degree in mathematics from Iowa State
College. In 1930, after receiving his PhD in theoretical physics, he returned to Iowa
State College as an assistant professor in mathematics and physics.

Dr. Atanasoff became interested in finding a machine that could do the complex
mathematical work he and his graduate students were doing. He examined
computational devices in existence at that time, including the Monroe calculator and
the IBM tabulator. Upon concluding that these machines were too slow and inaccurate,
he became obsessed with finding a solution. He said that at night in a tavern after a
drink of bourbon he began generating ideas of how to build this computing device. It
would be electronically operated and would compute by direct logical action rather than
enumeration, as in analog devices. It would use binary numbers rather than decimal
numbers, condensers for memory, and a regenerative process to avoid lapses due to
leakage of power.

In 1939, with a $650 grant from the school and a new graduate assistant named
Clifford Berry, Dr. Atanasoff began work on the first prototype of the Atanasoff-Berry
Computer (ABC) in the basement of the physics building. The first working prototype
was demonstrated that year.

In 1941, John Mauchly, a physicist at Ursinus College whom Dr. Atanasoff had met
at a conference, came to Iowa State to visit the Atanasoffs and see a demonstration of
the ABC machine. After extensive discussions, Mauchly left with papers describing its
design. Mauchly and J. Presper Eckert continued their work on a computation device at
the Moore School of Electrical Engineering at the University of Pennsylvania. Their
machine, the ENIAC, completed in 1945, became known as the first computer.

Dr. Atanasoff went to Washington in 1942 to become director of the Underwater
Acoustics Program at the Naval Ordnance Laboratory, leaving the patent application for

155

the ABC computer in the hands of the Iowa State attorneys. The patent application was
never filed and the ABC was eventually dismantled without either Atanasoff or Berry
being notified. After the war, Dr. Atanasoff was chief scientist for the Army Field Forces
and director of the Navy Fuse program at the Naval Ordnance Laboratory.

In 1952, Dr. Atanasoff established the Ordnance Engineering Corporation, a
research and engineering firm, which was later sold to Aerojet General Corporation. He
continued to work for Aerojet until he retired in 1961.

Meanwhile, in 1947 Mauchly and Eckert applied for the patent on their ENIAC
computer. Sperry Rand brought suit. The subsequent trial lasted 135 working days and
filled more than 20,000 pages of transcript from the testimony of 77 witnesses,
including Dr. Atanasoff. Judge Larson found that Mauchly and Eckert “did not
themselves first invent the automatic electronic digital computer, but instead derived
that subject matter from one Dr. John Vincent Atanasoff.”

In 1990, President George Bush acknowledged Dr. Atanasoff’s pioneering work by
awarding him the National Medal of Technology. Dr. Atanasoff died on June 15, 1995.

von Neumann Architecture
Another major characteristic of the von Neumann architecture is that the units that process
information are separate from the units that store information. This characteristic leads to
the following five components of the von Neumann architecture, shown in FIGURE 5.1:

■ The memory unit that holds both data and instructions
■ The arithmetic/logic unit that is capable of performing arithmetic and logic

operations on data
■ The input unit that moves data from the outside world into the computer
■ The output unit that moves results from inside the computer to the outside world
■ The control unit that acts as the stage manager to ensure that all the other

components act in concert

Memory
Recall from the discussion of number systems that each storage unit, called a bit, is capable
of holding a 1 or a 0; these bits are grouped together into bytes (8 bits), and these bytes are
in turn grouped together into words. Memory is a collection of cells, each with a unique
physical address. We use the generic word cell here rather than byte or word, because the
number of bits in each addressable location, called the memory’s addressability, varies from
one machine to another. Today, most computers are byte addressable.

Addressability The number of bits stored in each addressable location in memory

156

FIGURE 5.1 The von Neumann architecture.

The ad in the previous section describes a memory of 4 × 230 bytes. This means that
each of the 4GB is uniquely addressable. Therefore, the addressability of the machine is 8
bits. The cells in memory are numbered consecutively beginning with 0. For example, if
the addressability is 8, and there are 256 cells of memory, the cells would be addressed as
follows:

Address Contents

00000000 11100011

00000001 10101001

.

.

.

.

.

.
11111100 00000000

11111101 11111111

11111110 10101010

11111111 00110011

What are the contents of address 11111110? The bit pattern stored at that location is
10101010. What does it mean? We can’t answer that question in the abstract. Does
location 11111110 contain an instruction? An integer with a sign? A two’s complement
value? Part of an image? Without knowing what the contents represent, we cannot
determine what it means: It is just a bit pattern. We must apply an interpretation on any
bit pattern to determine the information it represents.

When referring to the bits in a byte or word, the bits are numbered from right to left
beginning with zero. The bits in address 11111110 are numbered as follows:

Arithmetic/Logic Unit
The arithmetic/logic unit (ALU) is capable of performing basic arithmetic operations such

157

as adding, subtracting, multiplying, and dividing two numbers. This unit is also capable of
performing logical operations such as AND, OR, and NOT. The ALU operates on words,
a natural unit of data associated with a particular computer design. Historically the word
length of a computer has been the number of bits processed at once by the ALU. However,
the current Intel line of processors has blurred this definition by defining the word length
to be 16 bits. The processor can work on words (16 bits), double words (32 bits), and
quadwords (64 bits). In the rest of this discussion we continue to use word in its historical
sense.

Arithmetic/logic unit (ALU) The computer component that performs arithmetic operations (addition,
subtraction, multiplication, and division) and logical operations (comparison of two values)

Who Was Herman Hollerith?
In 1889 the United States Census Bureau realized that unless it found a better way to
count the 1890 census, the results might not be tabulated before the next required
census in 1900. Herman Hollerith had designed a method of counting based on cards
with holes punched in them. This method was used for tabulating the census and the
cards became known as Hollerith cards. Hollerith’s electrical tabulating system led to the
founding of the company known today as IBM.

© iStockphoto/Thinkstock

Most modern ALUs have a small number of special storage units called registers. These
registers contain one word and are used to store information that is needed again
immediately. For example, in the calculation of

Register A small storage area in the CPU used to store intermediate values or special data

One * (Two + Three)

Two is first added to Three and the result is then multiplied by One. Rather than storing
the result of adding Two and Three in memory and then retrieving it to multiply it by
One, the result is left in a register and the contents of the register are multiplied by One.
Access to registers is much faster than access to memory locations.

158

Input/Output Units
All of the computing power in the world wouldn’t be useful if we couldn’t input values into
the calculations from outside or report to the outside the results of those calculations. Input
and output units are the channels through which the computer communicates with the
outside world.

An input unit is a device through which data and programs from the outside world are
entered into the computer. The first input units interpreted holes punched on paper tape or
cards. Modern-day input devices include the keyboard, the mouse, and the scanning
devices used at supermarkets.

Input unit A device that accepts data to be stored in memory

An output unit is a device through which results stored in the computer memory are
made available to the outside world. The most common output devices are printers and
displays.

Output unit A device that prints or otherwise displays data stored in memory or makes a permanent copy of
information stored in memory or another device

Control Unit
The control unit is the organizing force in the computer, for it is in charge of the fetch–
execute cycle, discussed in the next section. There are two special registers in the control
unit. The instruction register (IR) contains the instruction that is being executed, and the
program counter (PC) contains the address of the next instruction to be executed. Because
the ALU and the control unit work so closely together, they are often thought of as one
unit called the central processing unit, or CPU.

Control unit The computer component that controls the actions of the other components so as to execute
instructions in sequence

Instruction register (IR) The register that contains the instruction currently being executed

Program counter (PC) The register that contains the address of the next instruction to be executed

CPU The central processing unit, a combination of the arithmetic/logic unit and the control unit; the “brain” of a
computer that interprets and executes instructions

FIGURE 5.2 shows a simplified view of the flow of information through the parts of a
von Neumann machine. The parts are connected to one another by a collection of wires
called a bus, through which data travels in the computer. Each bus carries three kinds of
information: address, data, and control. An address is used to select the memory location or
device to which data will go or from which it will be taken. Data then flows over the bus
between the CPU, memory, and I/O devices. The control information is used to manage
the flow of addresses and data. For example, a control signal will typically be used to

159

determine the direction in which the data is flowing, either to or from the CPU. The bus
width is the number of bits that it can transfer simultaneously. The wider the bus, the
more address or data bits it can move at once.

Bus width The number of bits that can be transferred in parallel over the bus

Because memory accesses are very time consuming relative to the speed of the
processor, many architectures provide cache memory. Cache memory is a small amount of
fast-access memory into which copies of frequently used data are stored. Before a main
memory access is made, the CPU checks whether the data is stored in the cache memory.
Pipelining is another technique used to speed up the fetch–execute cycle. This technique
splits an instruction into smaller steps that can be overlapped.

Cache memory A type of small, high-speed memory used to hold frequently used data

FIGURE 5.2 Data flow through a von Neumann machine

Pipelining A technique that breaks an instruction into smaller steps that can be overlapped

In a personal computer, the components in a von Neumann machine reside physically
in a printed circuit board called the motherboard. The motherboard also has connections
for attaching other devices to the bus, such as a mouse, a keyboard, or additional storage
devices. (See the section on secondary storage devices later in this chapter.)

Motherboard The main circuit board of a personal computer

So just what does it mean to say that a machine is an n-bit processor? The variable n
usually refers to the number of bits in the CPU general registers: Two n-bit numbers can be
added with a single instruction. It also can refer to the width of the address bus, which is
the size of the addressable memory—but not always. In addition, n can refer to the width
of the data bus—but not always.

?

160

Christmas 2013 is swiped

About 70 million debit and/or credit card accounts were jeopardized because of a data breach at Target (the second-
largest discount retailer in the United States) between November 27 and December 15, 2013. Online transactions
were not affected, but some in-store transactions for which credit cards were swiped were compromised. Card
numbers were stolen, along with their expiration date, name, and credit verification value. Encrypted PIN data for
debit cards was also involved in the data theft.2

The Fetch–Execute Cycle
Before looking at how a computer does what it does, let’s look at what it can do. The
definition of a computer outlines its capabilities: A computer is a device that can store,
retrieve, and process data. Therefore, all of the instructions that we give to the computer
relate to storing, retrieving, and processing data. In Chapters 6 and 9, we look at various
languages that we can use to give instructions to the computer. For our examples here, we
use simple English-like instructions.

Recall the underlying principle of the von Neumann machine: Data and instructions
are stored in memory and treated alike. This means that instructions and data are both
addressable. Instructions are stored in contiguous memory locations; data to be
manipulated are stored together in a different part of memory. To start the fetch–execute
cycle, the address of the first instruction is loaded into the program counter.

The processing cycle includes four steps:

■ Fetch the next instruction.
■ Decode the instruction.
■ Get data if needed.
■ Execute the instruction.

Let’s look at each of these steps in more detail. The process starts with the address in
memory of the first instruction being stored in the program counter.

Fetch the Next Instruction
The program counter (PC) contains the address of the next instruction to be executed, so
the control unit goes to the address in memory specified in the PC, makes a copy of the
contents, and places the copy in the instruction register. At this point the IR contains the
instruction to be executed. Before going on to the next step in the cycle, the PC must be
updated to hold the address of the next instruction to be executed when the current
instruction has been completed. Because the instructions are stored contiguously in
memory, adding the number of bytes in the current instruction to the program counter
should put the address of the next instruction into the PC. Thus the control unit
increments the PC. It is possible that the PC may be changed later by the instruction being
executed.

In the case of an instruction that must get additional data from memory, the ALU
sends an address to the memory bus, and the memory responds by returning the value at

161

that location. In some computers, data retrieved from memory may immediately participate
in an arithmetic or logical operation. Other computers simply save the data returned by the
memory into a register for processing by a subsequent instruction. At the end of execution,
any result from the instruction may be saved either in registers or in memory.

Decode the Instruction
To execute the instruction in the instruction register, the control unit has to determine
what instruction it is. It might be an instruction to access data from an input device, to
send data to an output device, or to perform some operation on a data value. At this phase,
the instruction is decoded into control signals. That is, the logic of the circuitry in the CPU
determines which operation is to be executed. This step shows why a computer can execute
only instructions that are expressed in its own machine language. The instructions
themselves are literally built into the circuits.

Get Data If Needed
The instruction to be executed may potentially require additional memory accesses to
complete its task. For example, if the instruction says to add the contents of a memory
location to a register, the control unit must get the contents of the memory location.

Execute the Instruction
Once an instruction has been decoded and any operands (data) fetched, the control unit is
ready to execute the instruction. Execution involves sending signals to the arithmetic/logic
unit to carry out the processing. In the case of adding a number to a register, the operand is
sent to the ALU and added to the contents of the register.

When the execution is complete, the cycle begins again. If the last instruction was to
add a value to the contents of a register, the next instruction probably says to store the
results into a place in memory. However, the next instruction might be a control
instruction—that is, an instruction that asks a question about the result of the last
instruction and perhaps changes the contents of the program counter.

FIGURE 5.3 summarizes the fetch–execute cycle.
Hardware has changed dramatically in the last half-century, yet the von Neumann

machine remains the basis of most computers today. As Alan Perlis, a well-known
computer scientist, said in 1981, “Sometimes I think the only universal in the computing
field is the fetch–execute cycle.”3 This statement is still true today, more than three decades
later.

RAM and ROM
As mentioned, RAM stands for random-access memory. RAM is memory in which each
cell (usually a byte) can be directly accessed. Inherent in the idea of being able to access

162

each location is the ability to change the contents of each location. That is, storing
something else into that place can change the bit pattern in each cell.

FIGURE 5.3 The fetch–execute cycle

In addition to RAM, most computers contain a second kind of memory, called ROM.
ROM stands for read-only memory. The contents in locations in ROM cannot be changed.
Their contents are permanent and cannot be altered by a stored operation. Placing the bit
pattern in ROM is called burning. The bit pattern is burned either at the time the ROM is
manufactured or at the time the computer parts are assembled.

RAM and ROM are differentiated by a very basic property: RAM is volatile; ROM is
not. This means that RAM does not retain its bit configuration when the power is turned
off, but ROM does. The bit patterns within ROM are permanent. Because ROM is stable
and cannot be changed, it is used to store the instructions that the computer needs to start
itself. Frequently used software is also stored in ROM so that the system does not have to
read the software each time the machine is turned on. Main memory usually contains some
ROM along with the general-purpose RAM.

Secondary Storage Devices
As mentioned earlier, an input device is the means by which data and programs are entered
into the computer and stored into memory. An output device is the means by which results
are sent back to the user. Because most of main memory is volatile and limited, it is
essential that there be other types of storage devices where programs and data can be stored
when they are no longer being processed or when the machine is not turned on. These
other types of storage devices (other than main memory) are called secondary or auxiliary
storage devices. Because data must be read from them and written to them, each secondary
storage device is also an input and an output device.

Secondary storage devices can be installed within the computer box at the factory or
added later as needed. Because these devices can store large quantities of data, they are also
known as mass storage devices. For example, the hard disk drive that comes with the laptop

163

specified in the ad can store 500 × 230 bytes as opposed to 4 × 230 bytes in main memory.
The next sections describe some secondary storage devices.

Magnetic Tape
Card readers and card punches were among the first input/output devices. Paper tape
readers and punches were the next input/output devices. Although paper tapes, like cards,
are permanent, they cannot hold much data. The first truly mass auxiliary storage device
was the magnetic tape drive. A magnetic tape drive is like a tape recorder and is most often
used to back up (make a copy of) the data on a disk in case the disk is later damaged. Tapes
come in several varieties, from small streaming-tape cartridges to large reel-to-reel models.

Tape drives have one serious drawback: To access data in the middle of the tape, all the
data before the piece you want must be accessed and discarded. Although modern
streaming-tape systems have the capability of skipping over segments of tape, the tape must
physically move through the read/write heads. Any physical movement of this type is time
consuming. See FIGURE 5.4.

Magnetic Disks
A disk drive is a cross between a compact disk player and a tape recorder. A read/write head
(similar to the record/playback head in a tape recorder) travels across a spinning magnetic
disk, retrieving or recording data. As on a compact disk, the heads travel directly to the
information desired; as on a tape, the information is stored magnetically.

Disks come in several varieties, but all of them consist of a thin disk made out of
magnetic material. The surface of each disk is logically organized into tracks and sectors.
Tracks are concentric circles around the surface of the disk. Each track is divided into
sectors. Each sector holds a block of information as a continuous sequence of bits. See
FIGURE 5.5(a). The figure depicts the original layout of data on a disk, in which each
track has the same number of sectors, and each sector holds the same number of bits. The
blocks of data nearer the center were more densely packed. On modern disks, there are
fewer sectors near the middle and more toward the outside. The actual number of tracks
per surface and the number of sectors per track vary, but 512 bytes or 1024 bytes is
common. (The power of 2 strikes again.) The locations of the tracks and sectors are marked
magnetically when a disk is formatted; they are not physically part of the disk.

Track A concentric circle on the surface of a disk

Sector A section of a track

Block The information stored in a sector

164

FIGURE 5.4 A magnetic tape

FIGURE 5.5 The organization of a magnetic disk

The read/write head in a disk drive is positioned on an arm that moves from one track
to another. See FIGURE 5.5(b). An input/output instruction specifies the track and sector.
When the read/write head is over the proper track, it waits until the appropriate sector is
beneath the head; it then accesses the block of information in that sector. This process gives
rise to four measures of a disk drive’s efficiency: seek time, latency, access time, and
transfer rate. Seek time is the time it takes for the read/write head to get into position over
the specified track. Latency is the time it takes for the specified sector to spin to the

165

read/write head. The average latency is one-half the time for a full rotation of the disk. For
this reason, latency is also called rotation delay. Access time is the sum of seek time and
latency. Transfer rate is the rate at which data is transferred from the disk to memory.

Seek time The time it takes for the read/write head to get positioned over the specified track

Latency The time it takes for the specified sector to be in position under the read/write head

Access time The time it takes for a block to start being read; the sum of seek time and latency

Transfer rate The rate at which data moves from the disk to memory

Now let’s look at some of the varieties of disks. One classification of disk is hard versus
floppy. These terms refer to the flexibility of the disk itself. The original floppy disk,
introduced in the 1970s, was 8″ in diameter and even its case was floppy. By the time of
the rise in personal computers in the late 1970s, the floppy disk had been reduced in size to
5 1/4″ in diameter. Today’s generic “floppy” disks are 3 1/2″ in diameter, encased in a
hard plastic cover, and capable of storing 1.44MB of data. Newer machines do not
automatically have built-in drives for these disks as they did several years ago, but drives for
them can be added.

Hard disks actually consist of several disks—this sounds strange, so let’s explain. Let’s
call the individual disks platters. Hard disks consist of several platters attached to a spindle
that rotates. Each platter has its own read/write head. All of the tracks that line up under
one another are called a cylinder (see Figure 5.5(b)). An address in a hard drive consists of
the cylinder number, the surface number, and the sector. Hard drives rotate at much higher
speeds than floppy drives do, and the read/write heads don’t actually touch the surface of
the platters but rather float above them. A typical hard disk drive rotates at 7200
revolutions per minute. Laptop hard disks usually spin at 5400 RPM, conserving battery
power. The disks in high-performance servers may run at 15,000 RPM, providing lower
latency and a higher transfer rate.

Cylinder The set of concentric tracks on all surfaces

CDs and DVDs
The world of compact discs and their drivers looks like acronym soup. The ad we examined
used the acronym DVD +/–/RW. In addition, we have to decipher CD-DA, CD-RW, and
DVD.

Let’s look for a moment at the acronym CD. CD, of course, stands for compact disk—
you probably have a collection of them with recorded music. A CD drive uses a laser to
read information that is stored optically on a plastic disk. Rather than having concentric
tracks, a CD has one track that spirals from the inside out. As on magnetic disks, this track
is broken into sectors. A CD has the data evenly packed over the whole disk, so more
information is stored in the track on the outer edges and read in a single revolution. To
make the transfer rate consistent throughout the disk, the rotation speed varies depending
on the position of the laser beam.

166

The other letters attached to CD refer to various properties of the disk, such as
formatting and whether the information on the disk can be changed. CD-DA is the format
used in audio recordings; CD-DA stands for compact disk–digital audio. Certain fields in
this format are used for timing information. A sector in a CD-DA contains 1/75 of a
second of music.

?
E-vote glitch

An error with an electronic voting system gave President Bush 3,893 extra votes in suburban Columbus, Ohio,
elections officials said. Franklin County’s unofficial results had Bush receiving 4,258 votes to Democrat John
Kerry’s 260 votes in a precinct in Gahanna. Records show only 638 voters cast ballots in that precinct. Bush
actually received 365 votes in the precinct. (That still doesn’t add up.)

CD-ROM is the same as CD-DA, but the disk is formatted differently. Data is stored
in the sectors reserved for timing information in CD-DA. ROM stands for read-only
memory. As we said earlier, read-only memory means that the data is permanent and
cannot be changed. A sector on a CD-ROM contains 2KB of data. CD-ROM capacity is
in the neighborhood of 600MB.

CD-R stands for recordable, allowing data to be written after it is manufactured. The
contents of a CD-R cannot be changed after data is recorded on it. A CD-RW is rewritable,
meaning that it can have data recorded on it multiple times.

The most common format for distributing movies is now a DVD, which stands for
digital versatile disk (although the acronym generally stands on its own these days). Because
of its large storage capacity, a DVD is well suited to hold multimedia presentations that
combine audio and video.

DVDs come in multiple forms: DVD+R, DVD-R, DVD+RW, and DVD-RW, and
each of these may be preceded by DL. As we noted in describing the ad, the + and - refer to
two competing formats. As with CD, R means recordable and RW means rewritable. DL
stands for dual layer, which nearly doubles the capacity of a DVD. DVD-R has a capacity
of 4.7GB while DL DVD-R can hold 8.5GB. More recently, Blu-Ray disks with 25GB
capacity and DL 50GB capacity have been introduced. Writable versions are also available.
The name Blu-Ray refers to its use of a blue laser instead of the red laser in CD and DVD
drives.

Note that the × used in rating CD and DVD speeds indicates the relative speed of
access compared with a standard CD or DVD player. When evaluating these devices, be
aware that the higher speeds listed represent maximums that are usually attainable only
when retrieving data from certain parts of the disk. They are not averages. Therefore, faster
may not be better in terms of the added cost.

Flash Drives
IBM introduced the flash drive in 1998 as an alternative to floppy disks. FIGURE 5.6
shows a flash drive (or thumb drive), which uses flash memory, a nonvolatile computer
memory that can be erased and rewritten. The drive is integrated with a USB (universal

167

serial bus). Computers today do not come with floppy disks, but they do come with USB
ports. Today, little (thumb-sized) storage devices like this are common, inexpensive, and
have much more capacity than floppy disks.

FIGURE 5.6 Flash drive
© Brian A. Jackson/Shutterstock, Inc.

Flash memory is also being used to build solid-state disks (SSDs) that can directly
replace a hard disk. Because an SSD is all electronic and has no moving parts, it is faster
and consumes less power than a hard disk. Even so, its storage elements can eventually wear
out, meaning that it can suffer failures just as a hard disk can.

Touch Screens
We’ve seen how secondary memory devices provide locations in which to store programs
and data used by the CPU. Other input/output (I/O) devices allow the human user to
interact with an executing program. Many of these are commonplace—we often provide
information through a keyboard and mouse, and we usually view information displayed on
a monitor screen. Other input devices include bar code readers and image scanners; other
output devices include printers and plotters.

Let’s examine one particular type of I/O device in some detail. A touch screen displays
text and graphics like a regular monitor, but it can also detect and respond to the user
touching the screen with a finger or stylus. Usually, an I/O device serves either as an input
device or an output device. A touch screen serves as both.

You’ve probably seen touch screens used in a variety of situations such as information
kiosks, restaurants, and museums. FIGURE 5.7 shows someone using a touch screen.
These devices are most helpful in situations in which complex input is not needed, and
they have the added benefit of being fairly well protected. It’s far better for a waiter at a
restaurant to make a few choices using a touch screen than to have to deal with a keyboard,
which has more keys than necessary (for the task) and may easily get damaged from food
and drink.

168

FIGURE 5.7 A touch screen
© Denys Prykhodov/Shutterstock, Inc.

?
Virtual games and national security

U.S. and British spies have infiltrated the fantasy world of virtual games. A 2008 National Security Agency (NSA)
document declared that virtual games provide a “target-rich communication network” that allows intelligence
suspects a way to communicate and “hide in plain sight.”4

A touch screen not only detects the touch, but also knows where on the screen it is
being touched. Choices are often presented using graphical buttons that the user selects by
touching the screen where the button is positioned. In this sense, using a touch screen is
not much different from using a mouse. The mouse position is tracked as the mouse is
moved; when the mouse button is clicked, the position of the mouse pointer determines
which graphical button is pushed. In a touch screen, the location at which the screen is
touched determines which button is pushed.

So how does a touch screen detect that it is being touched? Furthermore, how does it
know where on the screen it is being touched? Several technologies are used today to
implement touch screens. Let’s briefly explore them.

A resistive touch screen is made up of two layers—one with vertical lines and one with
horizontal lines of electrically conductive material. The two layers are separated by a very
small amount of space. When the top layer is pressed, it comes in contact with the second
layer, which allows electrical current to flow. The specific vertical and horizontal lines that
make contact dictate the location on the screen that was touched.

A capacitive touch screen has a laminate applied over a glass screen. The laminate
conducts electricity in all directions, and a very small current is applied equally on the four
corners. When the screen is touched, current flows to the finger or stylus. The current is so
low that the user doesn’t even feel it. The location of the touch on the screen is determined

169

by comparing the strength of the flow of electricity from each corner.
An infrared touch screen projects crisscrossing horizontal and vertical beams of infrared

light just over the surface of the screen. Sensors on opposite sides of the screen detect the
beams. When the user breaks the beams by touching the screen, the location of the break
can be determined.

A surface acoustic wave (SAW) touch screen is similar to an infrared touch screen except
that it projects high-frequency sound waves across the horizontal and vertical axes. When a
finger touches the surface, the corresponding sensors detect the interruption and determine
the location of the touch.

Note that a gloved hand could be used in resistive, infrared, and SAW touch screens,
but cannot be used with capacitive screens, which rely on current flowing to the touch
point.

5.3 Embedded Systems
Embedded systems are computers that are designed to perform a narrow range of functions
as part of a larger system. Typically, an embedded system is housed on a single
microprocessor chip with the programs stored in ROM. Virtually all appliances that have a
digital interface—watches, microwaves, VCRs, cars—utilize embedded systems. In fact,
embedded systems are everywhere: From consumer electronics, to kitchen appliances, to
automobiles, to networking equipment, to industrial control systems, you find embedded
systems lurking in the device. Some embedded systems include an operating system, but
many are so specialized that the entire logic can be implemented as a single program.5

Early embedded systems were stand-alone 8-bit microprocessors with their own
homegrown operating system. Today, they range from 8-bit controllers to 32-bit digital
signal processors (DSPs) to 64-bit RISC (Reduced Instruction Set) chips. More and more
embedded systems are based on networks of distributed microprocessors that communicate
through wired and wireless buses, remotely monitored and controlled by regular network
management communications protocols.

In fact, the term embedded system is nebulous because it encompasses just about
everything except desktop PCs. The term originated because the first such computers were
physically embedded within a product or device and could not be accessed. Now the term
refers to any computer that is preprogrammed to perform a dedicated or narrow range of
functions as part of a larger system. The implication is that there is only minimal end-user
or operator intervention, if any.

Because the average person encounters an embedded system only in his or her kitchen,
entertainment room, or car, we tend to equate these systems with hardware. In reality,
programs must be written and burned into the read-only memory that comes with the
system to make it accomplish its assigned function. Given that programs cannot be
developed and tested on the embedded processor itself, how are they implemented?
Programs are written on a PC and compiled for the target system, where the executable
code is generated for the processor in the embedded system.

In early embedded systems, the size of the code and the speed at which it executed were
very important. Because assembly-language programs provided the best opportunity to
streamline and speed up the code, they were used almost exclusively for embedded systems.

170

Even when the C language became popular and cross-compilers for C to embedded systems
became available, many programmers continued to use assembly language for this purpose.
C programs are approximately 25% larger and slower, but are easier to write than assembly-
language programs. Even today, the size of the ROM may dictate that the code be as small
as possible, leading to an assembly-language program.6

5.4 Parallel Architectures7

If a problem can be solved in n time units on a computer with one processor (von
Neumann machine), can it be solved in n/2 time units on a computer with two processors,
or n/3 on a computer with three processors? This question has led to the rise of parallel
computing architectures.

Parallel Computing
There are four general forms of parallel computing: bit level, instruction level, data level,
and task level.

Bit-level parallelism is based on increasing the word size of a computer. In an 8-bit
processor, an operation on a 16-bit data value would require two operations: one for the
upper 8 bits and one for the lower 8 bits. A 16-bit processor could do the operation in one
instruction. Thus increasing the word size reduces the number of operations on data values
larger than the word size. The current trend is to use 64-bit processors.

Instruction-level parallelism is based on the idea that some instructions in a program
can be carried out independently in parallel. For example, if a program requires operations
on unrelated data, these operations can be done at the same time. A superscalar is a
processor that can recognize this situation and take advantage of it by sending instructions
to different functional units of the processor. Note that a superscalar machine does not
have multiple processors but does have multiple execution resources. For example, it might
contain separate ALUs for working on integers and real numbers, enabling it to
simultaneously compute the sum of two integers and the product of two real numbers.
Such resources are called execution units.

Data-level parallelism is based on the idea that a single set of instructions can be run on
different data sets at the same time. This type of parallelism is called SIMD (single
instructions, multiple data) and relies on a control unit directing multiple ALUs to carry
out the same operation, such as addition, on different sets of operands. This approach,
which is also called synchronous processing, is effective when the same process needs to be
applied to many data sets. For example, increasing the brightness of an image involves
adding a value to every one of several million pixels. These additions can all be done in
parallel. See FIGURE 5.8.

171

FIGURE 5.8 Processors in a synchronous computing environment

Synchronous processing Multiple processors apply the same program in lockstep to multiple data sets

Task-level parallelism is based on the idea that different processors can execute different
tasks on the same or different data sets. If the different processors are operating on the same
data set, then it is analogous to pipelining in a von Neumann machine. When this
organization is applied to data, the first processor does the first task. Then the second
processor starts working on the output from the first processor, while the first processor
applies its computation to the next data set. Eventually, each processor is working on one
phase of the job, each getting material or data from the previous stage of processing, and
each in turn handing over its work to the next stage. See FIGURE 5.9.

In a data-level environment, each processor is doing the same thing to a different data
set. For example, each processor might be computing the grades for a different class. In the
pipelining task-level example, each processor is contributing to the grade for the same class.
Another approach to task-level parallelism is to have different processors doing different
things with different data. This configuration allows processors to work independently
much of the time, but introduces problems of coordination among the processors. This
leads to a configuration where each of the processors have both a local memory and a
shared memory. The processors use the shared memory for communication, so the
configuration is called a shared memory parallel processor. See FIGURE 5.10.

Shared memory parallel processor The situation in which multiple processors share a global memory

FIGURE 5.9 Processors in a pipeline

172

FIGURE 5.10 A shared-memory parallel processor

Classes of Parallel Hardware
The classes of parallel hardware reflect the various types of parallel computing. Multicore
processors have multiple independent cores, usually CPUs. Whereas a superscalar processor
can issue multiple instructions to execution units, each multicore processor can issue
multiple instructions to multiple execution units. That is, each independent core can have
multiple execution units attached to it.

Symmetric multiprocessors (SMPs) have multiple identical cores. They share memory,
and a bus connects them. The number of cores in an SMP is usually limited to 32
processors. A distributed computer is one in which multiple memory units are connected
through a network. A cluster is a group of stand-alone machines connected through an off-
the-shelf network. A massively parallel processor is a computer with many networked
processors connected through a specialized network. This kind of device usually has more
than 1000 processors.

The distinctions between the classes of parallel hardware are being blurred by modern
systems. A typical processor chip today contains two to eight cores that operate as an SMP.
These are then connected via a network to form a cluster. Thus, it is common to find a mix
of shared and distributed memory in parallel processing. In addition, graphics processors
that support general-purpose data-parallel processing may be connected to each of the
multicore processors. Given that each of the cores is also applying instruction-level
parallelism, you can see that modern parallel computers no longer fall into one or another
specific classification. Instead, they typically embody all of the classes at once. They are
distinguished by the particular balance that they strike among the different classes of
parallel processing they support. A parallel computer that is used for science may emphasize
data parallelism, whereas one that is running an Internet search engine may emphasize task-
level parallelism.

SUMMARY

173

The components that make up a computer cover a wide range of devices. Each component
has characteristics that dictate how fast, large, and efficient it is. Furthermore, each
component plays an integral role in the overall processing of the machine.

The world of computing is filled with jargon and acronyms. The speed of a processor is
specified in GHz (gigahertz), the amount of memory is specified in MB (megabytes) and
GB (gigabytes), and a display screen is specified in pixels.

The von Neumann architecture is the underlying architecture of most of today’s
computers. It has five main parts: memory, the arithmetic/logic (ALU) unit, input devices,
output devices, and the control unit. The fetch– execute cycle, under the direction of the
control unit, is the heart of the processing. In this cycle, instructions are fetched from
memory, decoded, and executed.

RAM and ROM are acronyms for two types of computer memory. RAM stands for
random-access memory; ROM stands for read-only memory. The values stored in RAM can
be changed; those in ROM cannot.

Secondary storage devices are essential to a computer system. These devices save data
when the computer is not running. Magnetic tape, magnetic disk, and flash drives are three
common types of secondary storage.

Touch screens are peripheral devices that serve both input and output functions and are
appropriate in specific situations such as restaurants and information kiosks. They respond
to a human touching the screen with a finger or stylus, and they can determine the location
on the screen where the touch occurred. Several touch screen technologies exist, including
resistive, capacitive, infrared, and surface acoustic wave (SAW) touch screens. They have
varying characteristics that make them appropriate in particular situations.

Although von Neumann machines are by far the most common, other computer
architectures have emerged. For example, there are machines with more than one processor
so that calculations can be done in parallel, thereby speeding up the processing.

ETHICAL ISSUES
Is Privacy a Thing of the Past?

“Personal privacy is all but dead and gone, and we’re the worse for it, in my opinion,”
wrote Austin Bay in the Austin American-Statesman on December 27, 2013. Bay
contends that the long goodbye to privacy began with Johannes Gutenberg’s invention
of the printing press in 1450, which brought us mass literacy with the side effect of
making gossip “permanent.” Later came the camera, a powerful anti-privacy weapon for
paparazzi. The telegraph and the telephone gave gossip global reach. Personal
information and innuendos now move “at the speed of light,” Bay writes.

Bay goes on to discuss what he calls privacy’s “shadowy twin”: institutional and state
secrecy. He contends that state and institutional secrecy have not expired but may be on
life support. Innovative hackers have in the past two decades proven that the repositories
of modern information—computers and the Internet—are breachable. NSA contractor
Edward Snowden demonstrated the failure of states to keep their secrets in 2013, when
he released the documents he had stolen. Private investigators in Great Britain are on
trial for hacking the personal phones of the British royals. Target and Neiman Marcus
have lost the personal information of millions of customers.

174

Bay’s editorial is somewhat tongue in cheek, but it is an intriguing concept that
privacy and secrecy are no longer possible in today’s world. Is this an example of
unexpected consequences? The printing press began the process of mass literacy, which
eventually resulted in the loss of privacy.

KEY TERMS

Access time
Addressability
Arithmetic/logic unit (ALU)
Block
Bus width
Cache memory
Control unit
CPU
Cylinder
Input unit
Instruction register (IR)
Latency
Motherboard
Output unit
Pipelining
Program counter (PC)
Register
Sector
Seek time
Shared memory parallel processor
Synchronous processing
Track
Transfer rate

EXERCISES

For Exercises 1–16, match the power of 10 to its name or use.
A. 10−12

B. 10−9

C. 10−6

D. 10−3

E. 103

F. 106

G. 109

175

H. 1012

I. 1015

 1. Nano
 2. Pico
 3. Micro
 4. Milli
 5. Tera
 6. Giga
 7. Kilo
 8. Mega
 9. Often used to describe processor speed
10. Often used to describe size of memory
11. Used in relation to Internet speeds
12. Latin for “thousandth”
13. Italian for “little”
14. Peta
15. Roughly equivalent to 210

16. Roughly equivalent to 250

For Exercises 17–23, match the acronym with its most accurate definition.
A. CD-ROM
B. CD-DA
C. CD-R
D. DVD
E. CD-RW
F. DL DVD
G. Blu-Ray

17. Format using two layers
18. Data is stored in the sectors reserved for timing information in another variant
19. Can be read many times, but written after its manufacture only once
20. Can be both read from and written to any number of times
21. Format used in audio recordings
22. A new technology storing up to 50 GB
23. The most popular format for distributing movies

Exercises 24–66 are problems or short-answer exercises.
24. Define the following terms:

a. Core 2 processor
b. Hertz
c. Random access memory

25. What does FSB stand for?
26. What does it mean to say that a processor is 1.4 GHz?
27. What does it mean to say that memory is 133 MHz?
28. How many bytes of memory are there in the following machines?

a. 512MB machine
b. 2GB machine

29. Define RPM and discuss what it means in terms of speed of access to a disk.

176

30. What is the stored-program concept, and why is it important?
31. What does “units that process information are separate from the units that store

information” mean in terms of computer architecture?
32. Name the components of a von Neumann machine.
33. What is the addressability of an 8-bit machine?
34. What is the function of the ALU?
35. Which component in the von Neumann architecture would you say acts as the

stage manager? Explain.
36. Punched cards and paper tape were two early input/output media. Discuss their

advantages and disadvantages.
37. What is an instruction register, and what is its function?
38. What is a program counter, and what is its function?
39. List the steps in the fetch–execute cycle.
40. Explain what is meant by “fetch an instruction.”
41. Explain what is meant by “decode an instruction.”
42. Explain what is meant by “execute an instruction.”
43. Compare and contrast RAM and ROM.
44. What is a secondary storage device, and why are such devices important?
45. Discuss the pros and cons of using magnetic tape as a storage medium.
46. What are the four measures of a disk drive’s efficiency?
47. Define what is meant by a block of data.
48. What is a cylinder?
49. Define the steps that a hard disk drive goes through to transfer a block of data

from the disk to memory.
50. Distinguish between a compact disk and a magnetic disk.
51. Describe a parallel architecture that uses synchronous processing.
52. Describe a parallel architecture that uses pipeline processing.
53. How does a shared-memory parallel configuration work?
54. How many different memory locations can a 16-bit processor access?
55. Why is a faster clock not always better?
56. Why is a larger cache not necessarily better?
57. In the ad, why is the 1080p specification for the screen not entirely true?
58. Keep a diary for a week of how many times the terms hardware and software

appear in television commercials.
59. Take a current ad for a laptop computer and compare that ad with the one shown

at the beginning of this chapter.
60. What is the common name for the disk that is a secondary storage device?
61. To what does the expression pixels refer?
62. What is a GPU?
63. If a battery in a laptop is rated for 80 WHr, and the laptop draws 20 watts, how

long will it run?
64. What is the difference between 1K of memory and a 1K transfer rate?
65. Compare and contrast a DVD-ROM and a flash drive.
66. Giga can mean both 109 and 230. Explain to which each refers. Can this cause

confusion when reading a computer advertisement?

177

THOUGHT QUESTIONS

 1. Has your personal information ever been stolen? Has any member of your family
experienced this?

 2. How do you feel about giving up your privacy for the sake of convenience?
 3. All secrets are not equal. How does this statement relate to issues of privacy?
 4. People post all sorts of personal information on social media sites. Does this mean

they no longer consider privacy important?

178

THE PROGRAMMING LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits
5 Computing Components

The Programming Layer
6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages

The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer
15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion
18 Limitations of Computing

179

6 LOW-LEVEL PROGRAMMING
LANGUAGES AND PSEUDOCODE

Chapter 6 is the first chapter in the programming layer. In Chapters 2 and 3, we covered
the basic information necessary for understanding a computing system, including number
systems and ways to represent different types of information in a computer. In Chapters 4
and 5, we covered the hardware components of a computer. Now the emphasis changes
from what a computer system is to how to use one.

We begin this chapter by looking at machine code, the lowest-level programming
language of all—the language built into the machine. We then move up one level to
assembly language, a language in which we can use a combination of letters to represent a
machine-language instruction. Finally, we introduce the concept of pseudocode as a way to
express algorithms.

GOALS
After studying this chapter, you should be able to:

■ list the operations that a computer can perform.
■ describe the important features of the Pep/8 virtual machine.
■ distinguish between immediate addressing mode and direct addressing mode.
■ write a simple machine-language program.
■ distinguish between machine language and assembly language.
■ describe the steps in creating and running an assembly-language program.
■ write a simple program in assembly language.
■ distinguish between instructions to the assembler and instructions to be translated.
■ distinguish between following an algorithm and developing one.
■ describe the pseudocode constructs used in expressing an algorithm.
■ use pseudocode to express an algorithm.
■ describe two approaches to testing.
■ design and implement a test plan for a simple assembly-language program. 153

6.1 Computer Operations
The programming languages we use must mirror the types of operations that a computer
can perform. So let’s begin our discussion by repeating the definition of a computer: A
computer is a programmable electronic device that can store, retrieve, and process data.

The operational words here are programmable, store, retrieve, and process. In a previous

180

chapter we pointed out the importance of the realization that data and instructions to
manipulate the data are logically the same and could be stored in the same place. That is
what the word programmable means in this context. The instructions that manipulate data
are stored within the machine along with the data. To change what the computer does to
the data, we change the instructions.

Store, retrieve, and process are actions that the computer can perform on data. That is,
the instructions that the control unit executes can store data into the memory of the
machine, retrieve data from the memory of the machine, and process the data in some way
in the arithmetic/logic unit. The word process is very general. At the machine level,
processing involves performing arithmetic and logical operations on data values.

Where does the data that gets stored in the computer memory come from? How does
the human ever get to see what is stored there, such as the results of some calculation?
There are other instructions that specify the interaction between an input device and the
CPU and between the CPU and an output device.

6.2 Machine Language
As we pointed out in Chapter 1, the only programming instructions that a computer
actually carries out are those written using machine language, the instructions built into
the hardware of a particular computer. Initially humans had no choice except to write
programs in machine language because other programming languages had not yet been
invented.

Machine language The language made up of binary-coded instructions that is used directly by the computer

So how are computer instructions represented? Recall that every processor type has its
own set of specific machine instructions. These are the only instructions the processor can
actually carry out. Because a finite number of instructions exist, the processor designers
simply list the instructions and assign them a binary code that is used to represent them.
This is similar to the approach taken when representing character data, as described in
Chapter 3.

The relationship between the processor and the instructions it can carry out is
completely integrated. The electronics of the CPU inherently recognize the binary
representations of the specific commands, so there is no actual list of commands the
computer must consult. Instead, the CPU embodies the list in its design.

?
Managing endangered species

Zoos have established captive populations of endangered animals to save them from extinction, but they need to
have a good distribution of ages and genetic diversity to protect the species against diseases and inbreeding. A
computerized database of all captive animals enables scientists to measure important factors governing the welfare
of a species. The Minnesota Zoological Garden coordinates the International Species Inventory System (ISIS),
which provides global information on more than 2.2 million living animals.

181

Each machine-language instruction performs only one very low-level task. Each small
step in a process must be explicitly coded in machine language. Even the small task of
adding two numbers together must be broken down into smaller steps: Enter a number
into the accumulator, add a number to it, save the result. Then these three instructions
must be written in binary, and the programmer has to remember which combination of
binary digits corresponds to which instruction. As we mentioned in Chapter 1, machine-
language programmers have to be very good with numbers and very detail oriented.

However, we can’t leave you with the impression that only mathematicians can write
programs in machine language. It is true that very few programs are written in machine
language today, primarily because they represent an inefficient use of a programmer’s time.
Although most programs are written in higher-level languages and then translated into
machine language (a process we describe later in this chapter), every piece of software is
actually implemented in machine code. Understanding even just a little about this level will
make you a more informed user. In addition, this experience emphasizes the basic
definition of a computer and makes you appreciate the ease with which people interact with
computers today.

Pep/8: A Virtual Computer
By definition, machine code differs from machine to machine. Recall that just as each lock
has a specific key that opens it, each type of computer has a specific set of operations that it
can execute, called the computer’s machine language. That is, each type of CPU has its own
machine language that it understands. So how can we give each of you the experience of
using machine language when you may be working on different machines? We solve that
problem by using a virtual computer. A virtual computer is a hypothetical machine—in
this case, one that is designed to contain the important features of real computers that we
want to illustrate. Pep/8, designed by Stanley Warford, is the virtual machine that we use
here.1

Virtual computer (machine) A hypothetical machine designed to illustrate important features of a real machine

Pep/8 has 39 machine-language instructions. This means that a program for Pep/8
must be a sequence consisting of a combination of these instructions. Don’t panic: We will
not ask you to understand and remember 39 sequences of binary bits! We merely plan to
examine a few of these instructions, and we will not ask you to memorize any of them.

Important Features Reflected in Pep/8
The memory unit of the Pep/8 is made up of 65,536 bytes of storage. The bytes are
numbered from 0 through 65,535 (decimal). Recall that each byte contains 8 bits, so we
can describe the bit pattern in a byte using 2 hexadecimal digits. (Refer to Chapter 2 for
more information on hexadecimal digits.) The word length in Pep/8 is 2 bytes, or 16 bits.
Thus the information that flows into and out of the arithmetic/logic unit (ALU) is 16 bits
in length.

182

Recall from Chapter 5 that a register is a small area of storage in the ALU of the CPU
that holds special data and intermediate values. Pep/8 has seven registers, three of which we
focus on at this point:

■ The program counter (PC), which contains the address of the next instruction to be
executed

■ The instruction register (IR), which contains a copy of the instruction being
executed

■ The accumulator (A register)

The accumulator is used to hold data and the results of operations; it is the special storage
register referred to in Chapter 5 in the discussion of the ALU.

We realize that this is a lot of detailed information, but don’t despair! Remember that
our goal is to give you a feel for what is actually happening at the lowest level of computer
processing. By necessity, that processing keeps track of many details.

FIGURE 6.1 shows a diagram of Pep8’s CPU and memory. Notice that the addresses
in memory appear in orange. This color is intended to emphasize that the addresses
themselves are not stored in memory, but rather that they name the individual bytes of
memory. We refer to any particular byte in memory by its address.

FIGURE 6.1 Pep/8’s architecture

Before we go on, let’s review some aspects of binary and hexadecimal numbers. The
largest decimal value that can be represented in a byte is 255. It occurs when all of the bits
are 1s: 11111111 in binary is FF in hexadecimal and 255 in decimal. The largest decimal
value that can be represented in a word (16 bits) is 65,535. It occurs when all 16 bits are 1s:
1111111111111111 in binary is FFFF in hexadecimal and 65,535 in decimal. If we
represent both positive and negative numbers, we lose a bit in the magnitude (because one

183

is used for the sign), so we can represent values ranging from −7FFF to +7FFF in
hexadecimal, or −32,767 to +32,767 in decimal.

This information is important when working with the Pep/8 machine. The number of
bits we have available determines the size of the numbers we can work with.

Instruction Format
We have talked about instructions going into the instruction register, being decoded, and
being executed. Now we are ready to look at a set (or subset) of concrete instructions that a
computer can execute. First, however, we need to examine the format of an instruction in
Pep/8.

FIGURE 6.2(a) shows the format for an instruction in Pep/8. There are two parts to
an instruction: the instruction specifier and (optionally) the 16-bit operand specifier. The
instruction specifier indicates which operation is to be carried out, such as “add a number
to a value already stored in a register,” and how to interpret just where the operand is. The
operand specifier (the second and third bytes of the instruction) holds either the operand
itself or the address of where the operand is to be found. Some instructions do not use the
operand specifier.

The format of the instruction specifier varies depending on the number of bits used to
represent a particular operation. In Pep/8, operation codes (called opcodes) vary from 4 bits
to 8 bits long. The opcodes that we cover are 4 or 5 bits long, with the fifth bit of 4-bit
opcodes used to specify which register to use. The register specifier is 0 for register A (the
accumulator), which is the only register that we will use. Thus the register specifier is only
color coded in our diagrams when it is part of the opcode. See FIGURE 6.2(b).

FIGURE 6.2 Pep/8 instruction format

The 3-bit addressing mode specifier (shaded green) indicates how to interpret the
operand part of the instruction. If the addressing mode is 000, the operand is in the
operand specifier of the instruction. This addressing mode is called immediate (i). If the

184

addressing mode is 001, the operand is the memory address named in the operand specifier.
This addressing mode is called direct (d). (Other addressing modes also exist, but we do not
cover them here.) The distinction between the immediate addressing mode and the direct
addressing mode is very important because it determines where the data involved in the
operation is stored or is to be stored. See FIGURE 6.3. Locations that contain addresses
are shaded in orange; operands are shaded in gray.

Instructions that do not have an operand (data to be manipulated) are called unary
instructions; they do not have an operand specifier. That is, unary instructions are only 1
byte long rather than 3 bytes long.

FIGURE 6.3 The difference between immediate addressing mode and direct addressing
mode

Some Sample Instructions
Let’s look at some specific instructions in isolation and then put them together to write a
program. FIGURE 6.4 contains the 4-bit operation code (or opcode) for the operations we
are covering.

0000 Stop execution During the fetch– execute cycle, when the operation code is all
zeros, the program halts. Stop is a unary instruction, so it occupies only one byte. The three
rightmost bits in the byte are ignored.

185

1100 Load the operand into the A register This instruction loads one word (two bytes)
into the A register. The mode specifier determines where the word is located. Thus the load
opcode has different meanings depending on the addressing mode specifier. The mode
specifier determines whether the value to be loaded is in the operand part of the instruction
(the second and third bytes of the instruction) or is in the place named in the operand.

Let’s look at concrete examples of each of these combinations. Here is the first 3-byte
instruction:

FIGURE 6.4 Subset of Pep/8 instructions

The addressing mode is immediate, meaning that the value to be loaded into the A register
is in the operand specifier. That is, the data is in the operand specifier, so it is shaded gray.
After execution of this instruction, the contents of the second and third bytes of the
instruction (the operand specifier) would be loaded into the A register (the accumulator).
That is, the A register would contain 0007 and the original contents of A would be lost.

Here is another load instruction:

The addressing mode is direct, which means that the operand itself is not in the operand
specifier (second and third bytes of the instruction); instead, the operand specifier holds the
address (orange) of where the operand resides in memory. Thus, when this instruction is
executed, the contents of location 001F would be loaded into the A register. Note that we
have shaded the bits that represent a memory address in orange just as we have used orange
for other addresses. The A register holds a word (2 bytes), so when an address is used to
specify a word (rather than a single byte) as in this case, the address given is of the leftmost

186

byte in the word. Thus the contents of adjacent locations 001F and 0020 are loaded into
the A register. The contents of the operand (001F and 0020) are not changed.

1110 Store the A register to the operand This instruction stores the contents of the A
register into the location specified in the operand.

This instruction stores the contents of the A register into the word beginning at location
000A. It is invalid to use an immediate addressing mode with a store opcode; that is, we
cannot try to store the contents of a register into the operand specifier.

?
Bring a hammer

When Jan Hein Donner, the Dutch chess grandmaster, was asked how he would prepare for a chess match against a
computer like IBM’s Deep Blue, he replied, “I would bring a hammer.”2

0111 Add the operand to the A register Like the load operation, the add operation uses
the addressing mode specifier, giving alternative interpretations. The two alternatives for
this instruction are shown below, with the explanation following each instruction.

The contents of the second and third bytes of the instruction (the operand specifier) are
added to the contents of the A register (20A in hex). Thus we have shaded the operand
specifier to show that it is data.

Because the address mode specifier is direct, the contents of the operand specified in the
second and third bytes of the instruction (location 020A) are added into the A register.

1000 Subtract the operand This instruction is just like the add operation except that the
operand is subtracted from the A register rather than added. As with the load and add
operations, there are variations of this instruction depending on the addressing mode.

01001 Character input to the operand This instruction allows the program to enter an

187

ASCII character from the input device while the program is running. Only direct
addressing is allowed, so the character is stored in the address shown in the operand
specifier.

This instruction reads an ASCII character from the input device and stores it into location
000A.

01010 Character output from the operand This instruction sends an ASCII character to
the output device while the program is running. The addressing mode may be either
immediate or direct.

Because immediate addressing is specified, this instruction writes out the ASCII character
stored in the operand specifier. The operand specifier contains 1000001, which is 41 in hex
and 65 in decimal. The ASCII character corresponding to that value is ‘A’, so the letter ‘A’
is written to the screen.

Because direct addressing is used, this instruction writes out the ASCII character stored in
the location named in the operand specifier, location 000A. What is written? We cannot
say unless we know the contents of location 000A. The ASCII character corresponding to
whatever is stored at that location is printed.

6.3 A Program Example
We are now ready to write our first machine-language program: Let’s write “Hello” on the
screen. There are six instructions in this program: five to write out a character and one to
indicate the end of the process. The instruction to write a character on the screen is 0101,
the “Character output from the operand” operation. Should we store the characters in
memory and write them using direct addressing mode, or should we just store them in the
operand specifier and use immediate addressing mode? Let’s use immediate addressing here
and leave direct addressing as an exercise. This means that the addressing mode specifier is
000 and the ASCII code for the letter goes into the third byte of the instruction.

188

Action Binary Instruction Hex Instruction
Write ‘H’ 01010000

0000000001001000
50
0048

Write ‘e’ 01010000
0000000001100101

50
0065

Write ‘l’ 01010000
0000000001101100

50
006C

Write ‘l’ 01010000
0000000001101100

50
006C

Write ‘o’ 01010000
0000000001101111

50
006F

Stop 00000000 00

The machine-language program is shown in binary in the second column and in
hexadecimal in the third column. We must construct the operation specifier in binary
because it is made up of a 4-bit opcode, a 1-bit register specifier, and a 3-bit addressing
mode specifier. Once we have the complete 8 bits, we can convert the instruction to
hexadecimal. Alternatively, we could construct the operand specifier directly in
hexadecimal.

We used double quotes when referring to a collection of characters like “Hello” and
single quotes when referring to a single character. This pattern is commonly used in
programming languages, so we follow this convention here.

Hand Simulation
Let’s simulate this program’s execution by following the steps of the fetch– execute cycle.
Such traces by hand really drive home the steps that the computer carries out.

Recall the four steps in the fetch–execute cycle:

1. Fetch the next instruction (from the place named in the program counter).
2. Decode the instruction (and update the program counter).
3. Get data (operand) if needed.
4. Execute the instruction.

There are six instructions in our program. Let’s assume that they are in contiguous
places in memory, with the first instruction stored in memory locations 0000–0002.
Execution begins by loading 0000 into the program counter (PC). At each stage of
execution, let’s examine the PC (shown in orange) and the instruction register (IR). The
program does not access the A register, so we do not bother to show it. At the end of the
first fetch, the PC and the IR look like the following diagram. (We continue to use color to
emphasize the addresses, opcode, address mode specifier, and data.) Notice that the
program counter is incremented as soon as the instruction has been accessed.

189

This instruction is decoded as a “Write character to output” instruction using immediate
addressing mode. Because this instruction takes 3 bytes, the PC is incremented by 3. The
data is retrieved from the operand specifier in the IR, the instruction is executed, and ‘H’ is
written on the screen.

The second fetch is executed and the PC and IR are as follows:

This instruction is decoded as another “Write character to output” instruction using
immediate addressing mode. The instruction takes 3 bytes, so the PC is again incremented
by 3. The data is retrieved, the instruction is executed, and ‘e’ is written on the screen.

The next three instructions are executed exactly the same way. After the ‘o’ has been
written, the PC and IR look as follows:

The opcode is decoded as a “Stop” instruction, so the contents of the addressing mode and
the operand specifier are ignored. At this point, the fetch–execute cycle stops.

?
Nigerian check scam

In June 2008, Edna Fiedler of Olympia, Washington, was sentenced to 2 years in prison and 5 years of supervised
probation in a $1 million Nigerian check scam. In this scam, a message in broken English pleaded for the financial
help of the kind recipient. In all cases, the sender was a high-ranking official who had millions stashed in an
inaccessible spot. If the recipient wired money for the official’s escape from his ravaged country, he or she was
offered a share of the money. The average loss to the victims of this scam was more than $5000.

Pep/8 Simulator
Recall that the instructions are written in the Pep/8 machine language, which doesn’t
correspond to any particular CPU’s machine language. We have just hand simulated the
program. Can we execute it on the computer? Yes, we can. Pep/8 is a virtual (hypothetical)
machine, but we have a simulator for the machine. That is, we have a program that behaves
just like the Pep/8 virtual machine behaves. To run a program, we enter the hexadecimal

190

code byte by byte, with exactly one blank between each byte, and end the program with
“zz”. The simulator recognizes two z’s as the end of the program. Here is a screenshot of the
Pep/8 machine-language program:

Let’s go through the steps required to enter and execute a program. We assume that the
Pep/8 simulator has been installed. To start the program, click on the Pep/8 icon. One of
several screens might appear, but each contains a section marked “Object Code.” Enter
your program in this window as described previously. You are now ready to run your
program. Go to the menu bar. Here is a shot of the portion that you need:

Click on the middle of these three icons, which calls the loader. After you click on this
icon, your program is loaded into the Pep/8 memory.

Loader A piece of software that takes a machine-language program and places it into memory

Be sure the Terminal I/O button is darkened (pressed). Now click on the rightmost
icon, which is the execute button. The program is executed and “Hello” appears in the
output window. For everything we do in this chapter, the Terminal I/O button should be
darkened. This area is where you input and output values.

191

Pep/8 has a feature that lets you watch what is happening in the CPU as each
instruction is executed. Here is a screenshot of the CPU after the program has been loaded.
Notice that the “Trace Program” check box has been marked. This screen includes several
boxes that we have not covered, but you can readily see the “Program Counter,”
“Instruction Register,” and “OpCode” labels.

When the “Trace Program” option is checked, press the Single Step button and the first
instruction will be executed. Continue pressing the Single Step button, and you can see the
register values change.

Before we leave our machine code example, let’s input two letters and print them out in
reverse order. We can choose a place to put the input as it is read somewhere beyond the
code. In this case we choose “0F” and “12”. We use direct addressing mode.

Action Binary Instruction Hex Instruction
Input a letter into location F 01001001

0000000000001111
49
000F

Input a letter into F + 1 01001001 49

192

0000000000010000 0010
Write out second letter 01010001

0000000000010000
51
0010

Write out first letter 01010001
0000000000001111

51
000F

Stop 00000000 00

Here is the object code and output window after entering ‘A’ and ‘B’:

6.4 Assembly Language
As we pointed out in Chapter 1, the first tools developed to help the programmer were
assembly languages. Assembly languages assign mnemonic letter codes to each machine-
language instruction. The programmer uses these letter codes in place of binary digits. The
instructions in an assembly language are much like those we would use to tell someone how
to do a calculation on a hand-held calculator.

Assembly language A low-level programming language in which a mnemonic represents each of the machine-
language instructions for a particular computer

Because every program that is executed on a computer eventually must be in the form
of the computer’s machine language, a program called an assembler reads each of the
instructions in mnemonic form and translates it into the machine-language equivalent.
Also, because each type of computer has a different machine language, there are as many
assembly languages and translators as there are types of machines.

Assembler A program that translates an assembly-language program in machine code

Pep/8 Assembly Language
The goal of this section is not to make you become an assembly-language programmer, but
rather to make you appreciate the advantages of assembly-language programming over

193

machine coding. With this goal in mind, we cover only a few of Pep/8’s assembly-language
features here. We begin by examining the same operations we looked at in the last sections
plus three other useful operations. In Pep/8’s assembly language, there is a different opcode
for each register, the operand is specified by “0x” and the hexadecimal value, and the
addressing mode specifier is indicated by the letters ‘i’ or ‘d’.

Mnemonic Operand, Mode
Specifier

Meaning of Instruction

STOP Stop execution
LDA
LDA

0x008B,i
0x008B,d

Load 008B into register A
Load the contents of location 8B into register A

STA 0x008B,d Store the contents of register A into location 8B
ADDA
ADDA

0x008B,i
0x008B,d

Add 008B to register A
Add the contents of location 8B to register A

SUBA
SUBA

0x008B,i
0x008B,d

Subtract 008B from register A
Subtract the contents of location 8B from register
A

BR Branch to the location specified in the operand
specifier

CHARI 0x008B,d Read a character and store it into location 8B
CHARO 0x008B,i

0x000B,d
Write the character 8B
Write the character stored in location 0B

DECI
DECO
DECO

0x008B,d
0x008B,i
0x008B,d

Read a decimal number and store it into location
8B
Write the decimal number 139 (8B in hex)
Write the decimal number stored in location 8B

Did you wonder why we didn’t do any arithmetic in machine language? Well, the
output was defined only for characters. If we had done arithmetic, we would have had to
convert the numbers to character form to see the results, and this is more complex than we
wished to get. The Pep/8 assembly language provides the mnemonics DECI and DECO,
which allow us to do decimal input and output. This terminology is somewhat misleading,
however, because these operations actually involve calls to a series of instructions behind the
scenes.

Assembler Directives
In a machine-language program, every instruction is stored in memory and then executed.
Beginning with assembly languages, most programming languages have two kinds of
instructions: instructions to be translated and instructions to the translating program. Here
are a few useful assembler directives for the Pep/8 assembler—that is, instructions to the
assembler. These instructions to the assembler are also called pseudo-operations.

Assembler directives Instructions to the translating program

194

Pseudo-op Argument Meaning
.ASCII “Str\x00” Represents a string of ASCII bytes
.BLOCK Number of bytes Creates a block of bytes
.WORD Value Creates a word and stores a value in it
.END Signals the end of the assembly-language program

Assembly-Language Version of Program Hello
Let’s take a look at the assembly-language program that writes “Hello” on the screen. Pep/8
assembly language allows us to directly specify the character to be output and to add a
comment beside the instruction. A comment is text written for the human reader of the
program that explains what is happening. Comments are an essential part of writing any
program. The assembler ignores everything from the semicolon through the end of the line;
it is a comment. We color them to make them stand out.

Comment Explanatory text for the human reader

This code is entered into the Source Code window. The icon to the left of the load icon
is the assembler icon. Click this icon, and the object code into which the program is
translated appears in the Object Code window. The Assembler Listing window shows the
address to which an instruction has been assigned, the object code, and the assembly-
language code; it is shown here:

The process of running a program coded in an assembly language is illustrated in
FIGURE 6.5. The input to the assembler is a program written in assembly language. The
output from the assembler is a program written in machine code. You can see why the
creation of assembly language represented such an important step in the history of
programming languages: It removed many of the details of machine-language programming

195

by abstracting the instructions into words. Although it added a step to the process of
executing a program (the translation of assembly to machine code), that extra step is well
worth the effort to make the programmer’s life easier.

A New Program
Let’s make a step up in complexity and write a program to read in three numbers and write
out their sum. How would we do this task by hand? If we had a calculator, we would first
clear the total; that is, we would set the sum to zero. Then we would get the first number
and add it to the total, get the second number and add it to the total, and finally get the
third number and add it to the total. The result would be what is in the accumulator of the
calculator. We can model our computer program on this by-hand solution.

FIGURE 6.5 Assembly process

The most complex problem is that we must associate four identifiers with places in
memory, and this requires knowing how many places the program itself takes—that is, if
we put the data at the end of the program. Let’s make this process easier by putting our
data before the program. We can start associating identifiers with memory locations
beginning with location 0001 and have the fetch–execute cycle skip over these places to
continue with the program. In fact, we can assign identifiers to the memory locations and
use these names later in the program. We set up space for the sum using the .WORD
pseudo-op so that we can set the contents to 0. We set up space for the three numbers
using the .BLOCK pseudo-op.

196

Here is the assembler listing for this program, followed by a screenshot of the
Input/Output window after we execute the program. Note that the user keys in the three
values, and the program prints their sum.

197

A Program with Branching
We have shown that the program counter can be changed with a BR instruction that sets
the program counter to the address of an instruction to execute next. Are there other ways
to change the flow of control of the program? Can we ask a question and take one or
another action on the basis of the answer to our question? Sure—let’s see how. Here are
two useful opcodes and their meaning:

Mnemonic Operand, Mode
Specifier

Meaning of Instruction

BRLT i Set the PC to the operand if the A register is less
than zero

BREQ i Set the PC to the operand if the A register is equal
to zero

198

?
Who is Genevieve Bell?

Dr. Bell is an anthropologist at Intel, the world’s largest producer of semiconductors. She is director of user
experience research at Intel Labs, the company’s research arm. She runs a group of some 100 social scientists and
designers who travel the globe, observing how people use technology in their homes and in public.3

For example:

If the value stored in num1 is negative when it is loaded into the A register, the PC is set to
location lessThan. If the value is not negative, the PC is unchanged.

Let’s change the previous program so that it prints the sum if it is positive and displays
an error message if the sum is negative. Where should the test go? Just before the contents
of the answer is stored into location sum, we can test the A register and print ‘E’ if it is
negative.

We can use the BRLT instruction to test whether the sum is negative. If the A register
is negative, the operand beside the BRLT instruction replaces the contents of the program
counter so that the next instruction comes from there. We need to give the instruction a
name, so we can branch to it. Let’s call the instruction that prints the error message
negMsg. When the error message has been written, we must branch back to the line that
says STOP, which means we must name that line. Let’s name it finish.

Here is the source code of this changed program. Note that we have reduced the
number of comments. If the comment just duplicates the instruction, it can be a distraction
instead of a help.

199

Here is the assembler listing, followed by a screenshot of the input and output:

200

A Program with a Loop
What if we want to read and sum four values? Five values? Any number of values? We can
input how many values we want to sum (limit) and write the code to read and sum that
many values. We do so by creating a counting loop—a section of code that repeats a
specified number of times. Within the code of the loop, a value is read and summed. How
can we keep track of how many values we have read? We can make a hash mark each time

201

we repeat the loop and compare the sum of the hash marks to the number of times we wish
to repeat the loop. Actually, our hash mark is a place in memory where we store a 0; let’s
call it counter. Each time the loop is repeated, we add a 1 to that place in memory.
When counter equals limit, we are finished with the reading and counting.

In the next section we describe pseudocode, a less wordy way of explaining what we do
in branching and looping situations. For now, here is the code that reads in the number of
data values to read and sum, reads and sums them, and prints the result:

Here is the assembler listing, followed by a screenshot of a run:

202

6.5 Expressing Algorithms
In the previous sections, we have written programs to write out a greeting, read numbers in
and write them out in reverse order, add three numbers together and print an error message
if the sum is negative, and enter a value and read and sum that many numbers. We

203

expressed the solution to each problem in paragraph form and then wrote the code. In
computing, the plan for a solution is called an algorithm. As you saw, going from the
problem in paragraph form to the code is not always a clear-cut process. Pseudocode is a
language that allows us to express algorithms in a clearer form.

Algorithm A plan or outline of a solution; a logical sequence of steps that solve a problem

Pseudocode A language designed to express algorithms

Pseudocode Functionality
In Chapter 1, we talked about the layers of language surrounding the actual machine. We
didn’t mention pseudocode at that time because it is not a computer language, but rather a
shorthand-like language that people use to express actions. There are no special grammar
rules for pseudocode, but to express actions we must be able to represent the following
concepts.

?
What was the Music Genome Project?

In 2002, Will Glaser, Jon Craft, and Tim Westergren founded the company Savage Beast Technologies and created
the Music Genome Project. The project, which was created to capture “the essence of music at the most
fundamental level,” uses hundreds of musical attributes or “genes” to describe scores, as well as an intricate
mathematical formula to analyze them. The project has analyzed tens of thousands of diverse scores and artists for
attributes such as melody, harmony and rhythm, instrumentation, orchestration, arrangement, and lyrics.

Variables
Names that appear in pseudocode algorithms refer to places in memory where values are
stored. The name should reflect the role of the content in the algorithm.

Assignment
If we have variables, we must have a way to put a value into one. We use the statement

Set sum to 0

to store a value into the variable sum. Another way of expressing the same concept uses a
back arrow (<—):

sum <—1

If we assign values to variables with the assignment statement, how do we access them
later? We access values in sum and num in the following statement:

Set sum to sum + num

204

or

sum <—sum + num

The value stored in sum is added to the value in num and the result is stored back in sum.
Thus, when a variable is used on the right side of the to or <—, the value of the variable is
accessed. When a variable is used following Set or on the left side of <—, a value is stored
into the variable.

The value being stored into a variable can be a single value (as in 0) or an expression
made up of variables and operators (as in sum + num).

Input/Output
Most computer programs simply process data of some sort, so we must be able to input
data values from the outside world and output the result on the screen. We can use the
word write for output and the word read for input.

Write “Enter the number of values to read and sum”
Read num

The characters between the double quotation marks are called strings and tell the user
what to enter or to describe what is written. It doesn’t matter which exact words you use:
Display or Print would be equivalent to Write; Get or Input would be synonyms for Read.
Remember, pseudocode algorithms are written for a human to translate into some
programming language at a later stage. Being consistent within a project is better style—
both for you as you are working and for the person following you, who may have to
interpret what you have written.

The last two output statements demonstrate an important point:

Write “Err”
Write sum

The first writes the characters between the double quotation marks on the screen. The
second writes the contents of the variable sum on the screen. The value in sum is not
changed.

Selection
The selection construct allows a choice between performing an action or skipping it.
Selection also allows a choice between two actions. The condition in parentheses
determines which course of action to follow. For example, the following pseudocode
segment prints the sum or an error message. (Sound familiar?)

205

We use indention to group statements (only one in this case). Control goes back to the
statement that is not indented. The // introduces a comment to the reader, which is not
part of the algorithm.

This version of the selection construct is called the if-then-else version because the
algorithm chooses between two actions. The if-then version is the case where an action is
executed or skipped. If we wanted to print the sum in any event, we could show the
algorithm this way.

Repetition
The repetition construct allows instructions to be repeated. In the summing problem, for
example, a counter is initialized, tested, and incremented. Pseudocode allows us to outline
the algorithm so that the pattern becomes clear. Like the selection construct, the expression
in parentheses beside the WHILE is a test. If the test is true, the indented code is executed. If
the test is false, execution skips to the next non-indented statement.

The expression in parentheses beside the WHILE and the IF is a Boolean expression,
which evaluates to either true or false. In the IF, if the expression is true, the indented block
is executed. If the expression is false, the indented block is skipped and the block below the
ELSE is executed if it exists. In the WHILE, if the expression is true, the indented code is
executed. If the expression is false, execution skips to the next non-indented statement. We
are putting WHILE, IF, and ELSE in all capital letters because they are often used directly in
various programming languages. They have special meanings in computing.

206

Boolean expression An expression that when evaluated is either true or false

TABLE 6.1 summarizes these statements and shows examples or the words that each
uses.

TABLE 6.1 Pseudocode Statements
Construct What It Means Words Used or Example

Variables Represent named places into which
values are stored and from which values
are retrieved.

Names that represent the role of a value
in a problem are just written in
pseudocode

Assignment Storing a value into a variable. Set number to 1
number <—1

Input/output Input: reading in a value, probably from
the
keyboard.
Output: displaying the contents of a
variable
or a string, probably on the screen.

Read number
Get number
Write number
Display number
Write “Have a good day”

Repetition
(iteration, looping)

Repeat one or more statements as long as
a condition is true.

While (condition)
//Execute indented statement(s)

Selection: if-then If a condition is true, execute the
indented statements; if a condition is not
true, skip the indented statements.

IF (newBase = 10)
 Write “You are converting”
 Write “to the same base.”
//Rest of code

Selection: if-then-
else

If a condition is true, execute the
indented statements; if a condition is not
true, execute the indented statements
below ELSE.

IF (newBase = 10)
 Write “You are converting”
 Write “to the same base.”
ELSE
 Write “This base is not the “
 Write “same.”
//Rest of code

Here is the pseudocode algorithm for the program that read and summed three values
and printed an error message if the total was negative:

207

Here is the pseudocode algorithm for the program that input the number of values to
read, read them, and printed the sum:

A pseudocode description must eventually be translated into a program that can be run
on a computer. A pseudocode statement might have to be translated into many assembly-
language statements, but into only one statement in a high-level language. For example, go
back and look at the last Pep/8 program. Here are the instructions needed to create the
loop:

In most high-level languages, a loop can be written in one statement. In the next sections,
we explore more about pseudocode.

208

Following a Pseudocode Algorithm
In Chapter 2, we introduced an algorithm for converting from base 10 to other bases. We
expressed this algorithm in pseudocode for a human to follow.

To refresh our memories, we apply this algorithm to convert decimal number 93 to
octal. We divide 93 by 8 (the new base), giving a quotient of 11 and a remainder of 5. This
is the first division, so 5 becomes the digit in the units position of the answer. The original
decimal number (93) is replaced by the quotient, 11. The quotient is not 0, so we divide 11
by 8, giving a quotient of 1 and a remainder of 3. The digit 3 becomes the digit to the left
of 5, giving a temporary answer of 35. The current decimal number (11) is replaced by the
quotient 1. The quotient is not 0, so we divide it by 8, giving a quotient of 0 and a
remainder of 1. The digit 1 becomes the leftmost digit in the answer, giving a value of 135.
The quotient is 0, so the process ends.

This paragraph again shows how confusing English descriptions can be! First let’s
summarize the calculations.

Now let’s start over again, giving names to the values that we need to keep:
decimalNumber, newBase, quotient, remainder, and answer. We depict these items as
named boxes in which we write a value. See FIGURE 6.6(a). We have put a question mark
in boxes for which we do not know the contents.

In following an algorithm, we draw boxes for variables and fill in the values. The
algorithm begins by asking if the value in quotient is 0.

209

FIGURE 6.6 Walk-through of a conversion algorithm

?
What is Pandora?

Pandora is a music streaming company that tailors the music it plays to each listener’s preferences. Pandora uses the
results of the Music Genome Project to make selections that the listener is likely to enjoy. By April 2013, Pandora’s
radio streaming service had exceeded 200 million users. Do you listen to Pandora?4

Let’s assume it is not, but we’ll come back to this point later. FIGURE 6.6(b) shows the
results after the first time through the loop, dividing 93 by 8. The quotient is 11, so we
repeat the process.

FIGURE 6.6(c) displays the values after this repetition. The quotient is not 0, so we
divide 1 by 8, giving the situation in FIGURE 6.6(d). Now quotient is 0, so the process
stops.

One of our boxes, decimalNumber, originally contained the initial data value for the
problem, the number to be converted. In a computer algorithm, we must give instructions
to someone at the keyboard to input this value. Box newBase did not change throughout
the process, but it too must be input from the keyboard because the algorithm is to change
a decimal number into some other base. So the new base—base 8 in this case—must be
input to the problem.

When we went through this algorithm, we knew that quotient had not been calculated
yet, so we could assume it was not 0. In an algorithm for a computer to follow, we must
make sure that the quotient is not 0 by setting it to some nonzero value initially.

Here is the same algorithm rewritten in concrete steps from which a program could be
written. DIV is an operator that returns the decimal quotient, and REM is an operator that
returns the decimal remainder.

210

Writing a Pseudocode Algorithm
Here we will walk you through the algorithm development process on a small scale,
pointing out strategies that we are using. In Chapter 7, we consider writing algorithms in
more depth.

Let’s read in pairs of positive numbers and print each pair in order. If there is more
than one pair of numbers, we must have a loop. Here is a first approximation of the
algorithm:

How do we know when to stop? That is, how do we break down not done into a
question? We can ask the user to tell you how many pairs are to be entered. Here is the
second pass:

How do we determine the order of the numbers? We compare the values using the
conditional construct. If number1 is less than number2, we print number1 and then
number2. Otherwise, we print number2 and then number1. Before we complete the

211

algorithm, have we forgotten anything? numberRead never changes! We must increment
numberRead.

In going through the process of writing this algorithm, we used two major strategies.
We asked questions and we deferred details. Asking questions is a strategy with which most of
us are familiar. Deferring details means giving a task a name and then filling in the details
of how to accomplish that task at a later time. That is, we first wrote the algorithm using
more pairs and print them in order; then we filled in the details of how to accomplish
these tasks at a later time. This strategy is known as divide and conquer.

An algorithm is not complete until it has been tested. We can use the same technique
that we relied on to simulate the base conversion algorithm: We can choose data values and
work through the code with paper and pencil. This algorithm has four variables that we
must trace: numberOfPairs, numberRead, number1, and number2. Let’s assume the user
enters the following data when prompted:

FIGURE 6.7(a) shows the values of the variables at the beginning of the loop.
numberRead is less than numberOfPairs, so the loop is entered. The prompt is issued and
the two numbers are read. number1 is 10 and number2 is 20, so the if statement takes the
then branch. number1 is printed, followed by number2. numberRead is incremented.
FIGURE 6.7(b) shows the values at the end of the first repetition. numberRead is still less
than numberOfPairs, so the code is repeated. The numbers are prompted for and read.
number1 is 20 and number2 is 10, so the else branch is taken. number2 is printed, followed
by number1. numberRead is incremented, resulting in the state of the variables at the end of
the second iteration as shown in FIGURE 6.7(c).

212

FIGURE 6.7 Walk-through of pairs algorithm

numberRead is less than numberOfPairs, so the code is repeated. The inputs are
prompted for and read, making number1 10 and number2 10. Because number1 is not less
than number2, the else branch is taken. number2 is printed, followed by number1. Because
the values are the same, it doesn’t matter in which order they are printed. numberRead is
incremented. numberRead is now not less than numberOfPairs, so the code is not repeated.

In this process, which is called desk checking, we sit at a desk with a pencil and paper
and work through the design. It is useful to take actual data values and trace what happens
to them as we reason about the design. This technique is simple but amazingly effective.

Desk checking Tracing the execution of a design on paper

Translating a Pseudocode Algorithm
In Chapter 1, we described the layers of languages that were produced over time. In this
chapter, we began with machine language (the lowest layer) and moved up one step to
assembly language. How we translate a pseudocode algorithm depends on the language into
which we are translating the algorithm. Here, where we are limited by the limits of an
assembly language, one pseudocode statement requires several Pep/8 statements.

We have written our algorithm as an interactive program. That is, the program asks the
user to do something. In this case, the first instruction was to write a request to the user to
enter the number of pairs. This is exceptionally easy in a high-level language, but more
complicated in Pep/8. First we have to set up the message using a .ASCII pseudo-
operation and then set up the code to have it written out. Let’s shorten the message to
“Enter number.” STRO, an instruction we have not seen before, is used to print the
message.

213

Reading the number of pairs can be done in one Pep/8 statement. Setting the number
read to 0 can be done in one pseudo-operation. We set up the loop by loading the number
read into the A register and comparing it with the number to be read. Once within the
loop, a second instruction is given to the user. Let’s put these pieces together.

Konrad Zuse

© Karl Staedele/dpa/Corbis

Konrad Zuse was born in Berlin on June 22, 1910.5 He attended the Humanistisches
Gymnasium and studied civil engineering at the Technische Hochschule of Berlin-
Charlottenburg. After graduation he worked briefly for the Ford Motor Company and
then went to work for Henschel & Son, a maker of transportation equipment.6

In 1935 in his parent’s flat, Zuse started experimenting in the construction of a
machine to take over the boring calculations required in engineering. His first attempt
was the Z1, which had a floating-point binary mechanical calculator. Zuse’s 1936 patent
application anticipated the von Neumann architecture by nine years, with program and
data modifiable in storage.7 Zuse briefly served in the German infantry but persuaded
the army to let him return to building computers.8

Between 1936 and 1945, Zuse continued to improve on the Z1 with his Z2, Z3,
and Z4 machines. The Z1, along with its original blueprints, were destroyed in a British
air raid in World War II. Because of World War II, Zuse worked in near-total isolation,
knowing nothing of the work of Turing, Atanasoff, or Eckert and Mauchly.

In 1946, Zuse founded one of the earliest computer companies, and in 1949, he
founded a second computer company. Zuse KG produced the Z4, the world’s first
commercial computer, and delivered it to ETH Zurich. Zuse KG built a total of 251
computers and was eventually sold to Siemens.

While working on the Z4, Zuse concluded that programming in machine code was
too complicated. As the war progressed, he had to flee Berlin for the countryside, where
there was no hardware to work on. There he designed the first high-level programming
language, Plankalkul (Plan Calculus). Although it was never implemented, this was the

214

first attempt at a general programming language.
In the late 1980s, with funding from Siemens and five other computer companies,

Zuse built a working reconstruction of the Z1, which is now displayed at the Deutsches
Technikmuseum in Berlin.

Konrad Zuse married Gisela Brandes in January 1945 in a very formal ceremony.
The couple had five children. He died on December 18, 1995, in Germany. The 100th
anniversary of his birth was celebrated with exhibitions, lectures, and workshops to
remember the life and legacy of this computing pioneer.

Now we must translate the loop body, which requires writing a message, reading two
values, and comparing them. The first two tasks require only one Pep/8 statement each, but
the if-then-else statement will take more work. We must write the code to print each of the
two statements, give names to the first instruction in each code block, and then determine
which block should be executed.

Because you may never see assembly language again, we just present the source code
listing. Note that we used one command that we have not covered: CPA, which compares
the value in the accumulator to the value stored in a place in memory.

215

?
Certification and licensing

Certification is the process by which nongovernmental organizations grant recognition to an individual who has
met predetermined qualifications specified by the organization. Licensing is a government’s grant of legal authority,
which is not voluntary. Almost anyone who provides a service to the public is required to be licensed or certified;
computer professionals do not.

6.6 Testing
We briefly tested our programs by executing them to see if they produced the output we
expected. However, there is far more to testing than just running the program once. Let’s
look at testing in more detail in the program that reads in three numbers and prints their
sum. How do we test a specific program to determine its correctness? We design and
implement a test plan. A test plan is a document that specifies how many times and with
which data a program must be run to thoroughly test the program. Each set of input data
values is called a test case. The test plan should list the reason for choosing the data, the data
values, and the expected output from each case.

Test plan A document that specifies how a program is to be tested

The test cases should be chosen carefully. Several approaches to testing can be used to
guide this process. Code coverage is an approach that designs test cases to ensure that each
statement in the program is executed. Because the code is visible to the tester, this approach
is also called clear-box testing. Data coverage, another approach, calls for designing test

216

cases to ensure that the limits of the allowable data are covered. Because this approach is
based solely on input data and not the code, it is also called black-box testing. Often
testing entails a combination of these two approaches.

Code coverage (clear-box) testing Testing a program or subprogram based on covering all the statements in the
code

Data coverage (black-box) testing Testing a program or subprogram based on the possible input values, treating
the code as a black box

Test plan implementation involves running each of the test cases described in the test
plan and recording the results. If the results are not as expected, you must go back to your
design and find and correct the error(s). The process stops when each of the test cases gives
the expected results. Note that an implemented test plan gives us a measure of confidence
that the program is correct; however, all we know for sure is that our program works
correctly on the test cases. Therefore, the quality of the test cases is extremely important.

Test plan implementation Using the test cases specified in a test plan to verify that a program outputs the
predicted results

In the case of the program that reads in three values and sums them, a clear-box test
would include just three data values. There are no conditional statements in this program
to test with alternate data. However, a clear-box test would not be sufficient here, because
we need to try both negative and positive data values. The numbers that are being read in
are stored in one word. The problem does not limit values to ±215 − 1, but our
implementation does. We should also try values at the limits of the size of the allowed
input in the test plan, but because they are being summed, we need to be sure the sum does
not exceed ±215 − 1.

To implement this test plan, we ran the program six times, once for each test case. The
results were then written in the “Observed Output” column. They were what we had
predicted.

217

SUMMARY

A computer can store, retrieve, and process data. A user can enter data into the machine,
and the machine can display data so that the user can see it. At the lowest level of
abstraction, instructions to the machine directly relate to these five operations.

A computer’s machine language is the set of instructions that the machine’s hardware is
built to recognize and execute. Machine-language programs are written by entering a series
of these instructions in their binary form. The Pep/8 is a virtual computer with an A
register and two-part instructions. One part of the instruction tells which action the
instruction performs, and the other part specifies where the data to be used (if any) can be
found. Programs written using the Pep/8 instruction set can be run using a simulator—a
program that behaves like the Pep/8 computer.

The Pep/8 assembly language is a language that allows the user to enter mnemonic
codes for each instruction rather than binary numbers. Programs written in assembly
language are translated into their machine-language equivalents, which are then executed
using the Pep/8 simulator.

Pseudocode is a shorthand-like language that people use to express algorithms. It allows
the user to name variables (places to put values), input values into variables, and print out
the values stored in variables. Pseudocode also allows us to describe algorithms that repeat
actions and choose between alternative actions. Asking questions and deferring details are
two problem-solving strategies used in algorithm design.

Programs, like algorithms, must be tested. Code coverage testing involves determining
the input to the program by looking carefully at the program’s code. Data coverage testing
involves determining the input by considering all possible input values.

ETHICAL ISSUES
Software Piracy

Have you ever upgraded your operating system by borrowing the latest software from a
friend? Or, when you spent only $50 to purchase sophisticated software, did you ignore
your suspicion that this “steal” was too good to be true? The casual attitude of many
toward duplicating, downloading, and reselling software has made software piracy a
critical issue for the computer industry. Research conducted by the Business Software
Alliance found that globally, $11.5 billion in potential revenue was lost in 2000 to
pirated software. This figure rose to $48 billion in 2007 and $51 billion in 2009. By
2011, the figure was $63.4 billion.

Software piracy is defined as the unlawful reproduction of copyrighted software or a
violation of the terms stated in the software’s license. A software license is a document
that outlines the terms by which the user may use the software purchased. When you
lend software to a friend or download software onto multiple computers without having
a license that permits this, you are failing to adhere to the license agreement and are, in
fact, breaking the law.

218

Why is software copyrighted? Unlike an idea or written work, software has
functionality. This unique quality distinguishes software from other forms of intellectual
property and complicates its need for copyrighting. While a number of programs have
open-source code, such as the Linux operating system, companies such as Microsoft®
have chosen to protect their code. Copyrighting software is the only way to protect your
code.

Who is involved in software piracy? In 2011, 42% of programs worldwide were
thought to be pirated. In Armenia, Bangladesh, Moldova, Azerbaijan, and Zimbabwe,
more than 90% of programs are thought to be pirated.9 In general, the highest piracy
rates are in developing counties, and the lowest are in Europe, Japan, and the United
States.

Respecting the copyrights of software (if it is not open code) is important from
several perspectives. According to John Gantz, chief research officer at IDC, “Lowering
software piracy by just 10 percentage points during the next four years would create
nearly 500,000 new jobs and pump $140 billion into ailing economies.”10

Using pirated software also puts users at risk by potentially exposing them to
software viruses. The person who freely “borrows” software from a friend is actually
stealing, and this action can have significant ramifications.

KEY TERMS

Algorithm
Assembler
Assembler directives
Assembly language
Boolean expression
Code coverage (clear-box) testing
Comment
Desk checking
Data coverage (black-box) testing
Loader
Machine language
Pseudocode
Test plan
Test plan implementation
Virtual computer (machine)

EXERCISES

For Exercises 1–15, mark the answers true or false as follows:
A. True

219

B. False
 1. Arithmetic can be performed in the instruction register.
 2. Arithmetic can be performed in the A register.
 3. Arithmetic can be performed in the accumulator.
 4. LDA 0X008B,i loads 008B into register A.
 5. ADDA 0x008B,i adds the contents of 008B to the A register.
 6. The program counter and the instruction register are two names for the same

place.
 7. The A register and the accumulator are two names for the same place.
 8. The instruction register is 3 bytes long.
 9. The program counter is 3 bytes long.
10. The branch instruction, BR, branches to the location specified in the operand

specifier.
11. The instruction specifier is 1 byte long.
12. If the data to be loaded into the accumulator is stored in the operand, the

instruction specifier is 00.
13. If the data in the accumulator is to be stored in the place named in the operand,

the instruction specifier is 00.
14. All Pep/8 instructions occupy 3 bytes.
15. At least one branching instruction is required in a loop.

Given the following state of memory (in hexadecimal), complete Exercises 16–20 by
matching the problem to the solution shown.

a. A2 11
b. A2 12
c. 00 02
d. 11 00
e. 00 FF

16. What are the contents of the A register after the execution of this instruction?
C1 00 01

17. What are the contents of the A register after the execution of this instruction?
C1 00 02

18. What are the contents of the A register after the execution of the following two
instructions?
C0 00 01 70 00 01

19. What are the contents of the A register after the execution of the following two
instructions?
C1 00 01 70 00 01

20. What are the contents of location 0001 after the execution of the following two
instructions?
C1 00 03

220

E0 00 01

Exercises 21–60 are programs or short-answer questions.
21. What does it mean when we say that a computer is a programmable device?
22. List five operations that any machine language must include.
23. How many low-level tasks can each machine-language instruction perform?
24. What is a virtual machine? Discuss this definition in terms of the Pep/8 computer.
25. How many bits does an instruction take in Pep/8?
26. Describe the features of the Pep/8 CPU that we covered in this chapter.
27. Where is the data (operand) if the address mode specifier is

a. 000?
b. 001?

28. We discussed two mode specifiers. How many are there?
29. Distinguish between the IR (instruction register) and the PC (program counter).
30. How many bits are required to address the Pep/8 memory?
31. How many more cells could be added to memory without having to change the

instruction format? Justify your answer.
32. Some Pep/8 instructions are unary, taking only 1 byte. Other instructions require

3 bytes. Given the instructions that we have covered in this chapter, would it be
useful to define instructions that require only 2 bytes?

33. If the input character is A, what is the result of executing the following two
instructions?

34. If the input number is 5, what is the contents of the A register after executing the
following instructions?

35. Write the algorithm for writing out your name, given that the implementation
language is Pep/8 machine code.

36. Write the machine-language program to implement the algorithm in Exercise 35.
37. Write the algorithm for writing out your name, given that the implementation

language is Pep/8 assembly language.
38. Write the assembly-language program to implement the algorithm in Exercise 37.
39. Rewrite the example program in Section 6.3 using direct addressing.
40. Distinguish between the Pep/8 menu options Assemble, Load, and Execute (run).
41. The following program seems to run, but does strange things with certain input

values. Can you find the bug?

221

42. Correct the code in Exercise 41 and run the test plan outlined in the chapter.
43. Finish executing the test plan for the algorithm in the text that reads and sums

three values.
44. Write a pseudocode algorithm that reads in three values and writes out the result

of subtracting the second value from the sum of the first and third values.
45. Implement the algorithm in Exercise 44 as an assembly-language program.
46. Write and implement a test plan for the program in Exercise 45.
47. Design and implement, in assembly language, an algorithm that reads four values

and prints the sum.
48. Is the test plan for a machine-language program valid for the same solution written

in assembly language? Explain your answer.
49. Distinguish between the pseudo-operations .BLOCK and .WORD.
50. Distinguish between assembly-language pseudo-operations and mnemonic

instructions.
51. Distinguish between test plans based on code coverage and data coverage.
52. Which button on the Pep/8 console must be clicked for keyboard input?
53. Write the Pep/8 assembly-language statement for the following instructions:

a. Branch to location Branch1 if the accumulator is zero.
b. Branch to location Branch1 if the accumulator is negative.
c. Branch to location Branch1 if the accumulator is negative and to Branch2 if the

accumulator is not negative.
54. Write a pseudocode algorithm to read in a name and write a “Good morning”

message.
55. Write a pseudocode algorithm to get three integers from the user and print them

in numeric order.
56. Enclose the design in Exercise 55 within a loop that reads in the three values until

the user enters the first value of the trio as negative.
57. Rewrite the algorithm in Exercise 56 so that the user has to enter only one negative

value to stop (that is, the second and third values are not entered).
58. Distinguish between pseudocode and pseudo-operations.

222

59. What are the constructs that pseudocode must be able to express?
60. Distinguish between the looping construct and the selection construct.

THOUGHT QUESTIONS

 1. Would you like to do assembly-language programming? Can you think of any
personality types that would be well suited for such detail-oriented work?

 2. The translation process has been demonstrated by showing the machine-language
program that is the result of the assembly-language program. Look carefully at the
solution in Exercise 45. Think about the steps that the assembler program must
execute. Do you think that the translation can be made by looking at each
assembly-language instruction once, or must each one be examined twice?
Convince a friend that you are right.

 3. If a person has two computers of the same kind, is it ethical to buy one copy of a
software package and install it on both machines? What are the arguments on the
yes side? What are the arguments on the no side?

 4. Has anyone borrowed software from you? Do you think he or she copied it?

223

THE PROGRAMMING LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits
5 Computing Components

The Programming Layer
6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages

The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer
15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion
18 Limitations of Computing

224

7 PROBLEM SOLVING AND
ALGORITHMS

In Chapter 6, we looked at machine code, which uses binary numbers to represent
operations, and assembly language, which uses mnemonics to represent operations.
Assembly languages are a step in the right direction, but the programmer still must think in
terms of individual machine instructions. We also introduced pseudocode, an artificial
language designed for expressing algorithms. We begin this chapter with a brief discussion
of problem solving in general.

Computer science is sometimes defined as “the study of algorithms and their efficient
implementation in a computer.” The focus of this chapter is on algorithms: their role in
problem solving, strategies for developing them, techniques for following and testing them.
We choose classic searching and sorting algorithms as the context for the discussion on
algorithms.

Because algorithms operate on data, we examine ways to structure data so that it can be
more efficiently processed.

GOALS
After studying this chapter, you should be able to:

■ describe the computer problem-solving process and relate it to Polya’s How to Solve It list.
■ distinguish between a simple type and a composite type.
■ describe three composite data-structuring mechanisms.
■ recognize a recursive problem and write a recursive algorithm to solve it.
■ distinguish between an unsorted array and a sorted array.
■ distinguish between a selection sort and an insertion sort.
■ describe the Quicksort algorithm.
■ apply the selection sort, the bubble sort, insertion sort, and Quicksort to an array of items by hand.
■ apply the binary search algorithm.
■ demonstrate your understanding of the algorithms in this chapter by hand-simulating them with a sequence of

items.

7.1 How to Solve Problems
In 1945, George Polya wrote a little book entitled How to Solve It: A New Aspect of
Mathematical Method.1 Although this book was written more than 60 years ago, when
computers were still experimental, it remains the classic description of the problem-solving

225

process. The process is summarized in FIGURE 7.1.

FIGURE 7.1 Polya’s How to Solve It list
Reproduced from POLYA, G.; HOW TO SOLVE IT. © 1945 Princeton University Press, 1973 renewed PUP.
Reproduced with permission of Princeton University Press

What has made Polya’s book a classic is that his How to Solve It list is quite general.
Although it was written in the context of solving mathematical problems, we can replace
the word unknown with problem, data with information, and theorem with solution, and the
list becomes applicable to all types of problems. Of course, it is the second step—finding
the connection between the information and the solution—that lies at the heart of problem
solving. Let’s look at several strategies suggested by Polya’s list.

Ask Questions
If you are given a problem or task verbally, you typically ask questions until what you are to
do is clear. You ask when, why, and where until your task is completely specified. If your
instructions are written, you might put question marks in the margin; underline a word, a
group of words, or a sentence; or in some other way indicate the parts of the task that are

226

not clear. Perhaps your questions might be answered in a later paragraph, or you might
have to discuss them with the person giving you the task. If the task is one that you set for
yourself, this sort of questioning might not be verbal, but instead takes place on the
subconscious level.

Some typical questions you should be asking are as follows:

■ What do I know about the problem?
■ What does the solution look like?
■ What sort of special cases exist?
■ How will I recognize that I have found the solution?

Look for Familiar Things
You should never reinvent the wheel. If a solution exists, use it. If you’ve solved the same or
a similar problem before, just repeat the successful solution. We usually don’t consciously
think, “I have seen this before, and I know what to do”—we just do it. Humans are good at
recognizing similar situations. We don’t have to learn how to go to the store to buy milk,
then to buy eggs, then to buy candy. We know that going to the store is always the same
and only what we buy is different.

Recognizing familiar situations is particularly useful in computing. In computing, you
see certain problems again and again in different guises. A good programmer sees a task, or
perhaps part of a task (a subtask), that has been solved before and plugs in the solution. For
example, finding the daily high and low temperatures in a list of temperatures is exactly the
same problem as finding the highest and lowest grades in a list of test scores. You want the
largest and smallest values in a set of numbers.

Divide and Conquer
We constantly break up a large problem into smaller units that we can handle. The task of
cleaning the house or apartment, for example, may seem overwhelming. By contrast, the
individual tasks of cleaning the living room, the dining room, the kitchen, the bedrooms,
and the bathroom seem more manageable. This principle is especially relevant to
computing: We break up a large problem into smaller pieces that we can solve individually.

This approach applies the concept of abstraction that we discussed in Chapter 1—
cleaning the house is a large, abstract problem made up of the subtasks defined by cleaning
the individual rooms. Cleaning a room can also be thought of as an abstraction of the
details of straightening the dresser, making the bed, vacuuming the floor, and so on. Tasks
are divided into subtasks, which can be divided further into sub-subtasks and so forth. The
divide-and-conquer approach can be applied over and over again until each subtask is
manageable.

We applied two of these strategies in the last chapter when we asked questions and
deferred details in designing the algorithm to read in two numbers and output them in
order.

227

Algorithms
The last sentence in the second step in Polya’s list says that you should eventually obtain a
plan of the solution. In computing, this plan is called an algorithm. We have used the term
many times; here we define it in computing terms. Formally, an algorithm is a set of
instructions for solving a problem or subproblem in a finite amount of time using a finite
amount of data. Implicit in this definition is the understanding that the instructions are
unambiguous.

Algorithm Unambiguous instructions for solving a problem or subproblem in a finite amount of time using a finite
amount of data

In computing, we must make certain conditions explicit that are implicit in human
solutions. For example, in everyday life we would not consider a solution that takes forever
to be much of a solution. We would also reject a solution that requires us to process more
information than we are capable of processing. These constraints must be explicit in a
computer solution, so the definition of an algorithm includes them.

The third step in Polya’s list is to carry out the plan—that is, to test the solution to see
if it solves the problem. The fourth step is to examine the solution for future applicability.

George Polya

© AP Photos

George Polya was born in Budapest on December 13, 1887. Although he eventually
became a world-famous mathematician, he did not show an early interest in
mathematics. Polya’s lack of interest might be explained by his memory of three high
school mathematics teachers: “two were despicable and one was good.”

In 1905, Polya entered the University of Budapest, where he studied law at the
insistence of his mother. After one very boring semester, he decided to study languages
and literature. He earned a teaching certificate in Latin and Hungarian—and never used
it. He became interested in philosophy and took courses in math and physics as part of

228

his philosophy studies. He settled on mathematics, commenting that “I am too good for
philosophy and not good enough for physics. Mathematics is in between.” He received
his PhD in mathematics in 1912, which launched his career.

Polya did research and taught at the University of Göttingen, the University of
Paris, and the Swiss Federation of Technology in Zurich. While in Zurich he interacted
with John von Neumann, about whom he said, “Johnny was the only student I was ever
afraid of. If, in the course of a lecture, I stated an unsolved problem, the chances were
he’d come to me as soon as the lecture was over, with the complete solution in a few
scribbles on a slip of paper.”

Like many Europeans of that era, Polya moved to the United States in 1940 because
of the political situation in Germany. After teaching at Brown University for two years,
he moved to Palo Alto, California, to teach at Stanford University, where he remained
for the rest of his career.

Polya’s research and publications encompassed many areas of mathematics,
including number theory, combinatorics, astronomy, probability, integral functions,
and boundary value problems for partial differential equations. The George Polya Prize
is given in his honor for notable applications of combinatorial theory.

Yet, for all George Polya’s contributions to mathematics, it is his contribution to
mathematics education of which he was the most proud and for which he will be the
most remembered. His book How to Solve It, published in 1945, sold more than 1
million copies and was translated into 17 languages. In this book, Polya outlines a
problem-solving strategy designed for mathematical problems. The generality of the
strategy makes it applicable to all problem solving, however. Polya’s strategy is the basis
of the computer problem-solving strategy outlined in this text. Mathematics and
Plausible Reasoning, published in 1954, was another book dedicated to mathematics
education. Polya not only wrote about mathematics education, but also took an active
interest in the teaching of mathematics. He was a regular visitor to the schools in the
Bay Area and visited most of the colleges in the western states. The Math Center at the
University of Idaho is named for him.

On September 7, 1985, George Polya died in Palo Alto at the age of 97.

Computer Problem-Solving Process
The computer problem-solving process includes four phases: the analysis and specification
phase, the algorithm development phase, the implementation phase, and the maintenance phase.
See FIGURE 7.2. The output from the first phase is a clearly written problem statement.
The output from the algorithm development phase is a plan for a general solution to the
problem specified in the first phase. The output from the third phase is a working
computer program that implements the algorithm—that is, a specific solution to the
problem. There is no output from the fourth phase, unless errors are detected or changes
need to be made. If so, these errors or changes are sent back either to the first, second, or
third phase, whichever is appropriate.

FIGURE 7.3 shows how these phases interact. The black lines show the general flow
through the phase. The red lines represent paths that can be taken to backtrack to a
previous phase if a problem occurs. For example, during the process of producing an

229

algorithm, an error or contradiction in the specification may be found, in which case the
analysis and specification must be corrected. Likewise, an error in the program may indicate
that an algorithm must be corrected.

All of Polya’s phases are included in this outline of how we solve problems using the
computer. The first step is always to understand the problem. You cannot write a computer
solution to a problem you don’t understand. The next step is to develop a plan—an
algorithm—for the solution and express it in pseudocode. It is this phase on which we
concentrate in this chapter.

FIGURE 7.2 The computer problem-solving process

The next step is to implement the plan in such a way that the computer can execute it
and test the results. In Polya’s list, the human executes the plan and evaluates the results. In
a computer solution, a program is written expressing the plan in a language that the
computer can execute. But it is the human who takes the results of the computer program
and checks them to confirm that they are correct. The maintenance phase maps to Polya’s
last stage, where the results are examined and perhaps modified.

In this chapter we end the process at the pseudocode level. This text is language neutral;
that is, we do not cover a high-level language in detail. However, some of you may be
learning one in parallel with this text. In any case, remember that an algorithm must be
written before any coding in a programming language can be done.

230

FIGURE 7.3 The interactions among the four problem-solving phases

Summary of Methodology
The methodology for designing algorithms can be broken down into four major steps:

1. Analyze the Problem
Understand the problem! List the information you have to work with. This information
will probably consist of the data in the problem. Specify what the solution will look like. If
it is a report, specify the format. List any assumptions that you are making about the
problem or the information. Think. How would you solve the problem by hand? Develop
an overall algorithm or general plan of attack.

2. List the Main Tasks
The listing of the main tasks is called the main module. Use English or pseudocode to
restate the problem in the main module. Use task names to divide the problem into
functional areas. If the main module is too long, you are including too much detail for this
level. Introduce any control structures that are needed at this point. Re-sequence the
subparts logically, if needed. Postpone details to lower levels.

Don’t worry if you don’t know how to solve a task. Just pretend you have a “smart
friend” who has the answer and postpone thinking about it until later. All you have to do in
the main module is to give the names of lower-level modules that solve certain tasks. Use
meaningful identifiers.

231

3. Write the Remaining Modules
There is no fixed number of levels. Modules at one level can specify more modules at lower
levels. Each module must be complete, even if it references unwritten modules. Do
successive refinements through each module until each statement is a concrete step.

4. Re-sequence and Revise as Necessary
Plan for change. Don’t be afraid to start over. Several attempts and refinements may be
necessary. Try to maintain clarity. Express yourself simply and directly.

The problem-solving strategy that parallels Polya’s outline is known as top-down design.
It produces a hierarchy of tasks to be solved. In Chapter 9, we introduce a strategy called
object-oriented design, which produces a hierarchy of data objects.

?
Rosetta Stone as a translation system

The Rosetta Stone was unearthed by Napoleon’s troops in 1799. The stone contained a proclamation marking the
first anniversary of the coronation of Ptolemy V, inscribed in three languages: hieroglyphics, demotic (a cursive
version of hieroglyphs), and Greek. Thomas Young, a British physicist, and Francois Champollion, a French
Egyptologist, were able to decipher the ancient Egyptian languages using the Greek as a guide. Thus the Rosetta
Stone provided the key that unlocked the translation of Egyptian hieroglyphics.

Testing the Algorithm
The goal of mathematical problem solving is to produce a specific answer to a problem, so
checking the results is the equivalent of testing the process by which the answer was
derived. If the answer is correct, the process is correct. However, the goal of computer
problem solving is to create the right process. The algorithm that embodies this process may
be used again and again with different data, so the process itself must be tested or verified.

Testing an algorithm often involves running the program into which the algorithm is
coded under various conditions and examining the results for problems. However, this type
of testing can be done only when the program is complete, or at least partially complete,
which is far too late to rely on just this kind of testing. The earlier that problems are
discovered and fixed, the cheaper and easier it is to address them.

Clearly, we need to perform testing at earlier stages in the development process.
Specifically, the algorithms must be tested prior to implementing them. We demonstrated
this process as we worked through the base-changing algorithm.

7.2 Algorithms with Simple Variables
Simple (atomic) variables are those that cannot be divided. They are a value stored in a
place. We used simple variables in the algorithms in Chapter 6. Numbers, for example, are
simple variables.

232

An Algorithm with Selection
Suppose you want to write an algorithm to express what dress is appropriate for a given
outside temperature. You would like to wear shorts if it is hot, short sleeves if it is nice but
not too hot, a light jacket if the temperature is chilly, and a heavy coat if it is cold. If the
temperature is below freezing, you stay inside.

The top-level (main) module just expresses the tasks.

The first two statements do not need further decomposing. However, Determine dress
does. We need to associate temperatures with our descriptions. Let’s define hot as anything
above 90, nice as above 70, chilly as above 50, and cold as above 32. Now we can write the
pseudocode for Determine dress.

The only way to get to the second if statement is if the first expression is not true; thus,
if the second expression is true, you know that the temperature is between 71 and 90. If the
first and second expressions are not true and the third is, then the temperature is between
51 and 70. The same reasoning leads to the conclusion that Philadelphia weather is
between 33 and 50, and “Stay inside” is written if the temperature is less than or equal to
32. Any one of the branches can contain a sequence of statements.

Algorithms with Repetition

233

There are two basic types of loops: count controlled and event controlled.

Count-Controlled Loops
A count-controlled loop is a loop that repeats a process a specified number of times. The
looping mechanism simply counts each time the process is repeated and tests whether it has
finished before beginning again. This was the type of loop we used in Chapter 6.

There are three distinct parts to this kind of loop, which makes use of a special variable
called a loop control variable. The first part is initialization: The loop control variable is
initialized to some starting value. The second part is testing: Has the loop control variable
reached a predetermined value? The third part is incrementation: The loop control variable
is incremented by 1. The following algorithm repeats a process limit times:

The loop control variable, count, is set to 0 outside the loop. The expression count < limit
is tested, and the loop is executed as long as the expression is true. The last statement in the
loop increments the loop control variable, count. How many times does the loop execute?
The loop executes when count is 0, 1, 2, …, limit – 1. Thus the loop executes limit times.
The initial value of the loop control variable and the relational operator used in the Boolean
expression determine the number of times the loop executes.

The while loop is called a pretest loop, because the testing takes place before the loop is
executed. If the condition is false initially, the loop is not entered. What happens if the
incrementation statement is omitted? The Boolean expression never changes. If the
expression was false to begin with, nothing happens; the loop just is not executed. If the
expression is true to begin with, the expression never changes, so the loop executes forever.
Actually, most computing systems have a timer, so the program would not really run
forever. Instead, the program would halt with an error message. A loop that never
terminates is called an infinite loop.

This algorithm from Chapter 6 contains a count-controlled loop:

234

Pep/8 used a semicolon to indicate that what followed was a comment and not part of the
program. In our pseudocode, we use two forward slashes to preface a comment.

Event-Controlled Loops
Loops in which the number of repetitions is controlled by an event that occurs within the
body of the loop itself are called event-controlled loops. When implementing an event-
controlled loop using a while statement, there are again three parts to the process: The
event must be initialized, the event must be tested, and the event must be updated. The
base conversion algorithm from Chapter 6 contains an event-controlled loop:

A count-controlled loop is very straightforward: The process is repeated a specified
number of times. The activity in an event-controlled loop is less clear cut. It may not be
immediately apparent what the event should be.

Let’s look at a couple of examples. First, let’s read and sum data values until we read a
negative value. What is the event? Reading a positive value. How do we initialize the event?
We read the first data value. We test the value to determine whether it is positive and enter
the loop if it is. How do we update the event? We read the next data value. Here is the
algorithm:

235

Now let’s write the algorithm for reading and summing positive values until 10 have
been counted. We will ignore zero or negative values. What is the event? The number of
positive values read is less than 11. This means that we must keep a count of the number of
positive values as we read them; let’s call it posCount. How do we initialize the event? We
set posCount to 0. We test posCount against 10, and exit the loop when posCount reaches
10. How do we update the event? We increment posCount each time we read a positive
value.

This is not a count-controlled loop because we do not read 10 values: We read values until
we have read 10.

Notice the selection control structure embedded within the loop. The statements to be
executed or skipped in any control structure can be simple statements or compound
statements (blocks of indented statements)—there is no constraint on what these
statements can be. As a consequence, the statement to be skipped or repeated can contain a
control structure. Selection statements can be nested within looping structures; looping
structures can be nested within selection statements. Structures in which one control
structure is embedded within another control structure are called nested structures.

Nested structure (nested logic) A structure in which one control structure is embedded within another

Let’s work through another example: finding the square root of a number.

236

Square Root
Most students have to compute a square root in school. A rather complicated algorithm has
been developed that works on integer values. We do not look at that algorithm here, but
rather use a much simpler approximation that works on real numbers as well as integers.

Given the number of which you wish to find the square root, take the number and
make a guess at the answer; then take the guess and square it. If your guess is correct, the
guess squared is equal to the original value. If it is not, you adjust your guess and begin
again. This process continues until the guess squared is close enough. Do you understand
the problem? If not, reread this paragraph.

Now let’s outline the major tasks:

Read in square does not need further expansion. Calculate the square root does need
further expansion, because it is the heart of the algorithm. Clearly there is a loop: We keep
refining the guess until the guess is good enough. Is it a count-controlled loop or an event-
controlled loop? Because we have no idea how many iterations the process will take, it must
be an event-controlled loop.

What do we mean by “good enough”? Let’s say that if the difference between the guess
squared and the original value is within plus or minus 0.001, the guess is good enough;
we’ll call this difference epsilon. How do we measure “plus or minus”? We take the
absolute value of the difference. We indicate this by the expression abs(epsilon), which
stands for absolute value.

Now the only step that needs further expansion is Calculate new guess. Now we need
to ask questions: What is the formula for calculating the new guess? We search online for
“square root formula” and find the answer in Wikipedia. We replace the old guess by the
average between the old guess and the square divided by the old guess.

237

In looking up the formula, we find that we had forgotten something: What is the
original guess? Any positive value will work, but the solution is found with fewer iterations
if the original guess is closer to the square root. A good approximation for the original guess
is the square divided by 4. We do not need to have variables for old guess and new guess.
We can call it guess and just keep changing its value. Here, then, is the completed
algorithm:

Let’s desk check this algorithm with a value to which we know the answer: 81.
FIGURE 7.4 shows the algorithm walk-through. It takes only four iterations to get the
answer correct to five decimal places.

A step that needs to be expanded further is called an abstract step. A step that does not
need to be expanded is called a concrete step. From here on we will color the abstract steps
red. Each abstract step must be expanded separately.

Abstract step An algorithmic step for which some details remain unspecified

Concrete step A step for which the details are fully specified

238

FIGURE 7.4 Walk-through of the square root algorithm

7.3 Composite Variables
The places to store values described previously were all atomic in nature; that is, each place
could hold only one piece of data, which cannot be divided into smaller parts. We have also
used a string of letters within quotations to represent a message to be written out. As you
might expect, letters within quotations are called strings. If we were to store a string, the
number of locations required would depend on the number of characters in the string.
Thus a string is not atomic because it contains more than one value, but we tend to think
of strings as atomic anyway because we do not access the individual letters.

In this section, we describe two ways of collecting data items together, giving the
collection a name, and accessing the items individually or as a collection.

Arrays
An array is a named collection of homogeneous items in which individual items are accessed
by their place within the collection. The place within the collection is called an index.
Although people usually start counting at one, most programming languages start at zero—
so that is what we will do here. FIGURE 7.5 shows an array with 10 items indexed from 0
through 9.

239

FIGURE 7.5 An array of ten numbers

If the array is called numbers, we access each value by the expression

numbers[position]

where position, the index, is a value between 0 and 9.
Here is the algorithm to put values into the places in an array:

We indicate that numbers is an array that can hold integer values by listing integer
followed by the array name with the number of slots in brackets beside the name. In our
algorithms previously, we have not listed a variable; we have just assumed that when we use
a variable name that the variable exists. Now that we are using composite structures, we
need to say which kind of a structure we want.

Algorithms with arrays are classified into three categories: searching, sorting, and
processing. Searching is just what it says—going through the items in the array one at a
time looking for a particular value. Sorting is putting the items in the array into order. If the
items are numbers, they would be put into numeric order; if the items are characters or
strings, they would be put into alphabetic order. A sorted array is one in which the items

240

are in order. Processing is a catch-all phrase that encompasses all other computing done to or
with items in an array.

Records
A record is a named heterogeneous group of items in which individual items are accessed by
name. “Heterogeneous” means that the elements in the collection do not have to be the
same. The collection can contain integers, real values, strings, or any other type of data.
Records are good choices for bundling items together that relate to the same object. For
example, we might read in a name, an age, and an hourly wage. These three items could
then be bound together into a record named Employee. This record is made up of three
fields: name, age, and hourlyWage. We might draw them as seen in FIGURE 7.6.

?
Malware-infected software

In 2013, the National Intellectual Property Rights (IPR) Coordination Center, of which the FBI is a partner,
warned people in the United States about the real possibility that pirated software could contain malware. Such
software can be obtained from unknown sellers and peer-to-peer (P2P) networks.2

FIGURE 7.6 Record Employee

If we declare a record variable employee of type Employee, each field of the record is
accessed by the record variable, dot, and the field name. For example, employee.name refers
to the name field of the record variable employee. There are no specific algorithms designed
for records, because they are just a way of grouping related items. However, they are very
handy ways to refer to a group of related items.

The following algorithm stores values into the fields of the record:

A third composite data structure called a class characterizes object-oriented

241

programming. We discuss this structure in Chapter 9.

7.4 Searching Algorithms

Sequential Search

You have an appointment with your English teacher. You get to the correct building and
look for her name in the directory to find her office number. “Look for” is a synonym for
searching—that is, you search the directory for her name.

Our first searching algorithm follows this definition of searching exactly. We look at
each item in turn and compare it to the one for which we are searching. If it matches, we
have found the item. If not, we look at the next item. When do we stop? We stop either
when we have found the item or when we have looked at all the items and not found a
match. This sounds like a loop with two ending conditions. Let’s write the algorithm using
the array numbers.

Because we have a compound condition in the WHILE expression, we need to say a little
more about Boolean variables. AND is a Boolean operator. The Boolean operators include
the special operators AND, OR, and NOT. The AND operator returns TRUE if both
expressions are TRUE, and FALSE otherwise. The OR operator returns FALSE if both
expressions are FALSE, and TRUE otherwise. The NOT operator changes the value of the
expression. These operations are consistent with the functionality of the gates described in
Chapter 4. At that level, we were referring to the flow of electricity and the representation
of individual bits. At this level, the logic is the same, but we can talk in terms of an
expression as being either true or false.

We can simplify the second Boolean expression (found is FALSE) by using the NOT
operator. NOT found is true when found is false. So we can say

WHILE (index < 10 AND NOT found)

Thus the loop will repeat as long as the index is less than 10 and we haven’t found the
matching item.

Sequential Search in a Sorted Array

242

If we know that the items in the array are sorted, we can stop looking when we pass the
place where the item would be if it were present in the array. As we look at this algorithm,
let’s generalize our search somewhat. Rather than being specific about the number of items
in the array, we use a variable length to tell us how many valid items are in the array. The
length might be less than the size, which is the number of slots in the array. As data is being
read into the array, a counter is updated so that we always know how many data items were
stored. If the array is called data, the data with which we are working is from data[0] to
data[length – 1]. FIGURES 7.7 and 7.8 show an unordered array and a sorted array,
respectively.

FIGURE 7.7 An unsorted array

In the sorted array, if we are looking for 76, we know it is not in the array as soon as we
examine data[3], because this position is where the number would be if it were there. Here
is the algorithm for searching in a sorted array embedded in a complete program. We use
the variable index rather than position in this algorithm. Programmers often use the
mathematical identifier index rather than the intuitive identifier position or place when
working with arrays.

FIGURE 7.8 A sorted array

243

Binary Search
How would you go about looking for a word in a dictionary? We certainly hope you
wouldn’t start on the first page and sequentially search for your word! A sequential search
of an array begins at the beginning of the array and continues until the item is found or the
entire array has been searched without finding the item.

244

A binary search looks for an item in an array using a different strategy: divide and
conquer. This approach mimics what you probably do when you look up a word. You start
in the middle and then decide whether your word is in the right-hand section or the left-
hand section. You then look in the correct section and repeat the strategy.

The binary search algorithm assumes that the items in the array being searched are
sorted, and it either finds the item or eliminates half of the array with one comparison.
Rather than looking for the item starting at the beginning of the array and moving forward
sequentially, the algorithm begins at the middle of the array in a binary search. If the item
for which we are searching is less than the item in the middle, we know that the item won’t
be in the second half of the array. We then continue by searching the data in the first half
of the array. See FIGURE 7.9.

Binary search Looking for an item in an already sorted list by eliminating large portions of the data on each
comparison

FIGURE 7.9 Binary search example

Once again we examine the “middle” element (which is really the item 25% of the way
into the array). If the item for which we are searching is greater than the item in the
middle, we continue searching between the middle and the end of the array. If the middle
item is equal to the one for which you are searching, the search stops. The process
continues in this manner, with each comparison cutting in half the portion of the array
where the item might be. It stops when the item is found or when the portion of the array
where the item might be is empty.

245

Let’s desk check (walk through) the algorithm, searching for cat, fish, and zebra. Rather
than boxes, we use a tabular form in FIGURE 7.10 to save space.

Is the binary search algorithm really faster than the sequential search algorithm?
TABLE 7.1 shows the number of comparisons required on average to find an item using a
sequential search and using a binary search. If the binary search is so much faster, why
don’t we always use it? More computations are required for each comparison in a binary
search because we must calculate the middle index. Also, the array must already be sorted.
If the array is already sorted and the number of items is more than 20, a binary search
algorithm is the better choice.

TABLE 7.1 Average Number of Comparisons
Length Sequential Search Binary Search

 10 5.5 2.9
 100 50.5 5.8
 1000 500.5 9.0
10000 5000.5 12.0

246

FIGURE 7.10 Trace of the binary search

7.5 Sorting
We all know what sorting is. We sort our music playlist, our bookshelves, even our
priorities. Sorting is putting things in order. In computing, transforming an unsorted array
into a sorted array is a common and useful operation. Entire books have been written about
sorting algorithms. The goal is to come up with better, more efficient sorts. Because sorting
a large number of elements can be extremely time consuming, a good sorting algorithm is
considered highly desirable. In fact, this is one area in which programmers are sometimes
encouraged to sacrifice clarity in favor of speed of execution.

In this section, we present several diverse sorting algorithms to give you a flavor of how
many different ways there are to solve the same problem.

Selection Sort
If we handed you a set of index cards with names and asked you to put them in order by
name, you would probably go through the cards looking for the name that comes first in
the alphabet. You would then put that card as the first in a new stack. How would you
determine which card comes first? You might turn the first card sideways to remember it. If

247

you found one that comes before the turned card, you could turn the first card back and
turn the new “first” card to remember it. When you have examined all the cards, the one
that is turned up is the first one. You pull it out to start the sorted deck of cards. This
process would continue until all the index cards have been moved to the new stack.

The selection sort algorithm is probably the easiest because it mirrors how we would
sort a list of values if we had to do it by hand. Our deck of index cards is an array of names.
The new deck is an array of sorted names. We remove items from the first and put them
into successive places in the second. We remember the smallest so far by saving its position
in a temporary variable.

This algorithm is simple, but it has one drawback: It requires space for two complete
decks (arrays). Although we have not talked about memory space considerations, this
duplication is clearly wasteful. A slight adjustment to this by-hand approach does away
with the need to duplicate space, however. As you move the smallest item to the new array,
a free space opens up where it used to be. Instead of writing this name on a second list, we
can exchange it with the name currently in the position where the new name should go.
This “by-hand list” is represented in an array.

FIGURE 7.11 Examples of selection sort (sorted elements are shaded)

Let’s look at an example—sorting the five-element array shown in FIGURE 7.11.
Because of this algorithm’s simplicity, it is usually the first sorting method that students
learn.

Let’s visualize the array as containing two parts: the unsorted part (not shaded) and the
sorted part (shaded). Each time we add an item into its proper place, we are shrinking the
unsorted part and extending the sorted part. Sorting begins with all of the items in the
unsorted part and ends with all of the items in the sorted part. Here is the algorithm
written to mirror this visualization:

248

This algorithm includes only three abstract steps (colored in red): determining when
the array is sorted, finding the index of the smallest element, and swapping the contents of
two places. In moving from Figure 7.11(d) to 7.11(e), we added the last two items to the
shaded part of the array. This is always the case because when the smaller of the last two
items is put into its proper place, the last item is also in its proper place. Thus the loop
continues as long as firstUnsorted is less than the length of array − 1.

How would you find the name that comes first in the alphabet in the unsorted portion
of the list if you were sorting it by hand? You see (and mentally record) the first one, and
then you scan down the list (turning index cards) until you see one that comes before the
first one. You remember this smaller one and continue scanning the list for a name that
comes before this one in the alphabet. The process of remembering the smallest so far until
you find a smaller one is repeated until you reach the end of the list. This by-hand
algorithm is exactly the one we use here, except that we must remember the index of the
smallest item because we will swap it with the item in the firstUnsorted position. Stated in
terms of our list, we look for the smallest item in the unsorted portion, which runs from
firstUnsorted through length – 1.

249

How many glasses does it take to swap the contents of two glasses? Three. You need a
glass to temporarily hold the contents of one glass while you pour the contents of the other
glass into the first. Swapping the contents of two places in memory is exactly the same
problem. The swap algorithm must have the indexes of the two items to be swapped.

Bubble Sort
The bubble sort is a selection sort that uses a different scheme for finding the minimum
value. Starting with the last array element, we compare successive pairs of elements,
swapping them whenever the bottom element of the pair is smaller than the one above it
[FIGURE 7.12(a)]. In this way, the smallest element “bubbles up” to the top of the array.
Each iteration puts the smallest unsorted item into its correct place using the same
technique, but it also changes the locations of the other elements in the array [FIGURE
7.12(b)].

Before we write this algorithm, we must make an observation: The bubble sort is a very
slow sorting algorithm. Sorting algorithms are usually compared based on the number of
iterations it takes to sort an array, and this approach takes one iteration for every item in
the array except the last. Also, during each algorithm a lot of swapping goes on. Why, then,
do we bother to mention the bubble sort if it is so inefficient? Because a very slight change
in the sorting algorithm makes it an excellent choice to use in certain circumstances. Let’s
apply the algorithm to an already sorted array. See the rightmost column in Figure 7.12(b).

250

FIGURE 7.12 Examples of a bubble sort

?
What is piggybacking?

Using another subscriber’s wireless Internet access service without the subscriber’s explicit permission or knowledge
is called piggybacking. Is it ethical? Some compare it to reading the newspaper over the shoulder of the person in
front of them while on a train. Others compare it to entering a home just because the door is unlocked. Is it legal?
Some jurisdictions permit it, some prohibit it, and others are not well defined. What do you think?

We compare Phil with John and do not swap them. We compare John with Jim and do
not swap them. We compare Jim with Bob and do not swap them. We compare Bob with
Al and do not swap them. If no values are swapped during an iteration, then the array is
sorted. We set a Boolean variable to FALSE before we enter the loop and set it to TRUE if a
swap occurs. If the Boolean variable is still FALSE, then the array is sorted.

Compare the processing of the bubble sort to the selection sort on an already sorted
array. The selection sort algorithm gives us no way to determine whether the array is sorted;
therefore, we will go through the entire algorithm.

251

Insertion Sort
If you have only one item in the array, it is sorted. If you have two items, you can compare
and swap them if necessary. Now the first two are sorted with respect to themselves. Take
the third item and put it into its place relative to the first two. Now the first three items are
sorted with respect to one another. The item being added to the sorted portion can be
bubbled up as in the bubble sort. When you find a place where the item being inserted is
smaller than the item in the array, you store the item there. current is the item being
inserted into the sorted portion. See FIGURE 7.13.

252

At each iteration of a selection sort, one more item is put into its permanent place. At
each iteration of an insertion sort, one more item is put into its proper place with respect to
those above it.

FIGURE 7.13 Insertion sort

7.6 Recursive Algorithms
When an algorithm uses its own name within itself, it is called a recursive algorithm. That is,
if a task name at one level calls itself, the call is known as a recursive call. Recursion—the
ability of an algorithm to call itself—is an alternative control structure to repetition
(looping). Rather than use a looping statement to execute an algorithm segment, such an
algorithm uses a selection statement to determine whether to repeat the algorithm by
calling it again or to stop the process.

Recursion The ability of an algorithm to call itself

Each recursive algorithm has at least two cases: the base case and the general case. The

253

base case is the one to which we have an answer; the general case expresses the solution in
terms of a call to itself with a smaller version of the problem. Because the general case solves
an ever smaller and smaller version of the original problem, eventually the program reaches
the base case, where an answer is known. At this point, the recursion stops.

Associated with each recursive problem is some measure of the size of the problem. The
size must become smaller with each recursive call. The first step in any recursive solution is,
therefore, to determine the size factor. If the problem involves a numerical value, the size
factor might be the value itself. If the problem involves a structure, the size factor is
probably the size of the structure.

So far, we have given a name to a task at one level and expanded the task at a lower
level. Then we have collected all of the pieces into the final algorithm. With recursive
algorithms, we must be able to give the algorithm data values that are different each time
we execute the algorithm. Thus, before we continue with recursion, we must look at a new
control structure: the subprogram statement. Although we are still at the algorithm level, this
control structure uses the word subprogram.

Subprogram Statements
We can give a section of code a name and then use that name as a statement in another part
of the program. When the name is encountered, the processing in the other part of the
program halts while the named code executes. When the named code finishes executing,
processing resumes with the statement just below where the name occurred. The place
where the name of the code appears is known as the calling unit.

Two basic forms of subprograms exist: named code that does a particular task (void
subprograms) and named code that also does a task but returns a single value to the calling
unit (value-returning subprograms). The first form is used as a statement in the calling
unit; the second form is used in an expression in the calling unit where the returned value is
then used in the evaluation of the expression.

Subprograms are powerful tools for abstraction. The listing of a named subprogram
allows the reader of the program to see that a task is being done without having to be
bothered with the details of the task’s implementation. If a subprogram needs information
to execute its task, we place the name of the data value in parentheses by the subprogram
heading. If the subprogram returns a value to the calling unit, it uses the word RETURN
followed by the name of the data to be returned. See FIGURE 7.14.

254

FIGURE 7.14 Subprogram flow of control

Recursive Factorial
The factorial of a number is defined as the number multiplied by the product of all the
numbers between itself and 0:

N! = N * (N − 1)!

The factorial of 0 is 1. The size factor is the number for which we are calculating the
factorial. We have a base case:

Factorial(0) is 1.

We also have a general case:

Factorial(N) is N * Factorial(N – 1).

255

An if statement can evaluate N to see if it is 0 (the base case) or greater than 0 (the general
case). Because N is clearly getting smaller with each call, the base case is eventually reached.

Each time Factorial is called, the value of N gets smaller. The data being given each
time is called the argument. What happens if the argument is a negative number? The
subprogram just keeps calling itself until the run-time support system runs out of memory.
This situation, which is called infinite recursion, is equivalent to an infinite loop.

Recursive Binary Search
Although we coded the binary search using a loop, the binary search algorithm sounds
recursive. We stop when we find the item or when we know it isn’t there (base cases). We
continue to look for the item in the section of the array where it will be if it is present at all.
A recursive algorithm must be called from a nonrecursive algorithm as we did with the
factorial algorithm. Here the subprogram needs to know the first and last indices within
which it is searching. Instead of resetting first or last as we did in the iterative version, we
simply call the algorithm again with the new values for first and last.

256

?
Was Plato a software designer?

Philosophy has spent 2500 years working on concepts now integral to software design. For example, Plato’s
universals and particulars can be viewed as the classes and instances of classes in object-oriented programming.3

Quicksort
The Quicksort algorithm, developed by C. A. R. Hoare, is based on the idea that it is faster
and easier to sort two small lists than one larger one. The name comes from the fact that, in
general, Quicksort can sort a list of data elements quite rapidly. The basic strategy of this
sort is “divide and conquer.”

If you were given a large stack of final exams to sort by name, you might use the
following approach: Pick a splitting value, say L, and divide the stack of tests into two piles,
A–L and M–Z. (Note that the two piles do not necessarily contain the same number of
tests.) Then take the first pile and subdivide it into two piles, A–F and G–L. The A–F pile
can be further broken down into A–C and D–F. This division process goes on until the
piles are small enough to be easily sorted by hand. The same process is applied to the M–Z
pile.

257

FIGURE 7.15 Ordering a list using the Quicksort algorithm

Eventually, all of the small, sorted piles can be stacked one on top of the other to
produce a sorted set of tests. See FIGURE 7.15.

This strategy is based on recursion—on each attempt to sort the stack of tests, the stack
is divided, and then the same approach is used to sort each of the smaller stacks (a smaller
case). This process continues until the small stacks do not need to be divided further (the
base case). The variables first and last in the Quicksort algorithm reflect the part of the
array data that is currently being processed.

How do we select splitVal? One simple solution is to use whatever value is in
data[first] as the splitting value. Let’s look at an example using data[first] as splitVal.

After the call to Split, all items less than or equal to splitVal are on the left side of the array

258

and all items greater than splitVal are on the right side of the array.

The two “halves” meet at splitPoint, the index of the last item that is less than or equal to
splitVal. Note that we don’t know the value of splitPoint until the splitting process is
complete. We can then swap splitVal (data[first]) with the value at data[splitPoint].

Our recursive calls to Quicksort use this index (splitPoint) to reduce the size of the
problem in the general case.

Quicksort(first, splitPoint – 1) sorts the left “half” of the array. Quick-sort(splitPoint
+ 1, last) sorts the right “half” of the array. (The “halves” are not necessarily the same size.)
splitVal is already in its correct position in data[splitPoint].

What is the base case? When the segment being examined has only one item, we do not
need to go on. That is represented in the algorithm by the missing else statement. If there is
only one value in the segment being sorted, it is already in its place.

We must find a way to get all elements that are equal to or less than splitVal on one
side of splitVal and all elements that are greater than splitVal on the other side. We do this
by moving a pair of the indexes from the ends toward the middle of the array, looking for
items that are on the wrong side of the split value. When we find pairs that are on the
wrong side, we swap them and continue working our way into the middle of the array.

259

Although we still have an abstract step, we can stop, because we have already expanded
this abstract step in an earlier problem. This brings up a very important point: Never
reinvent the wheel. An abstract step in one algorithm may have been solved previously either
by you or by someone else. FIGURE 7.16 shows an example of this splitting algorithm.

Quicksort is an excellent sorting approach if the data to be sorted is in random order. If
the data is already sorted, however, the algorithm degenerates so that each split has just one
item in it.

Recursion is a very powerful and elegant tool. Nevertheless, not all problems can easily
be solved recursively, and not all problems that have an obvious recursive solution should
be solved recursively. Even so, a recursive solution is preferable for many problems. If the
problem statement logically falls into two cases (a base case and a general case), recursion is
a viable alternative.

FIGURE 7.16 Splitting algorithm

7.7 Important Threads
In the last two chapters, we have mentioned several topics in passing that are important not
only in problem solving but also in computing in general. Let’s review some of the
common threads discussed in these chapter.

260

Information Hiding
We have mentioned the idea of deferring the details several times. We have used it in the
context of giving a name to a task and not worrying about how the task is to be
implemented until later. Deferring the details in a design has distinct advantages. The
designer sees just those details that are relevant at a particular level of the design. This
practice, called information hiding, makes the details at a lower level inaccessible during
the design of the higher levels.

Information hiding The practice of hiding the details of a module with the goal of controlling access to the details
of the module

This practice must seem very strange! Why shouldn’t the details be accessible while the
algorithm is being designed? Shouldn’t the designer know everything? No. If the designer
knows the low-level details of a module, he or she is more likely to base the module’s
algorithm on these details—and it is precisely these low-level details that are more likely to
change. If they do, then the entire module has to be rewritten.

Abstraction
Abstraction and information hiding are two sides of the same coin. Information hiding is
the practice of hiding details; abstraction is the result with the details hidden. As we said in
Chapter 1, an abstraction is a model of a complex system that includes only the details that
are essential for the viewer to know. Take, for example, Daisy, the English spaniel. To her
owner, she is a household pet; to a hunter, she is a bird dog; and to the vet, she is a
mammal. Her owner watches Daisy’s wagging tail, hears her yelp when she gets left outside,
and sees the hair she leaves everywhere. The hunter sees a finely trained helper who knows
her job and does it well. The vet sees all of the organs, flesh, and bones of which she is
composed. See FIGURE 7.17.

Abstraction A model of a complex system that includes only the details essential to the viewer

261

FIGURE 7.17 Different views of the same concept

In computing, an algorithm is an abstraction of the steps needed to implement it. The
casual user of a program that includes the algorithm, who sees only the description of how
to run the program, is like the dog owner: He or she sees only the surface. The
programmer, who incorporates another’s algorithm in her program, is like the hunter who
uses the well-trained dog: He or she uses the algorithm for a purpose. The implementer of
the algorithm, who must understand it thoroughly, is like the vet: He or she must see the
inner workings to implement the algorithm.

In computing, various kinds of abstraction are apparent. Data abstraction refers to the
view of data; it is the separation of the logical view of data from its implementation. For
example, your bank’s computer may represent numbers in two’s complement or one’s
complement, but this distinction is of no concern to you as long as your bank statements
are accurate.

Data abstraction The separation of the logical view of data from its implementation

Procedural abstraction refers to the view of actions; it is the separation of the logical
view of an action from its implementation. For example, when we gave a name to a
subprogram, we were practicing procedural abstraction.

262

Procedural abstraction The separation of the logical view of an action from its implementation

A third kind of abstraction in computing is called control abstraction. Control
abstraction refers to the view of a control structure; it is the separation of the logical view of
a control structure from its implementation. A control structure lets us alter this sequential
flow of control of an algorithm. WHILE and IF are control structures. How these control
structures are implemented in the languages into which we might translate an algorithm is
immaterial to the design of the algorithms.

Control abstraction The separation of the logical view of a control structure from its implementation

Control structure A statement used to alter the normally sequential flow of control

Abstraction is the most powerful tool people have for managing complexity. This statement
is true in computing as well as real life.

Naming Things
When we write algorithms, we use shorthand phrases to stand for the tasks and data with
which we are dealing. We give names to data and processes. These names are called
identifiers. For example, we used newBase and decimal Number in the base-changing
algorithm. We also gave names to tasks. For example, we used Split to name the task of
splitting an array in the Quicksort algorithm. Our identifiers for data values were created
from a combination of the words, using uppercase to make the meaning clearer. We left the
names of tasks as phrases. Eventually the task names must be converted to a single
identifier.

When we get to the stage where we translate an algorithm into a program in a language
that a computer can execute, we may have to modify the identifiers. Each language has its
own rules about forming identifiers. So there is a two-stage process: Data and actions are
given names in the algorithm, and then these names are translated into identifiers that meet
the rules of the computer language. Notice that giving identifiers to data and actions is a
form of abstraction.

Testing
We have demonstrated testing at the algorithm phase using algorithm walk-throughs. We
have shown how to design test plans and implemented one in assembly language. Testing is
important at every stage in programming. There are basically two types of testing: clear-box
testing, which is based on the code itself, and black-box testing, which is based on testing
all possible input values. Often, a test plan incorporates both types of testing.

SUMMARY

263

Polya, in his classic book How to Solve It, outlined a problem-solving strategy for
mathematical problems. This strategy can be applied to all problems, including those for
which a computer program is to be written. These strategies include asking questions,
looking for familiar things, and dividing and conquering; when these strategies are applied,
they should lead to a plan for solving a problem. In computing, such a plan is called an
algorithm.

Two categories of loops are distinguished: count controlled and event controlled. A
count-controlled loop executes the loop a predetermined number of times. An event-
controlled loop executes until an event within the loop changes.

Data comes in two forms: atomic (simple) and composite. An array is a homogeneous
structure that gives a name to a collection of items and allows the user to access individual
items by position within the structure.

Searching is the act of looking for a particular value in an array. In this chapter we
examined the linear search in an unsorted array, the linear search in a sorted array, and the
binary search in a sorted array. Sorting is the act of putting the items in an array into some
kind of order. The selection sort, bubble sort, insertion sort, and Quicksort are four
commonly used sorting algorithms.

Recursive algorithms are algorithms for which the name of a subprogram appears in the
subprogram itself. The factorial and binary search are naturally recursive algorithms.

ETHICAL ISSUES
Open-Source Software4, 5

If an application you purchased from a proprietary software vendor breaks, you cannot
pop open the hood, tinker with the source code, and continue working away. The
source code is owned and copyrighted by the manufacturer, and modifying, copying, or
reselling it to others is illegal.

Open-source software offers an alternative to this proprietary arrangement. Open-
source applications allow users to modify the source code in any way they like. They can
add to it, change it, or extend it. They can also copy it, give it away to others, or even
sell it. The only proviso is that those to whom the revised code is further distributed
have the same freedoms to access the source code, copy, or sell the software. This
passing along of the freedoms of use is sometimes referred to as “copyleft” and is highly
prized by open-source supporters.

When proprietary software made its first appearance, some parties in the computing
community saw it as a threat to the freedom of intellectual collaboration. They believed
that software is essentially an intellectual product and, therefore, is best served by being
treated as an idea: Anyone is welcome to join the debate, add an opinion, and bring
friends into the conversation. Furthermore, if a person cannot gain access to software
except by purchasing it from a proprietary vendor, then that individual is barred from
joining the discussion until he or she hands over cash to the owner of the “idea.”

In response to the changing landscape of computing in the 1980s, some MIT
computer scientists formed the Free Software Foundation (FSF) to promote the open
use and sharing of software. The Boston-based group developed the General Public
License (GPL), which outlines the rules under which users can share, distribute, and

264

collaborate on developing software products. For those who feel “free” might be an
erroneous name, FSF points out, it means “free as in free speech, not free as in free
beer.”

So what makes this seemingly simple idea so controversial? If anyone can upgrade or
improve the product, doesn’t this increase its value to users? Not according to
opponents of the open-source ethic. Microsoft and other proprietary software producers
view open-source code as a threat to their businesses. If people can fix and modify the
source code on their own, they will not want to pay the licensing fees required to use the
proprietary products, nor will they want to purchase upgrades. Even more important,
opponents claim, is the danger to intellectual property rights posed by the open-source
model.

Open-source supporters point to the more cost-effective aspects of the model. Even
if users initially pay for the software, the freedoms granted under the licensing
agreement do not lock them into that choice. They can mix and match software to best
suit the needs of their mission. Fans of the open-source model also note that such
software tends to be more reliable, causing less downtime and requiring internal IT
departments and engineers to spend less time fixing low-level problems that might
otherwise cause great disruption. Those opposed to the use of software that allows
anyone access to the source code claim that it poses much greater security risks than
proprietary packages. For example, if airlines, hospitals, and municipal infrastructures
are using it, they leave themselves much more vulnerable to attack than if they use
packages where only the maker has access to the source code.

Perhaps the most famous example of open-source software is the Linux operating
system, which is licensed under the Free Software Foundation’s General Public License.
The success of Linux has given great hope to the open-source community. This
operating system is extremely popular and is even used, if somewhat sparingly, by
government agencies. Versions of Linux are sold by a variety of vendors, including Red
Hat, the best-known Linux distributor. Such examples serve as confirmation that the
open-source model is commercially viable.

Proprietary producers have been working to block proposals that would require
governments to shift to using open-source products. For now, patent and copyright laws
continue to favor proprietary software. Whether this continues to be the case remains to
be seen. Microsoft has suggested limiting open-source software in various ways, but so
far has not proved successful in its quest. For now, the debate continues over whether
the open-source model is a benefit for all, or a danger to business and property rights.

In 2008, the open-source software community reached a legal milestone. The case in
question centered on free software used in developing commercial software products for
model trains. The software’s creator, open-source software group Java Model Railroad
Interface, claimed that when Matthew Katzer used its software to create commercial
products without following the terms of the software license associated with the
software, he had infringed on copyright laws. The software license stated that anyone
using the free code had to credit the author, emphasize the source of the files, and
explain how the code had been adapted. After a lower court ruling sided with Katzer, a
federal appeals court ruled that open-source artistic licensing agreements could be
upheld by copyright laws, enforcing the rights of companies using open-source software
to protect their ideas.

265

KEY TERMS

Abstract step
Abstraction
Algorithm
Binary search
Concrete step
Control abstraction
Control structure
Data abstraction
Information hiding
Nested structure (nested logic)
Procedural abstraction
Recursion

EXERCISES

For Exercises 1–6, match the problem-solving strategy with the definition or example.
A. Ask questions
B. Look for familiar things
C. Divide and conquer

 1. The first strategy to use when given a problem.
 2. Don’t reinvent the wheel.
 3. Strategy used in the binary search algorithms
 4. Is a solution to a previous problem appropriate for the current one?
 5. Strategy used in the Quicksort algorithm
 6. There is an apparent contradiction in the problem statement.

For Exercises 7–10, match the following phase with its output.
A. Analysis and specification phase
B. Algorithm development phase
C. Implementation phase
D. Maintenance phase

 7. Working program
 8. None
 9. Problem statement
10. General solution

For Exercises 11–15, match the term with the definition.
A. Information hiding
B. Abstraction
C. Data abstraction

266

D. Procedural abstraction
E. Control abstraction

11. The practice of hiding the details of a module with the goal of controlling access to
the details of the module.

12. A model of a complex system that includes only those details essential to the
viewer.

13. The separation of the logical view of an action from its implementation.
14. The separation of the logical view of a control structure from its implementation.
15. The separation of the logical view of data from its implementation.

For Exercises 16–36, mark the answers true or false as follows:
A. True
B. False

16. Count-controlled loops repeat a specific number of times.
17. Event-controlled loops repeat a specific number of times.
18. Count-controlled loops are controlled by a counter.
19. Event-controlled loops are controlled by an event.
20. An infinite loop is a loop that never terminates.
21. Loops can be nested, but selection structures cannot.
22. Selection structures can be nested, but loops cannot.
23. All control structures can be nested.
24. The square root algorithm uses a count-controlled loop.
25. An array is a homogeneous structure, but a record is not.
26. A record is a heterogeneous structure, but an array is not.
27. A record is a homogeneous structure; an array is a heterogeneous structure.
28. The bubble sort algorithm involves finding the smallest item in the unsorted

portion of the array and swapping it with the first unsorted item.
29. Quicksort is not always quick.
30. A binary search can be applied to both a sorted array and an unsorted array.
31. A binary search is always faster than a linear search.
32. A selection sort puts one more item into its permanent place at each iteration.
33. An insertion sort puts one more item into its place with respect to the already

sorted portion.
34. Recursion is another word for iteration.
35. Recursive algorithms use IF statements.
36. Iterative algorithms use WHILE statements.

Exercises 37–62 are short-answer questions.
37. List the four steps in Polya’s How to Solve It list.
38. Describe the four steps listed in

Exercise 37 in your own words.
39. List the problem-solving strategies discussed in this chapter.
40. Apply the problem-solving strategies to the following situations.

a. Buying a toy for your four-year-old cousin
b. Organizing an awards banquet for your soccer team
c. Buying a dress or suit for an awards banquet at which you are being honored

267

41. Examine the solutions in Exercise 40 and determine three things they have in
common.

42. What is an algorithm?
43. Write an algorithm for the following tasks.

a. Making a peanut butter and jelly sandwich
b. Getting up in the morning
c. Doing your homework
d. Driving home in the afternoon

44. List the phases of the computer problem-solving model.
45. How does the computer problem-solving model differ from Polya’s problem-

solving model?
46. Describe the steps in the algorithm development phase.
47. Describe the steps in the implementation phase.
48. Describe the steps in the maintenance phase.
49. Look up a recipe for chocolate brownies in a cookbook and answer the following

questions.
a. Is the recipe an algorithm? Justify your answer.
b. Organize the recipe as an algorithm, using pseudocode.
c. List the words that have meaning in computing.
d. List the words that have meaning in cooking.
e. Make the brownies and take them to your professor.

50. We said that following a recipe is easier than developing one. Go to the
supermarket and buy a vegetable that you have not cooked (or eaten) before. Take
it home and develop a recipe. Write up your recipe and your critique of the
process. (If it is good, send it to the authors.)

51. Describe the top-down design process.
52. Differentiate between a concrete step and an abstract step.
53. Write a top-down design for the following tasks.

a. Buying a toy for your four-year-old cousin
b. Organizing an awards banquet for your soccer team
c. Buying a dress or suit for an awards banquet at which you are being honored

54. Write a top-down design for the following tasks.
a. Calculating the average of ten test scores
b. Calculating the average of an unknown number of test scores
c. Describe the differences in the two designs

55. Write a top-down design for the following tasks.
a. Finding a telephone number in the phone book
b. Finding a telephone number on the Internet
c. Finding a telephone number on a scrap of paper that you have lost
d. Describe the differences among these designs

56. Distinguish between information and data.
57. Write a top-down design for sorting a list of names into alphabetical order.
58. a. Why is information hiding important?

b. Name three examples of information hiding that you encounter every day.
59. An airplane is a complex system.

a. Give an abstraction of an airplane from the view of a pilot.

268

b. Give an abstraction of an airplane from the view of a passenger.
c. Give an abstraction of an airplane from the view of the cabin crew.
d. Give an abstraction of an airplane from the view of a maintenance mechanic.
e. Give an abstraction of an airplane from the view of the airline’s corporate office.

60. List the identifiers and indicate whether they named data or actions for the designs
in Exercise 53.

61. List the identifiers and indicate whether they named data or actions for the designs
in Exercise 54.

62. List the identifiers and indicate whether they named data or actions for the designs
in Exercise 55.

Exercises 63–65 use the following array of values.

63. Show the state of the list when firstUnsorted is first set equal to the fourth item
in the selection sort.

64. Show the state of the list when firstUnsorted is first set equal to the fifth item in
the bubble sort algorithm.

65. Show the state of the list when the first recursive call is made in Quicksort using
list[0] as the split value.

Exercises 66 and 67 use the following array of values.

66. How many comparisons does it take using a sequential search to find the following
values or determine that the item is not in the list?
a. 4
b. 44
c. 45
d. 105
e. 106

67. How many comparisons does it take using a binary search to find the following
values or determine that the item is not in the list?
a. 4
b. 44
c. 46
d. 105
e. 106

THOUGHT QUESTIONS

269

 1. Distinguish between a program that the CPU can execute directly and a program
that must be translated.

 2. Top-down design creates scaffolding that is used to write a program. Is all of this
scaffolding just a waste of effort? Is it ever used again? Of what value is it after the
program is up and running?

 3. Which of the problem-solving strategies do you use the most? Can you think of
some others that you use? Would they be appropriate for computing problem
solving?

 4. There are several common examples of open-source software that many people use
in their everyday lives. Can you name any?

 5. Do you believe that the quality of an open-source software product is likely to be
higher or lower than the quality of software produced by a large corporation? How
do you think technical support for open-source software compares to that for
proprietary software?

 6. Daniel Bricklin, whose biography appears in Chapter 12, did not patent (or
copyright) his software, believing that software should not be proprietary. As a
result, he lost a great deal of money in the form of possible royalties. Do you
consider his actions to be visionary or naive?

 7. The Free Software Foundation is a tax-exempt charity that raises funds for work
on the GNU Project. GNU software is free. Read about its philosophy on the
Web. Compare GNU products with those of manufacturers such as Microsoft and
Sun.

 8. If you were to continue with computing and become a programmer, which side of
the argument would you take: Should software be copyrighted or should it be free?

270

THE PROGRAMMING LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits
5 Computing Components

The Programming Layer
6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages

The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer
15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion
18 Limitations of Computing

271

8 ABSTRACT DATA TYPES AND
SUBPROGRAMS

In the programming layer, we have moved from the concreteness of machine language, to
assembly language, to pseudocode, to expressing algorithms. We then went from algorithms
using simple variables to algorithms using arrays.

Now we take a step up in abstraction and talk about abstract containers: composite
structures for which we do not know the implementation. In computing circles, these
abstract containers are called abstract data types. We know their properties and operations
and we understand which types of values they can contain, but we have no information
about their internal structure or implementation. That is, we know what the operations are
and what they do, but we do not know how the operations are implemented.

The algorithm design we have been using is a top-down model, in which we break a
task into smaller pieces. We conclude this chapter with more about subprogram statements,
which are both a way to make the code mirror the design and the way that algorithms and
subalgorithms communicate.

GOALS
After studying this chapter, you should be able to:

■ distinguish between an array-based visualization and a linked visualization.
■ distinguish between an array and a list.
■ distinguish between an unsorted list and a sorted list.
■ distinguish between the behavior of a stack and the behavior of a queue.
■ distinguish between a binary tree and a binary search tree.
■ draw the binary search tree that is built from inserting a series of items.
■ understand the difference between a tree and a graph.
■ explain the concept of subprograms and parameters and distinguish between value and reference parameters.

8.1 What Is an Abstract Data Type?
An abstract data type (ADT) is a container whose properties (data and operations) are
specified independently of any particular implementation. Recall that the goal in design is
to reduce complexity through abstraction. If we can define useful structures and the
operations that manipulate those structures at the logical level, we can use them as if they
exist when we need them in our designs.

272

Abstract data type (ADT) A container whose properties (data and operations) are specified independently of any
particular implementation

To put the concept of an ADT into context, we need to look at how we view data. In
computing, we view data from three perspectives: the application level, the logical level, and
the implementation level.

The application (or user) level is the view of the data within a particular problem. The
logical (or abstract) level is an abstract view of the data values (the domain) and the
operations that manipulate them. The implementation level is a specific representation of
the structure that holds the data items and the coding of the operations in a programming
language. This view sees the properties represented as specific data fields and subprograms.
It is concerned with data structures, the implementation of a composite data field in an
abstract data type.

Data structure The implementation of a composite data field in an abstract data type

The abstract data types that we examine in this chapter are those that history and
experience have shown come up again and again in real-world problems. These ADTs are
containers in which data items are stored, and each exhibits specific behaviors. They are
called containers because their sole purpose is to hold other objects.

Containers Objects whose role is to hold and manipulate other objects

8.2 Stacks
Stacks and queues are abstract composite structures that are often thought of as a pair—like
peanut butter and jelly, or motherhood and apple pie. Why this is so must be more for
historical reasons than anything else, because these two structures have quite different
behaviors.

A stack is an abstract composite structure in which accesses are made at only one end.
You can insert an item as the first one and you can remove the first one. This design
models many things in real life. Accountants call it LIFO, which stands for “last in, first
out.” The plate holder in a cafeteria has this property: We can take only the top plate.
When we do so, the plate below rises to the top so the next person can take one. Canned
goods on a grocer’s shelf exhibit this property. When we take the first can in a row, we are
taking the last can put in that row.

Another way of stating the accessing behavior of a stack is to say that the item removed
is the item that has been in the stack the shortest time. Viewing a stack from this
perspective is more abstract. The insertion operation has no constraints; the entire LIFO
behavior is specified through the removal operation.

The mental image of the cafeteria plates has left an imprint on the traditional names
used for the insertion and removal operations. Adding an item to the stack is called Push;
removing an item is called Pop. We Push an item onto the stack, and we Pop an item off

273

the stack. A stack does not have the property of length, so there is no operation that returns
the number of items on the stack. We do need operations that determine whether a stack is
IsEmpty, however, because trying to Pop an item when the stack is empty is an error.

Here is an algorithm that reads in numbers and prints them in reverse order using a
stack. We have not colored the stack operations in red because they have already been
implemented by someone else; they are ours to use. Because the more data is not relevant
to our discussion, we leave it unexpanded here and in the following algorithms.

Desk check this algorithm to convince yourself that the values are, indeed, written in
reverse order.

8.3 Queues
A queue is an abstract structure in which items are entered at one end and removed from
the other end. Accountants call this behavior FIFO, which stands for “first in, first out.”
This ADT sounds like a waiting line in a bank or supermarket. Indeed, queues are used to
simulate this type of situation. Insertions are made at the rear of the queue, and removals
are made from the front of the queue.

Another way of stating the accessing behavior of a queue is to say that the item removed
is the item that has been in the queue the longest time. Viewing a queue from this
perspective is more abstract. Like the stack, the insert operation has no constraints; the
entire FIFO behavior is specified in the removal operation. Unfortunately, there is no
standard queue terminology relating to the insertion and deletion operations. Enqueue,
Enque, Enq, Enter, and Insert are all names used for the insertion operation. Dequeue,
Deque, Deq, Delete, and Remove are names used for the deletion operation.

Here is an algorithm that reads in data values and prints them in the order in which
they were entered:

274

?
Jumping jacks in the classroom

The UTeach Institute, a University of Texas teacher-training program, launched an initiative in late 2013 to
support the use of mobile devices in the classroom. To demonstrate the technology, students at Kealing Middle
School in Austin did jumping jacks and then held their fingers to a tablet’s camera, which measured their heart
rates. The data was gathered directly into a spreadsheet projected on the wall. Students could see that over time,
exercise would lower their resting heart rates, so their hearts would pump blood more efficiently. Verizon Wireless
donated more than $1 million in equipment and cash grants to support this work in the use of tablets for teaching.1

8.4 Lists
Lists occur as naturally in programming as they do in real life. We manipulate guest lists,
grocery lists, class lists, and things-to-do lists. The list of lists is endless. Three properties
characterize lists: The items are homogeneous, the items are linear, and lists have varying
lengths. By linear, we mean that each item except the first has a unique component that
comes before it, and each item except the last has a unique component that comes after it.
For example, if there are at least three items in a list, the second item comes after the first
and before the third.

Whereas stacks and queues have all the semantics in the deletion operation, lists usually
provide operations to insert an item (Insert), delete an item (Delete), check whether an
item is there (IsThere), and report the number of items in a list (GetLength). In addition,
they have some mechanism for allowing the user to view each item in sequence (Reset,
GetNext, MoreItems). Because items can be deleted and retrieved, the items in the list
must be able to be compared.

Do not mistake a list for an array. An array is a built-in structure; a list is an abstract
structure. However, a list may be implemented in an array, as shown in FIGURE 8.1.

275

FIGURE 8.1 An unsorted list of integers

A list may also be visualized as a linked structure. A linked structure is based on the
concept of a node. A node consists of two pieces of information: the user’s data and a link
or pointer that indicates where to find the next node. The end of the list is a link that
contains null, which is indicated by a ‘/’. See FIGURE 8.2.

Linked structure An implementation of a container where the items are stored together with information on where
the next item can be found

Unordered lists are those for which order is unimportant. Items are just haphazardly
put into them. Sorted lists are those where there is a semantic relationship between items in
the list. All items except the first come before the next item in this kind of list under some
ordering relationship. All items except the last come after the one before it under the same
relationship. FIGURES 8.3 and 8.4 visualize the array-based and linked versions of a
sorted list.

276

FIGURE 8.2 An unsorted linked list

FIGURE 8.3 A sorted list of integers

Here is an algorithm that reads values from a file and puts them into a list. The list is
then printed.

277

FIGURE 8.4 A sorted linked list

We use Reset, MoreItems, and GetNext to iterate through the list, returning each
item in sequence. If the list is an unsorted list, the items will be printed in the order in
which they are inserted. If the list is sorted, the items will be printed in sorted order. This
algorithm works regardless of the implementation of the list.

?
Peer-to-Peer hardware funding

Open Source Hardware is hardware that keeps its designs available in a way similar to the open source in software.
Two open-source hardware advocates, Justin Huynh and Matt Stack, started the Open Source Hardware Bank
(OSHB), using money pooled from other open-source advocates, to support open-source hardware projects. The
peer-to-peer lenders are promised 5% to 15% if the project is successful.

8.5 Trees
Abstract structures such as lists, stacks, and queues are linear in nature. Only one
relationship in the data is being modeled. Items are next to each other in a list or are next to
each other in terms of time in a stack or queue. Depicting more complex relationships
requires more complex structures. Take, for example, family relationships. If we want to
model family relationships in a program, we would need a hierarchical structure. The
parents would appear at the top of the hierarchy, the children would be at the next level,
the grandchildren at the next level, and so on (FIGURE 8.5).

Such hierarchical structures are called trees, and there is a rich mathematical theory
relating to them. In computing, however, we often restrict our discussion to binary trees. In
binary trees, each node in the tree can have no more than two children.

Binary Trees
A binary tree is an abstract structure in which each node is capable of having two successor
nodes, called children. Each of the children, being nodes in the binary tree, can also have up
to two child nodes, and these children can also have up to two children, and so on, giving
the tree its branching structure. The beginning of the tree is a unique starting node called
the root, which is not the child of any node. See FIGURE 8.6.

Binary tree An abstract composite structure with a unique starting node called the root, in which each node is
capable of having two child nodes and in which a unique path exists from the root to every other node

Root The unique starting node in a tree

Each node in the tree may have zero, one, or two children. The node to the left of a
node, if it exists, is called its left child. For example, in Figure 8.6, the left child of the root

278

node contains the value 2. The node to the right of a node, if it exists, is its right child. The
right child of the root node in Figure 8.6 contains the value 3. If a node has only one child,
the child could be on either side, but it is always on one particular side. In Figure 8.6, the
root node is the parent of the nodes containing 2 and 3. (Earlier textbooks used the terms
left son, right son, and father to describe these relationships.) If a node in the tree has no
children, it is called a leaf. In Figure 8.6, the nodes containing 7, 8, 9, and 10 are leaf
nodes.

Leaf node A tree node that has no children

FIGURE 8.5 The Bear family tree

John von Neumann2

Courtesy of the U.S. Department of Energy

John von Neumann was a brilliant mathematician, physicist, logician, and computer
scientist. Legends have been passed down about his astonishing memory and the
phenomenal speed at which von Neumann solved problems. He used his talents not
only for furthering his mathematical theories, but also for memorizing entire books and
reciting them years after he had read them. But ask a highway patrolman about von
Neumann’s driving ability and he would be likely to throw up his hands in despair;
behind the wheel, the mathematical genius was as reckless as a rebel teenager.

John von Neumann was born in Hungary in 1903, the oldest son of a wealthy
Jewish banker. He was able to divide 8-digit numbers in his head by the age of 6. He
entered high school by the time he was 11, and it wasn’t long before his math teachers
recommended he be tutored by university professors. He enrolled at the University of

279

Berlin in 1921 to study chemistry as a compromise with his father, who wanted him to
study something that would allow him to make money. He received his diploma in
chemical engineering from the Technische Hochschule in Zürich in 1926. In the same
year, he received his doctorate in mathematics from the University of Budapest, with a
thesis on set theory. During the period from 1926 to 1929, von Neumann lectured at
Berlin and at Hamburg while holding a Rockefeller fellowship for postdoctoral studies
at the University of Göttingen.

von Neumann came to the United States in the early 1930s to teach at Princeton,
while still keeping his academic posts in Germany. He resigned the German posts when
the Nazis came to power; he was not, however, a political refugee as so many were at
that time. While at Princeton, he worked with the talented and as-yet-unknown British
student Alan Turing. He continued his brilliant mathematical career, becoming editor
of Annals of Mathematics and co-editor of Compositio Mathematica. During World War
II, von Neumann was hired as a consultant for the U.S. Armed Forces and related
civilian agencies because of his knowledge of hydrodynamics. He was also called upon to
participate in the construction of the atomic bomb in 1943. It was not surprising that,
following this work, President Eisenhower appointed him to the Atomic Energy
Commission in 1955.

Even though bombs and their performance fascinated von Neumann for many
years, a fortuitous meeting in 1944 with Herbert Goldstine, a pioneer who developed
one of the first operational electronic digital computers, introduced the mathematician
to something more important than bombs—computers. von Neumann’s chance
conversation with Goldstine in a train station sparked a new fascination for him. He
started working on the stored program concept and concluded that internally storing a
program eliminated the hours of tedious labor required to reprogram computers (in
those days). He also developed a new computer architecture to perform this storage task.
In fact, today’s computers are often referred to as “von Neumann machines” because the
architectural principles he described have proven so tremendously successful. Changes in
computers over the past 40 years have been primarily in terms of the speed and
composition of the fundamental circuits, but the basic architecture designed by von
Neumann has persisted.

During the 1950s, von Neumann was a consultant for IBM, where he reviewed
proposed and ongoing advanced technology projects. One such project was John
Backus’s FORTRAN, which von Neumann reportedly questioned, asking why anyone
would want more than one machine language. In 1957, von Neumann died of bone
cancer in Washington, D.C., at the age of 54. Perhaps his work with the atomic bomb
resulted in the bone cancer that caused the death of one of the most brilliant and
interesting minds of the twentieth century.

In addition to specifying that a node may have up to two children, the definition of a
binary tree states that a unique path exists from the root to every other node. In other
words, every node (except the root) has a unique (single) parent.

Each of the root node’s children is itself the root of a smaller binary tree, or subtree. In
Figure 8.6, the root node’s left child, containing 2, is the root of its left subtree, while the
right child, containing 3, is the root of its right subtree. In fact, any node in the tree can be

280

considered the root node of a subtree. The subtree whose root node has the value 2 also
includes the nodes with values 4 and 7. These nodes are the descendants of the node
containing 2. The descendants of the node containing 3 are the nodes with the values 5, 6,
8, 9, and 10. A node is the ancestor of another node if it is the parent of the node or the
parent of some other ancestor of that node. (Yes, this is a recursive definition.) In Figure
8.6, the ancestors of the node with the value 9 are the nodes containing 5, 3, and 1.
Obviously, the root of the tree is the ancestor of every other node in the tree.

FIGURE 8.6 A binary tree

?
Terrorist detection software

Social network analysis provides a way of modeling how people interact using a branch of mathematics called graph
theory. Graph theory maps people as nodes and their relationships as links. Today, some researchers are using this
approach to build software models of terrorist networks. When the software is given data on the number of
members of a network who have been apprehended, it can estimate the probability that the network has been
disrupted. This estimate may be better than one provided by human judgment.

Binary Search Trees
A tree is analogous to an unordered list. To find an item in the tree, we must examine every
node until either we find the one we want or we discover that it isn’t in the tree. A binary
search tree is like a sorted list in that there is a semantic ordering in the nodes.

A binary search tree has the shape property of a binary tree; that is, a node in a binary
search tree can have zero, one, or two children. In addition, a binary search tree has a
semantic property that characterizes the values in the nodes in the tree: The value in any
node is greater than the value in any node in its left subtree and less than the value in any
node in its right subtree. See FIGURE 8.7.

Searching a Binary Search Tree
Let’s search for the value 18 in the tree shown in Figure 8.7. We compare 18 with 15, the
value in the root node. Because 18 is greater than 15, we know that if 18 is in the tree it
will be in the right subtree of the root. Note the similarity of this approach to our binary
search of a linear structure. As in the linear structure, we eliminate a large portion of the
data with one comparison.

281

Next we compare 18 with 17, the value in the root of the right subtree. Because 18 is
greater than 17, we know that if 18 is in the tree, it will be in the right subtree of the root.
We compare 18 with 19, the value in the root of the right subtree. Because 18 is less than
19, we know that if 18 is in the tree, it will be in the left subtree of the root. We compare
18 with 18, the value in the root of the left subtree, and we have a match.

Now let’s look at what happens when we search for a value that is not in the tree. Let’s
look for 4 in Figure 8.7. We compare 4 with 15. Because 4 is less than 15, if 4 is in the
tree, it will be in the left subtree of the root. We compare 4 with 7, the value in the root of
the left subtree. Because 4 is less than 7, if 4 is in the tree, it will be in 7’s left subtree. We
compare 4 with 5. Because 4 is less than 5, if 4 is in the tree, it will be in 5’s left subtree.
We compare 4 with 1. Because 4 is greater than 1, if 4 is in the tree, it will be in 1’s right
subtree. But 1’s left subtree is empty, so we know that 4 is not in the tree.

FIGURE 8.7 A binary search tree

In looking at the algorithms that work with trees, we use the following conventions: If
current points to a node, info(current) refers to the user’s data in the node, left(current)
points to the root of the left subtree of current, and right(current) points to the root of the
right subtree of current. null is a special value that means that the pointer points to nothing.
Thus, if a pointer contains null, the subtree is empty.

Using this notation, we can now write the search algorithm. We start at the root of the
tree and move to the root of successive subtrees until we either find the item we are looking
for or we find an empty subtree. The item to be searched for and the root of the tree
(subtree) are parameters—the information that the subalgorithm needs to execute.

282

With each comparison, either we find the item or we cut the tree in half by moving to
search in the left subtree or the right subtree. In half? Well, not exactly. The shape of a
binary tree is not always well balanced. Clearly, the efficiency of a search in a binary search
tree is directly related to the shape of the tree. How does the tree get its shape? The shape of
the tree is determined by the order in which items are entered into the tree. Look at
FIGURE 8.8. In part (a), the four-level tree is comparatively balanced. The nodes could
have been entered in several different orders to get this tree. By comparison, the ten-level
tree in part (b) could only have come from the values being entered in order.

283

FIGURE 8.8 Two variations of a binary search tree

Building a Binary Search Tree
How do we build a binary search tree? One clue lies in the search algorithm we just used. If
we follow the search path and do not find the item, we end up at the place where the item
would be if it were in the tree. Let’s now build a binary search tree using the following
strings: john, phil, lila, kate, becca, judy, june, mari, jim, sue.

Because john is the first value to be inserted, it goes into the root. The second value,
phil, is greater than john, so it goes into the root of the right subtree. lila is greater than john
but less than phil, so lila goes into the root of the left subtree of phil. The tree now looks like
this:

kate is greater than john but less than phil and lila, so kate goes into the root of the left
subtree of lila. becca is less than john, so becca goes into the root of the left subtree of john.
judy is greater than john but less than phil, lila, and kate, so judy goes into the root of the
left subtree of kate. We follow the same path for june as we did for judy. june is greater
than judy, so june goes into the root of the right subtree of judy. mari becomes the root of
lila’s right subtree; jim becomes the root of the right subtree of becca; and sue becomes the
root of the right subtree of phil. The final tree is shown in FIGURE 8.9.

TABLE 8.1 shows a trace of inserting nell into the tree shown in Figure 8.9. We use
the contents of the info part of the node within parentheses to indicate the pointer to the
subtree with that value as a root.

Although Put item in tree is abstract, we do not expand it. We would need to know
more about the actual implementation of the tree to do so.

284

FIGURE 8.9 A binary search tree built from strings

Table 8.1 Trace of Inserting nell into the Tree in Figure 8.9

Printing the Data in a Binary Search Tree
To print the value in the root, we must first print all the values in its left subtree, which by
definition are smaller than the value in the root. Once we print the value in the root, we
must print all the values in the root’s right subtree, which by definition are greater than the
value in the root. We are then finished. Finished? But what about the values in the left and
right subtrees? How do we print them? Why, the same way, of course. They are, after all,
just binary search trees.

This algorithm sounds too easy. That’s the beauty of recursive algorithms: They are
often short and elegant (although sometimes they take some thought to trace). Let’s write
and trace this algorithm using the tree shown below the algorithm. We number the calls in
our trace because there are two recursive calls. See TABLE 8.2.

285

?
False alarm

A glitch at a Las Vegas radio station falsely alerted cable companies, radio, and TV stations in five counties to a
national crisis that didn’t exist. That error occurred when a radio station tried to send out a message cancelling an
earlier AMBER Alert and instead transmitted an EAN, or emergency action notification—a special code reserved
for the president of the United States to use in the event of a nuclear war or similar extreme national emergency.

TABLE 8.2 Trace of Printing the Previous Tree

286

This algorithm prints the items in the binary search tree in ascending value order.
Other traversals of the tree print the items in other orders. We explore them in the
exercises.

Other Operations
By now, you should realize that a binary search tree is an object with the same functionality
as a list. The characteristic that separates a binary search tree from a simple list is the
efficiency of the operations; the other behaviors are the same. We have not shown the
Remove algorithm, because it is too complex for this text. We have also ignored the concept
length that must accompany the tree if it is to be used to implement a list. Rather than
keep track of the number of items in the tree as we build it, let’s write an algorithm that
counts the number of nodes in the tree.

How many nodes are in an empty tree? Zero. How many nodes are in any tree? There
are one plus the number of nodes in the left subtree and the number of nodes in the right
subtree. This definition leads to a recursive definition of the Length operation:

287

8.6 Graphs
The Bear family as shown in Figure 8.5 depicts only parent and child relationships. There
is no way to determine that BobbyBear, JuneBear, and JudyBear are siblings. Wouldn’t it
be nice to be able to represent other types of relationships such as sibling, cousin, aunt, and
so on?

Trees are a useful way to represent relationships in which a hierarchy exists. That is, a
node is pointed to by at most one other node (its parent). If we remove the restriction that
each node may have only one parent node, we have a data structure called a graph. A graph
is made up of a set of nodes called vertices and a set of lines called edges (or arcs) that
connect the nodes.

Graph A data structure that consists of a set of nodes and a set of edges that relate the nodes to each other

Vertex A node in a graph

Edge (arc) A pair of vertices representing a connection between two nodes in a graph

The vertices in the graph represent objects, and the edges describe relationships among
the vertices. For instance, if the graph is representing a map, the vertices might be the
names of cities, and the edges that link the vertices could represent roads between pairs of
cities. Because the roads that run between cities are two-way paths, the edges in this graph
have no direction. Such a graph is called an undirected graph. However, if the edges that
link the vertices represent flights from one city to another, the direction of each edge is
important. The existence of a flight (edge) from Houston to Austin does not assure the
existence of a flight from Austin to Houston. A graph whose edges are directed from one
vertex to another is called a directed graph (or digraph). A weighted graph is one in which
there are values attached to the edges in the graph.

Undirected graph A graph in which the edges have no direction

Directed graph (digraph) A graph in which each edge is directed from one vertex to another (or the same) vertex

Look at the graphs in FIGURE 8.10. The relationships among siblings are undirected.
For example, June is Sarah’s sibling and Sarah is June’s sibling; see FIGURE 8.10(a).
The prerequisite chart in FIGURE 8.10(c) is directed: Computer Science I must come
before Computer Science II. The flight schedule is both directed and weighted; see
FIGURE 8.10(b). There is a flight from Dallas to Denver that covers a distance of 780
miles, but there is not a direct flight from Denver to Dallas.

288

FIGURE 8.10 Examples of graphs

If two vertices are connected by an edge, we say they are adjacent vertices. In Figure
8.10(a), June is adjacent to Bobby, Sarah, Judy, and Susy. A path from one vertex to
another consists of a sequence of vertices that connect them. For example, there is a path
from Austin to Dallas to Denver to Chicago. There is not a path from June to Lila, Kate,
Becca, or John.

Adjacent vertices Two vertices that are connected by an edge

Path A sequence of vertices that connects two nodes in a graph

Vertices represent whatever objects are being modeled: people, houses, cities, courses,
concepts, and so on. The edges represent relationships between those objects. For example,
people are related to other people, houses are on the same street, cities are linked by direct
flights, courses have prerequisites, and concepts are derived from other concepts. (See

289

Figure 8.10.) Mathematically, vertices are the undefined concept upon which graph theory
rests. There is a great deal of formal mathematics associated with graphs, which is beyond
the scope of this book.

Creating a Graph
Lists, stacks, queues, and trees are all just holding containers. The user chooses which is
most appropriate for a particular problem. There are no inherent semantics other than
those built into the retrieval process: A stack returns the item that has been in the stack the
least amount of time; a queue returns the item that has been in the queue the longest
amount of time. Lists and trees return the information that is requested. A graph, in
contrast, has algorithms defined upon it that actually solve classic problems. First we talk
about building a graph; then we discuss problems that are solvable using a graph.

A lot of information is represented in a graph: the vertices, the edges, and the weights.
Let’s visualize the structure as a table using the flight connection data. The rows and
columns in TABLE 8.3 are labeled with the city names. A zero in a cell indicates that there
is no flight from the row city to the column city. The values in the table represent the
number of miles from the row city to the column city.

TABLE 8.3 Data for the Flight Graph

To build such a table we must have the following operations:

■ Add a vertex to the table
■ Add an edge to the table
■ Add a weight to the table

We find a position in the table by stating the row name and the column name. That is,
(Atlanta, Houston) has a flight of 800 miles. (Houston, Austin) contains a zero, so there
is no direct flight from Houston to Austin.

Graph Algorithms

290

There are three classic searching algorithms defined on a graph, each of which answers a
different question.

■ Can I get from City X to City Y on my favorite airline?
■ How can I fly from City X to City Y with the fewest number of stops?
■ What is the shortest flight (in miles) from City X to City Y?

The answers to these three questions involve a depth-first search, a breadth-first search, and
a single-source shortest-path search.

Depth-First Search
Can I get from City X to City Y on my favorite airline? Given a starting vertex and an
ending vertex, let’s develop an algorithm that finds a path from startVertex to endVertex.
We need a systematic way to keep track of the cities as we investigate them. Let’s use a stack
to store vertices as we encounter them in trying to find a path between the two vertices.
With a depth-first search, we examine the first vertex that is adjacent with start-Vertex; if
this is endVertex, the search is over. Otherwise, we examine all the vertices that can be
reached in one step from this first vertex.

Meanwhile, we need to store the other vertices that are adjacent with startVertex to
use later if we need them. If a path does not exist from the first vertex adjacent with
startVertex, we come back and try the second vertex, third vertex, and so on. Because we
want to travel as far as we can down one path, backtracking if endVertex is not found, a
stack is the appropriate structure for storing the vertices.

?
Who needs banks?

A lending club is an online financial community that brings together borrowers and investors. Investment clubs
have existed for a long time, but now the Internet enables people who have never met to form clubs. Lending clubs
invest in real estate, software companies, and small businesses. Lending Club, the largest such club in the United
States, is headed for an initial public offering in 2014. Along with PayPal, lending clubs are attempting to bring
down borrowing costs for Main Street businesses that don’t qualify for bank loans.3

We mark a vertex as visited once we have put all its adjacent vertices on the stack. If we
process a vertex that has already been visited, we keep putting the same vertices on the stack
over and over again. Then the algorithm isn’t an algorithm at all because it might never
end. So we must not process a vertex more than once.

Let’s apply this algorithm to the sample airline-route graph in Figure 8.10(b). We want
to fly from Austin to Washington. We initialize our search by pushing our starting city
onto the stack (FIGURE 8.11(a)). At the beginning of the loop, we pop the current city,
Austin, from the stack. The places we can reach directly from Austin are Dallas and
Houston; we push both these vertices onto the stack (FIGURE 8.11(b)). At the beginning
of the second iteration, we pop the top vertex from the stack—Houston. Houston is not
our destination, so we resume our search from there. There is only one flight out of

291

Houston, to Atlanta; we push Atlanta onto the stack (FIGURE 8.11(c)). Again we pop
the top vertex from the stack. Atlanta is not our destination, so we continue searching
from there. Atlanta has flights to two cities: Houston and Washington.

FIGURE 8.11 Using a stack to store the routes

But we just came from Houston! We don’t want to fly back to cities that we have
already visited; this could cause an infinite loop. But we have already taken care of this
problem: Houston has already been visited, so we continue without putting anything on
the stack. The second adjacent vertex, Washington, has not been visited, so we push it onto
the stack (FIGURE 8.11(d)). Again we pop the top vertex from the stack. Washington is
our destination, so the search is complete.

FIGURE 8.12 shows the result of asking if we can reach Washington from Austin.
This search is called a depth-first search because we go to the deepest branch, examining

all the paths beginning at Houston before we come back to search from Dallas. When you
have to backtrack, you take the branch closest to where you dead-ended. That is, you go as

292

far as you can down one path before you take alternative choices at earlier branches.

Breadth-First Search
How can you get from City X to City Y with the fewest number of stops? The breadth-first
traversal answers this question. When we come to a dead end in a depth-first search, we
back up as little as possible. We try another route from the most recent vertex—the route
on top of our stack. In a breadth-first search, we want to back up as far as possible to find a
route originating from the earliest vertices. The stack is not the right structure for finding
an early route. It keeps track of things in the order opposite of their occurrence—that is,
the latest route is on top. To keep track of things in the order in which they happen, we use
a queue. The route at the front of the queue is a route from an earlier vertex; the route at
the back of the queue is from a later vertex. Thus, if we substitute a queue for a stack, we
get the answer to our question.

FIGURE 8.12 The depth-first search

293

Let’s apply this algorithm to the same airline-route graph in Figure 8.10(b). Which
path gives us the route from Austin to Washington with the fewest stops? Austin is in the
queue to start the process (FIGURE 8.13(a)). We deque Austin and enqueue all the cities
that can be reached directly from Austin: Dallas and Houston (FIGURE 8.13(b)). Then
we dequeue the front queue element. Dallas is not the destination we seek, so we enqueue
all the adjacent cities that have not yet been visited: Chicago and Denver (FIGURE
8.13(c)). (Austin has been visited already, so it is not enqueued.) Again we dequeue the
front element from the queue. This element is the other “one-stop” city—Houston.
Houston is not the desired destination, so we continue the search. There is only one flight
out of Houston, and it is to Atlanta. Because we haven’t visited Atlanta before, it is
enqueued (FIGURE 8.13(d)).

Now we know that we cannot reach Washington with one stop, so we start examining
the two-stop connections. We dequeue Chicago; this is not our destination, so we put its
adjacent city, Denver, into the queue (FIGURE 8.13(e)). Now this is an interesting
situation: Denver is in the queue twice. We have put Denver into the queue in one step and
removed its previous entry at the next step. Denver is not our destination, so we put its
adjacent cities that haven’t been visited (only Atlanta) into the queue (FIGURE 8.13(f)).
This processing continues until Washington is put into the queue (from Atlanta), and is
finally dequeued. We have found the desired city, and the search is complete (FIGURE
8.14).

294

FIGURE 8.13 Using a queue to store the routes

FIGURE 8.14 The breadth-first search

As you can see from these two algorithms, a depth-first search goes as far down a path

295

from startVertex as it can before looking for a path beginning at the second vertex
adjacent with startVertex. In contrast, a breadth-first search examines all of the vertices
adjacent with startVertex before looking at those adjacent with these vertices.

Single-Source Shortest-Path Search
What is the shortest flight (in miles) from Austin to some other city? We know from the
two search operations just discussed that there may be multiple paths from one vertex to
another. Suppose we want to find the shortest path from Austin to each of the other cities
that your favorite airline serves. By “shortest path,” we mean the path whose edge values
(weights), when added together, have the smallest sum. Consider the following two paths
from Austin to Washington:

Clearly the first path is preferable, unless you want to collect frequent-flyer miles.
Let’s develop an algorithm that displays the shortest path from a designated starting city

to every other city in the graph—this time we are not searching for a path between a starting
city and an ending city. As in the two graph searches described earlier, we need an auxiliary
structure for storing cities that we process later. By retrieving the city that was most recently
put into the structure, the depth-first search tries to keep going “forward.” It tries a one-
flight solution, then a two-flight solution, then a three-flight solution, and so on. It
backtracks to a fewer-flight solution only when it reaches a dead end. By retrieving the city
that had been in the structure the longest time, the breadth-first search tries all one-flight
solutions, then all two-flight solutions, and so on. The breadth-first search finds a path with
a minimum number of flights.

Of course, the minimum number of flights does not necessarily mean the minimum
total distance. Unlike the depth-first and breadth-first searches, the shortest-path traversal
must account for the number of miles (edge weights) between cities in its search. We want
to retrieve the vertex that is closest to the current vertex—that is, the vertex connected with
the minimum edge weight. In the abstract container called a priority queue, the item that is
retrieved is the item in the queue with the highest priority. If we let miles be the priority,
we can enqueue items made up of a record that contains two vertices and the distance
between them.

This algorithm is far more complex than we have seen before, so we stop at this point.

296

However, the mathematically adventurous reader may continue to pursue this solution.

8.7 Subprograms
When we examined recursion, we introduced the concept of a named subalgorithm. Here
we look at these in the nonrecursive context and discuss how we pass information back and
forth between algorithm and subalgorithm. Because we are talking about actual language
constructs, we call these structures subprograms rather than subalgorithms.

Many subprograms are available as part of a high-level language or as part of the library
that comes with the language. For example, mathematical problems often need to calculate
trigonometric functions. Subprograms that calculate these values are available in most high-
level languages in one way or another. When a program needs to calculate one of these
values, the programmer looks up the name of the subprogram that calculates the value and
just calls the subprogram to perform the calculation.

If one of these subprograms needs to have information passed to it, the calling unit
sends over the values for the subprogram to use. For example, the following two statements
set x to m times the sine function of t and y to the absolute value of z. The sine function
and the absolute value function are built into many languages. The information sent to the
sine function is t; the information sent to the absolute value function is z. Both of these
functions are value-returning subprograms.

The same is true when you write your own subprograms. We now look at the
mechanism used for passing information back and forth between the calling program and
subprogram.

We have assumed these capabilities in the algorithms relating to the abstract data types
we have examined. Take, for example, the following list algorithm:

297

Insert needs a list and a value to insert into it. Reset needs the list to reset. MoreItems
needs the list to see if more items remain to be returned. GetNext needs the list as input
and returns the next item in the list. This communication is done through the concept of a
parameter list.

Parameter Passing
A parameter list is a list of the identifiers or values with which the subprogram is to work;
it appears in parentheses beside the subprogram name. Because a subprogram is defined
before it is called, it does not know with which variables from the calling unit it is to work.
To solve this dilemma, we specify a list of variable names in parentheses beside the
subprogram name. These identifiers are called parameters. When the subprogram is called,
the calling unit lists the subprogram name, followed by a list of identifiers in parentheses.
These identifiers are called arguments. The arguments represent actual variables in the
calling unit with which the subprogram is to work.

Parameter list A mechanism for communicating between two parts of a program

Parameters The identifiers listed in parentheses beside the subprogram name; sometimes called formal parameters

Arguments The identifiers listed in parentheses on the subprogram call; sometimes called actual parameters

You can think of a parameter as being a temporary identifier that is used within a
subprogram. When a subprogram is called, the calling unit sends the names of the actual
identifiers the subprogram is to use. The action in the subprogram is defined using the
parameters; the action is executed using the arguments. When the action takes place, the
arguments are substituted one by one for the parameters. This substitution can be done in
several ways, but the most common practice is by position. The first argument substitutes
for the first parameter, the second argument substitutes for the second parameter, and so
on.

We have promised not to look at too many implementations, but this one is easy. We
can implement a list using an array and a length field. When we add an item to the list, we
store it in the array (values) at the length – 1 position and increment length. We bind the
values and the length together into a record called list, which we pass to the subprogram
that needs it.

list is the parameter and mylist is the argument. When Insert is executed, myList replaces

298

list.
The substitution mechanism acts much like a message board. When a subprogram is

called, a list of the arguments is given to the subprogram (put on the subprogram’s message
board). These arguments tell the subprogram where to find the values to use. When a
parameter is used in the body of the subprogram, the subprogram accesses the argument
through its relative position on the message board. That is, the subprogram looks for its
first parameter in the first position on the message board and for its second parameter in
the second position on the message board. See FIGURE 8.15.

The number of arguments in the call must match the number of parameters in the
subprogram heading. Because the arguments and parameters are matched by position, their
names don’t have to be the same. This is very helpful when a subprogram is called more
than once, with different arguments in each call. Parameters passed in this fashion are often
called positional parameters.

?
Hackers and crackers

The word hacker used to be complimentary, describing a programmer who could write very sophisticated programs
almost overnight. Then the term came to refer to someone tinkering with programs with malicious intent. Now
cracker refers to the person with malicious intent, and hacker has returned to its original definition.

FIGURE 8.15 Passing parameters

Value and Reference Parameters
There are two basic ways of passing parameters: by value and by reference (or address). If a
parameter is a value parameter, the calling unit gives a copy of the argument to the
subprogram. If a parameter is a reference parameter, the calling unit gives the address of
the argument to the subprogram. This very fundamental difference means that a
subprogram cannot change the content of a value argument because it receives only a copy
of the argument. The subprogram can modify the copy, but the original variable will not be

299

changed. In contrast, any argument passed by the calling unit to a reference parameter can
be changed by the subprogram because the subprogram manipulates the actual variable, not
a copy of it. In the previous example, the record being passed as list must be a reference
parameter. If it is not, items would be inserted into the copy, not the original.

Value parameter A parameter that expects a copy of its argument to be passed by the calling unit (put on the
message board)

Reference parameter A parameter that expects the address of its argument to be passed by the calling unit (put on
the message board)

Think of the difference this way: To access a reference parameter, the subprogram
accesses the contents of the address listed on the message board. To access a value
parameter, the subprogram accesses the contents of the message board. Clearly, both the
calling unit and the subprogram must know which parameter/argument is to be passed by
value and which is to be passed by reference. Not all high-level languages allow both kinds
of parameters, but those that do have some syntactic schemes to label parameters as value or
reference.

Before we leave subprograms, let’s look at an example that illustrates the difference
between value and reference parameters. We have already written an algorithm that swaps
the contents of two places in memory. Here is the solution without problem-dependent
variable names:

Now suppose that the calling unit (the part of the program that wants the contents of
the two places exchanged) calls Swap with data1 and data2 as parameters.

Now let’s say that data1 is stored in location 0002 and data2 is stored in location
0003. These locations contain the values 30 and 40, respectively. FIGURE 8.16 shows the
content of the message board when the parameters are passed by value and passed by
reference. When a parameter is a value parameter, the subprogram knows to manipulate the
value on the message board. When a parameter is a reference parameter, the subprogram
knows to manipulate the contents of the address on the message board. Should the
parameters for subprogram Swap be value or reference parameters?

300

FIGURE 8.16 The difference between value parameters and reference parameters

Before we leave the topic of subprograms and parameters, let’s implement three more of
the list subprograms: getLength, IsThere, and Delete. If the list items are not to be kept in
sorted order, we can just put the first one in the length position and increment length. For
this example, let’s assume that only one copy of item can be in the list.

IsThere is a subprogram that returns a value—in this case a Boolean value. Thus it
would be used in an expression such as

This type of subprogram is called a value-returning subprogram. Delete and Insert, in
contrast, do not return a specific value. However, they do return the changed list through
its parameters. If we assume that the item to be deleted is in the list, the implementation is
simple: When we find the item to be deleted, we just exchange it with the last item in the
list and decrement length.

301

IsThere can be used to make sure that the item to be deleted is in the list.

Value-returning subprograms include the RETURN statement followed by a value to be
returned. Non-value-returning subprograms may have a RETURN statement, but it is
unnecessary. To conclude this section, here is a code segment that reads values into the list
and then deletes some values:

SUMMARY

Lists, stacks, queues, trees, and graphs are all useful abstract composite structures. Each has
its own defining property and the operations that guarantee that property. All of these
abstract structures include operations to insert items and to remove items. Lists and trees

302

also have operations to find items within the structure.
Lists and trees have the same properties: Items can be inserted, deleted, and retrieved.

Items can be inserted in a stack, but the item removed and returned is the last item inserted
into the stack—that is, the item that has been in the stack the shortest time. Items can be
inserted into a queue, but the item removed and returned is the first item put into the
queue—that is, the item that has been in the queue the longest time.

Lists, stack, queues, and trees are merely holding structures, but graphs are more
complex. A wealth of mathematical algorithms can be applied to information in a graph.
We examined three of these: the breadth-first search, the depth-first search, and the single-
source shortest-path search.

Subprogram statements allow subalgorithms to be implemented independently. A
subprogram may be value returning, in which case it is called by placing its name and
arguments within an expression. Alternatively, a subprogram may be non-value returning
(void), in which case the subprogram name is used as a statement in the calling program.
Data sent to and from subprograms are transmitted by the use of parameter lists.
Parameters may be either reference or value parameters. An argument is passed to a value
parameter by sending a copy of the argument to the subprogram. An argument is passed to
a reference parameter by sending the address of the argument to the subprogram.

ETHICAL ISSUES
Workplace Monitoring4,5

The same privacy rights employees enjoy at home or in the marketplace do not extend to
the workplace. Employees think conversations around the water cooler or on the phone
at work are private. Usually, they’re wrong. While they may know how to secure their
Internet connections and phones at home, there is little they can do to ensure
themselves the same privacy at work. An increasing number of employers are now using
technology to monitor the workplace. Keystroke programs can gather and record every
keystroke typed on a computer. Phones can be monitored and calls recorded. Some
employers have installed cameras and audio devices that record conversations. There is
even software that triggers a video scan of a cubicle if the keyboard has been idle for a
certain length of time.

Recent surveys show that a majority of employers monitor their employees. A 2007
survey by the American Management Association’s ePolicy Institute found that 65% of
companies used software to block connections to inappropriate websites—a 27%
increase since 2001. The number of employers that monitored the amount of time
employees spent on the phone and tracked the numbers called also increased. Twenty-
eight percent of employers have fired workers for email misuse. The realization that
email creates a written business record that is the electronic equivalent of DNA evidence
has fueled the increase in workplace monitoring.

Advocates of these practices hail these results as good news. The computers, phones,
and physical space belong to the employer, after all, and are provided to the employees
for use in their jobs. After discovering workers surfing the Internet, downloading
pornography, and using email to harass others or chat with friends, businesses realized
that the same technology that allows such behavior can be used to monitor it. Employee

303

Internet monitoring (EIM) has become a big business.
Although only two states (Delaware and Connecticut) require employers to notify

employees of monitoring, most do. Still, privacy advocates say the trend has gone too
far. Approximately 26% of the employers surveyed in 2005 had fired workers for misuse
of the Internet, while 25% had fired employees for email misuse; 6% of employers had
even fired workers for misuse of the office phone.

Opponents of the monitoring technologies point out that people are not machines.
They must take breaks and feel that they have some control over their environment to
be productive, satisfied employees. Knowing that personal phone calls, hallway
conversations, and email are monitored injects feelings of resentment and apathy into
the workplace. Who wants Big Brother for an office mate?

Among the safeguards called for by privacy advocates are federal regulations,
notification and training of employees on the various monitoring methods used, and
limits of monitoring to cases where employers have cause to be suspicious of an
employee. However, lawmakers have chosen not to intervene. They point to the very
real considerations of company security and the right of employers to monitor what goes
on at the workplace.

KEY TERMS

Abstract data type (ADT)
Adjacent vertices
Arguments
Binary tree
Containers
Data structure
Directed graph (digraph)
Edge (arc)
Graph
Leaf node
Linked structure
Parameter list
Parameters
Path
Reference parameter
Root
Undirected graph
Value parameter
Vertex

EXERCISES

304

For Exercises 1–10, indicate which structure would be a more suitable choice for each of
the following applications by marking them as follows:

A. Stack
B. Queue
C. Tree
D. Binary search tree
E. Graph

 1. A bank simulation of its teller operation to see how waiting times would be
affected by adding another teller.

 2. A program to receive data that is to be saved and processed in the reverse order.
 3. An electronic address book, kept ordered by name.
 4. A word processor with a PF key that causes the preceding command to be

redisplayed; every time the PF key is pressed, the program is to show the command
that preceded the one currently displayed.

 5. A dictionary of words used by a spell checker to be built and maintained.
 6. A program to keep track of patients as they check into a medical clinic, assigning

patients to doctors on a first-come, first-served basis.
 7. A program keeping track of where canned goods are located on a shelf.
 8. A program to keep track of the soccer teams in a city tournament.
 9. A program to keep track of family relationships.
10. A program to maintain the routes in an airline.

For Exercises 11–30, mark the answers true or false as follows:
A. True
B. False

11. A binary search cannot be applied to a tree.
12. A stack and a queue are different names for the same ADT.
13. A stack displays FIFO behavior.
14. A queue displays LIFO behavior.
15. A leaf in a tree is a node with no children.
16. A binary tree is a tree in which each node can have zero, one, or two children.
17. Binary search tree is another name for a binary tree.
18. The value in the right child of a node (if it exists) in a binary search tree will be

greater than the value in the node itself.
19. The value in the left child of a node (if it exists) in a binary search tree will be

greater than the value in the node itself.
20. In a graph, the vertices represent the items being modeled.
21. Algorithms that use a list must know whether the list is array based or linked.
22. A list may be linear or nonlinear, depending on its implementation.
23. The root of a tree is the node that has no ancestors.
24. Binary search trees are ordered.
25. On average, searching in a binary search tree is faster than searching in an array-

based list.
26. On average, searching in a binary search tree is faster than searching in a list.
27. A binary search tree is always balanced.
28. Given the number of nodes and the number of levels in a binary search tree, you

305

can determine the relative efficiency of a search in the tree.
29. Insertion in a binary search tree is always into a leaf node.
30. A binary search tree is another implementation of a sorted list.

The following algorithm (used for Exercises 31–33) is a count-controlled loop going
from 1 through 5. At each iteration, the loop counter is either printed or put on a stack
depending on the result of Boolean function RanFun(). (The behavior of RanFun() is
immaterial.) At the end of the loop, the items on the stack are popped and printed.
Because of the logical properties of a stack, this algorithm cannot print certain sequences
of the values of the loop counter. You are given an output and asked if the algorithm
could generate the output. Respond as follows:

A. True
B. False
C. Not enough information

31. The following output is possible using a stack: 1 3 5 2 4.
32. The following output is possible using a stack: 1 3 5 4 2.
33. The following output is possible using a stack: 1 3 5 1 3.

The following algorithm (used for Exercises 34–36) is a count-controlled loop going
from 1 through 5. At each iteration, the loop counter is either printed or put on a queue
depending on the result of Boolean function RanFun(). (The behavior of RanFun() is
immaterial.) At the end of the loop, the items on the queue are dequeued and printed.
Because of the logical properties of a queue, this algorithm cannot print certain
sequences of the values of the loop counter. You are given an output and asked if the
algorithm could generate the output. Respond as follows:

A. True
B. False
C. Not enough information

306

34. The following output is possible using a queue: 1 3 5 2 4.
35. The following output is possible using a queue: 1 3 5 4 2.
36. The following output is possible using a queue: 1 3 5 1 3.

Exercises 37–50 are short-answer questions.
37. What is written by the following algorithm?

38. What is written by the following algorithm?

307

39. Write an algorithm that sets bottom equal to the last element in the stack, leaving
the stack empty.

40. Write an algorithm that sets bottom equal to the last element in the stack, leaving
the stack unchanged.

41. Write an algorithm to create a copy of myStack, leaving myStack unchanged.
42. Write an algorithm that sets last equal to the last element in a queue, leaving the

queue empty.
43. Write an algorithm that sets last equal to the last element in a queue, leaving the

queue unchanged.
44. Write an algorithm to create a copy of myQueue, leaving myQueue unchanged.
45. Write an algorithm replace that takes a stack and two items. If the first item is in

the stack, replace it with the second item, leaving the rest of the stack unchanged.
46. Write an algorithm replace that takes a queue and two items. If the first item is in

the queue, replace it with the second item, leaving the rest of the queue unchanged.
47. Draw the binary search tree whose elements are inserted in the following order:

50 72 96 107 26 12 11 9 2 10 25 51 16 17 95
48. If Print is applied to the tree formed in Exercise 47, in which order would the

elements be printed?
49. Examine the following algorithm and apply it to the tree formed in Exercise 47. In

which order would the elements be printed?

50. Examine the following algorithm and apply it to the tree formed in Exercise 47. In
which order would the elements be printed?

308

Exercises 51–55 are short-answer questions based on the following directed graph.

51. Is there a path from Oregon to any other state in the graph?
52. Is there a path from Hawaii to every other state in the graph?
53. From which state(s) in the graph is there a path to Hawaii?
54. Show the table that represents this graph.
55. Can you get from Vermont to Hawaii?

Exercises 56–60 are short-answer questions based on the following directed graph.

56. Show the depth-first traversal from
Jean to Sandler.

57. Show the depth-first traversal from
Lance to Darlene.

309

58. Show the breadth-first traversal from
Jean to Sandler.

59. Show the breadth-first traversal from
Lance to Darlene.

60. Show the table that represents this graph.

Exercises 61–69 are short-answer exercises.
61. Given the record List containing the array values and the variable length, write the

algorithm for GetLength.
62. Assume that record List has an additional variable currentPosition, initialized to

the first item in the list. What is the initial value of currentPosition?
63. Write the algorithm for MoreItems, which returns TRUE if there are more items in

the list and FALSE otherwise.
64. Write the algorithm for GetNext(myList, item) so that item is the next item in

the list. Be sure to update currentPosition.
65. Exercises 61–64 create the algorithms that allow the user of a list to see the items

one at a time. Write the algorithm that uses these operations to print the items in a
list.

66. What happens if an insertion or deletion occurs in the middle of an iteration
through the list? Explain.

67. Can you think of a way to keep the user from doing an insertion or deletion
during an iteration?

68. Distinguish between value and reference parameters.
69. How are arguments and parameters matched?

THOUGHT QUESTIONS

 1. A spreadsheet is a table with rows and columns. Think about an ADT spreadsheet.
Which operations would you need to construct the table? Which operations would
you need to manipulate the values in the table?

 2. Binary trees, binary search trees, and graphs are visualized as nodes and arrows
(pointers) that represent the relationships between nodes. Compare these structures
in terms of the operations that are allowed. Can a list ever be a tree? Can a tree ever
be a list? Can a tree ever be a graph? Can a graph ever be a tree? How do the
structures all relate to one another?

 3. Before computers, water-cooler conversations were thought to be private. How has
computer technology changed this assumption?

 4. How do the rights of employees collide with privacy rights in the workplace?

310

THE PROGRAMMING LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits
5 Computing Components

The Programming Layer
6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages

The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer
15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion
18 Limitations of Computing

311

9 OBJECT-ORIENTED DESIGN AND
HIGH-LEVEL PROGRAMMING
LANGUAGES

In Chapter 1, we examined how the layers of languages were built up over time around the
hardware to make computing easier for the applications programmer. In Chapter 6, we
looked at machine code and then at an assembly language that allows the programmer to
use mnemonics to represent instructions rather than numbers.

Assembly languages are a step in the right direction, but the programmer still must
think in terms of individual machine instructions. To overcome this obstacle, we
introduced pseudo code as an informal way to describe algorithms; pseudo code is closer to
how humans think and communicate. High-level programming languages are a very formal
way of accomplishing the same thing. Because computers can execute only machine code,
translators were developed to translate programs written in these high-level languages into
machine code.

GOALS
After studying this chapter, you should be able to:

■ distinguish between functional design and object-oriented design.
■ describe the stages of the object-oriented design process.
■ apply the object-oriented design process.
■ name, describe, and give examples of the three essential ingredients of an object-oriented language.
■ describe the translation process and distinguish between assembly, compilation, interpretation, and execution.
■ name four distinct programming paradigms and give a language characteristic of each.
■ define the concepts of data type and strong typing.
■ understand how the constructs of top-down design and object-oriented design are implemented in programming

languages.

Before we look at high-level languages, we make a detour to look at object-oriented
design. Object-oriented design is another way of looking at the design process, which views
a program from the standpoint of data rather than tasks. Because the functionality
associated with this design process is often incorporated into high-level programming
languages, we need to understand this design process before looking at specific high-level
languages.

312

9.1 Object-Oriented Methodology
We cover top-down design first because it more closely mirrors the way humans solve
problems. As you saw earlier in this book, a top-down solution produces a hierarchy of
tasks. Each task or named action operates on the data passed to it through its parameter list
to produce the desired output. The tasks are the focus of a top-down design. Object-
oriented design, by contrast, is a problem-solving methodology that produces a solution to
a problem in terms of self-contained entities called objects, which are composed of both data
and operations that manipulate the data. Object-oriented design focuses on the objects and
their interactions within a problem. Once all of the objects within the problem are collected
together, they constitute the solution to the problem.

In this process, Polya’s principles of problem solving are applied to the data rather than
to the tasks.

?
It’s in! No, it’s out!

Have you ever watched a tennis match on television in which a player asks for confirmation of a line call? On a big
screen, you can see the path of the ball and the point of impact that shows whether the ball was in or out. How do
they do it? By computer, of course. One system uses four high-speed digital cameras with computer software that
can track a ball, determine its trajectory, and map its impact point. These cameras are connected to one another
and to a main computer using wireless technology.

Object Orientation
Data and the algorithms that manipulate the data are bundled together in the object-
oriented view, thus making each object responsible for its own manipulation (behavior).
Underlying object-oriented design (OOD) are the concepts of classes and objects.

An object is a thing or entity that makes sense within the context of the problem. For
example, if the problem relates to information about students, a student would be a
reasonable object in the solution. A group of similar objects is described by an object class
(or class for short). Although no two students are identical, students do have properties
(data) and behaviors (actions) in common. Students are male or female humans who attend
courses at a school (at least most of the time). Therefore, students would be a class. The
word class refers to the idea of classifying objects into related groups and describing their
common characteristics. That is, a class describes the properties and behaviors that objects
of the class exhibit. Any particular object is an instance (concrete example) of the class.

Object An entity or thing that is relevant in the context of a problem

Object class (class) A description of a group of objects with similar properties and behaviors

Object-oriented problem solving involves isolating the classes within the problem.
Objects communicate with one another by sending messages (invoking one another’s
subprograms). A class contains fields that represent the properties and behaviors of the

313

class. A field can contain data values and/or methods (subprograms). A method is a named
algorithm that manipulates the data values in the object. A class in the general sense is a
pattern for what an object looks like (data) and how it behaves (methods).

Fields Named items in a class; can be data or subprograms

Method A named algorithm that defines one aspect of the behavior of a class

Design Methodology
The decomposition process that we present involves four stages. Brainstorming is the stage
in which we make a first pass at determining the classes in the problem. Filtering is the stage
in which we go back over the proposed classes determined in the brainstorming stage to see
if any can be combined or if any are missing. Each class that survives the filtering stage is
examined more carefully in the next stage.

Scenarios is the stage in which the behavior of each class is determined. Because each
class is responsible for its own behavior, we call these behaviors responsibilities. In this stage,
“what if” questions are explored to be sure that all situations are examined. When all of the
responsibilities of each class have been determined, they are recorded, along with the names
of any other classes with which the class must collaborate (interact) to complete its
responsibility.

Responsibility algorithms is the last stage, in which the algorithms are written for the
responsibilities for each of the classes. A notation device called a CRC card is a handy way
to record the information about each class at this stage.

Let’s look at each of these stages in a little more detail.

Brainstorming
What is brainstorming? The dictionary defines it as a group problem-solving technique that
involves the spontaneous contribution of ideas from all members of the group.1

Brainstorming brings to mind a movie or TV show where a group of bright young people
tosses around ideas about an advertising slogan for the latest revolutionary product. This
picture seems at odds with the traditional picture of a computer analyst working alone in a
closed, windowless office for days who finally jumps up shouting, “Ah ha!” As computers
have gotten more powerful, the problems that can be solved have become more complex,
and the picture of the genius locked in a windowless room has become obsolete. Solutions
to complex problems need new and innovative solutions based on collective “Ah ha!”s—not
the work of a single person.

In the context of object-oriented problem solving, brainstorming is a group activity
designed to produce a list of possible classes to be used to solve a particular problem. Just as
the people brainstorming for an advertising slogan know something about the product
before the session begins, so brainstorming for classes requires that the participants know
something about the problem. Each team member should enter the brainstorming session
with a clear understanding of the problem to be solved. No doubt during the preparation,
each team member will have generated his or her own preliminary list of classes.

314

Although brainstorming is usually a group activity, you can practice it by yourself on
smaller problems.

Filtering
Brainstorming produces a tentative list of classes. The next phase is to take this list and
determine which are the core classes in the problem solution. Perhaps two classes on the list
are actually the same thing. These duplicate classes usually arise because people within
different parts of an organization use different names for the same concept or entity. Also,
two classes in the list may have many common attributes and behaviors that can be
combined.

Some classes might not actually belong in the problem solution. For example, if we are
simulating a calculator, we might list the user as a possible class. In reality, the user is not
part of the internal workings of the simulation as a class; the user is an entity outside the
problem that provides input to the simulation. Another possible class might be the on
button. A little thought, however, shows that the on button is not part of the simulation;
rather, it is what starts the simulation program running.

As the filtering is completed, the surviving list of classes is passed onto the next stage.

Scenarios
The goal of the scenarios phase is to assign responsibilities to each class. Responsibilities are
eventually implemented as subprograms. At this stage we are interested only in what the
tasks are, not in how they might be carried out.

Two types of responsibilities exist: what a class must know about itself (knowledge) and
what a class must be able to do (behavior). A class encapsulates its data (knowledge), such
that objects in one class cannot directly access data in another class. Encapsulation is the
bundling of data and actions so that the logical properties of the data and actions are
separated from the implementation details. Encapsulation is a key to abstraction. At the
same time, each class has the responsibility of making data (knowledge) available to other
classes that need it. Therefore, each class has a responsibility to know the things about itself
that others need to be able to get. For example, a student class should “know” its name and
address, and a class that uses the student class should be able to “get” this information.
These responsibilities are usually named with “Get” preceding the name of the data—for
example, GetName or GetEmailAddress. Whether the email address is kept in the student
class or whether the student class must ask some other class to access the address is
irrelevant at this stage: The important fact is that the student class knows its own email
address and can return it to a class that needs it.

Encapsulation Bundling data and actions so that the logical properties of data and actions are separated from the
implementation details

The responsibilities for behavior look more like the tasks we described in top-down
design. For example, a responsibility might be for the student class to calculate its grade-

315

point average (GPA). In top-down design, we would say that a task is to calculate the GPA
given the data. In object-oriented design, we say that the student class is responsible for
calculating its own GPA. The distinction is both subtle and profound. The final code for
the calculation may look the same, but it is executed in different ways. In a program based
on a top-down design, the program calls the subprogram that calculates the GPA, passing
the student object as a parameter. In an object-oriented program, a message is sent to the
object of the class to calculate its GPA. There are no parameters because the object to
which the message is sent knows its own data.

The name for this phase gives a clue about how you go about assigning responsibilities
to classes. The team (or an individual) describes different processing scenarios involving the
classes. Scenarios are “what if” scripts that allow participants to act out different situations
or an individual to think through them.

The output from this phase is a set of classes with each class’s responsibilities assigned,
perhaps written on a CRC card. The responsibilities for each class are listed on the card,
along with the classes with which a responsibility must collaborate.

Responsibility Algorithms
Eventually, algorithms must be written for the responsibilities. Because the problem-solving
process focuses on data rather than actions in the object-oriented view of design, the
algorithms for carrying out responsibilities tend to be fairly short. For example, the
knowledge responsibilities usually just return the contents of one of an object’s variables or
send a message to another object to retrieve it. Action responsibilities are a little more
complicated, often involving calculations. Thus the top-down method of designing an
algorithm is usually appropriate for designing action responsibility algorithms.

Final Word
To summarize, top-down design methods focus on the process of transforming the input
into the output, resulting in a hierarchy of tasks. Object-oriented design focuses on the data
objects that are to be transformed, resulting in a hierarchy of objects. Grady Booch puts it
this way: “Read the specification of the software you want to build. Underline the verbs if
you are after procedural code, the nouns if you aim for an object-oriented program.”2

We propose that you circle the nouns and underline the verbs as a way to begin. The
nouns become objects; the verbs become operations. In a top-down design, the verbs are
the primary focus; in an object-oriented design, the nouns are the primary focus.

Now, let’s work through an example.

Example

Problem
Create a list that includes each person’s name, telephone number, and email address. This
list should then be printed in alphabetical order. The names to be included in the list are

316

on scraps of paper and business cards.

Brainstorming and Filtering
Let’s try circling the nouns and underlining the verbs.

The first pass at a list of classes would include the following:

Three of these classes are the same: The three references to list all refer to the container
being created. Order is a noun, but what is an order class? It actually describes how the list
class should print its items. Therefore, we discard it as a class. Name and names should be
combined into one class. Scraps, paper, and cards describe objects that contain the data in
the real world. They have no counterpart within the design. Our filtered list is shown
below:

The verbs in the problem statement give us a headstart on the responsibilities: create,
print, and include. Like scraps, paper, and cards, include is an instruction to someone

317

preparing the data and has no counterpart within the design. However, it does indicate that
we must have an object that inputs the data to be put on the list. Exactly what is this data?
It is the name, telephone number, and email address of each person on the list. But this
train of thought leads to the discovery that we have missed a major clue in the problem
statement. A possessive adjective, person’s, actually names a major class; name, telephone
number, and email address are classes that help define (are contained within) a person
class.

Now we have a design choice. Should the person class have a responsibility to input its
own data to initialize itself, or should we create another class that does the input and sends
the data to initialize the person class? Let’s have the person class be responsible for
initializing itself. The person class should also be responsible for printing itself.

Does the person class collaborate with any other class? The answer to this question
depends on how we decide to represent the data in the person class. Do we represent name,
telephone number, and email address as simple data items within the person class, or do
we represent each as its own class? Let’s represent name as a class with two data items,
firstName and lastName, and have the others be string variables in class person. Both
classes person and name must have knowledge responsibilities for their data values. Here
are the CRC cards for these classes.

What about the list object? Should the list keep the items in alphabetical order, or
should it sort the items before printing them? Each language in which we might implement
this design has a library of container classes available for use. Let’s use one of these classes,
which keeps the list in alphabetical order. This library class should also print the list. We

318

can create a CRC card for this class, but mark that it most likely will be implemented using
a library class.

?
Beware of pirated software

A 2013 study analyzed 270 websites and peer-to-peer networks, 108 software downloads, 155 CDs or DVDs, 2077
consumer interviews, and 258 interviews of IT managers around the world. The results showed that of the
counterfeit software that does not ship with the computer, 45% is downloaded from the Internet. Of software
downloaded from websites or peer-to-peer networks, 78% include some type of spyware and 36% contain Trojans
and adware.3

By convention, when a class reaches the CRC stage, we begin its identifier with an
uppercase letter.

Responsibility Algorithms
Person Class There are two responsibilities to be decomposed: initialize and print.
Because Name is a class, we can just let it initialize and print itself. We apply a subprogram
(method) to an object by placing the object name before the method name with a period in
between.

319

Name Class This class has the same two responsibilities: initialize and print. However, the
algorithms are different. For the initialize responsibility, the user must be prompted to
enter the name and the algorithm must read the name. For the print responsibility, the first
and last names must be output with appropriate labels.

We stop the design at this point. Reread the beginning of Chapter 7, where we discuss
problem solving and the top-down design process. A top-down design produces a
hierarchical tree with tasks in the nodes of the tree. The object-oriented design produces a
set of classes, each of which has responsibilities for its own behavior. Is one better than the
other? Well, the object-oriented design creates classes that might be useful in other
contexts. Reusability is one of the great advantages of an object-oriented design. Classes
designed for one problem can be used in another problem, because each class is self-
contained; that is, each class is responsible for its own behavior.

You can think of the object-oriented problem-solving phase as mapping the objects in
the real world into classes, which are descriptions of the categories of objects. The
implementation phase takes the descriptions of the categories (classes) and creates instances
of the classes that simulate the objects in the problem. The interactions of the objects in the
program simulate the interaction of the objects in the real world of the problem. FIGURE
9.1 summarizes this process.

320

FIGURE 9.1 Mapping of a problem into a solution

9.2 Translation Process
Recall from Chapter 6 that a program written in assembly language is input to the
assembler, which translates the assembly-language instructions into machine code. The
machine code, which is the output from the assembler, is then executed. With high-level
languages, we employ other software tools to help with the translation process. Let’s look at
the basic function of these tools before examining high-level languages.

Compilers
The algorithms that translate assembly-language instructions into machine code are very
simple because assembly languages are very simple. By “simple,” we mean that each
instruction carries out a fundamental operation. High-level languages provide a richer set of
instructions that makes the programmer’s life even easier, but because the constructs are
more abstract, the translation process is more difficult. Programs that translate programs
written in a high-level language are called compilers. In the early days of computer
programming, the output of a compiler was an assembly-language version of the program,
which then had to be run through an assembler to finally get the machine-language

321

program to execute. As computer scientists began to have a deeper understanding of the
translation process, compilers became more sophisticated and the assembly-language phase
was often eliminated. See FIGURE 9.2.

Compiler A program that translates a high-level language program into machine code

A program written in a high-level language can run on any computer that has an
appropriate compiler for the language. A compiler is a program; therefore, a machine-code
version of the compiler must be available for a particular machine to be able to compile a
program. Thus, to be used on multiple types of machines, each high-level language must
have many compilers for that language.

Interpreters
An interpreter is a program that translates and executes the statements in sequence. Unlike
an assembler or compiler that produces machine code as output, which is then executed in
a separate step, an interpreter translates a statement and then immediately executes the
statement. Interpreters can be viewed as simulators or virtual machines that understand the
language in which a program is written. As Terry Pratt points out in his classic text on
programming languages, both a translator and a simulator accept programs in a high-level
language as input. The translator (assembler or compiler) simply produces an equivalent
program in the appropriate machine language, which must then be run. The simulator
executes the input program directly.4

Interpreter A program that inputs a program in a high-level language and directs the computer to perform the
actions specified in each statement

FIGURE 9.2 Compilation process

Second-generation high-level languages came in two varieties: those that were compiled
and those that were interpreted. FORTRAN, COBOL, and ALGOL were compiled; Lisp,
SNOBOL4, and APL were interpreted. Because of the complexity of the software
interpreters, programs in interpreted languages usually ran much more slowly than
compiled programs. As a result, the trend was toward compiled languages—until the
advent of Java.

Java was introduced in 1996 and took the computing community by storm. In the
design of Java, portability was of primary importance. To achieve optimal portability, Java
is compiled into a standard machine language called Bytecode. But how can there be a

322

standard machine language? A software interpreter called the JVM (Java Virtual Machine)
takes the Bytecode program and executes it. That is, Bytecode is not the machine language
for any particular hardware processor. Any machine that has a JVM can run the compiled
Java program.

Bytecode A standard machine language into which Java source code is compiled

The portability achieved by standardized high-level languages is not the same as the
portability achieved by translating Java into Bytecode and then interpreting it on a JVM. A
program written in a high-level language can be compiled and run on any machine that has
the appropriate compiler; the program is translated into machine code that is directly
executed by a computer. A Java program is compiled into Bytecode, and the compiled
Bytecode program can run on any machine that has a JVM interpreter. That is, the output
from the Java compiler is interpreted, not directly executed. (See FIGURE 9.3.) Java is
always translated into Bytecode. In addition, there are compilers for other languages that
translate the language into Bytecode rather than machine code. For example, there are
versions of Ada compilers that translate Ada into Bytecode.

?
UCSD’s p-system predates Bytecode

In the 1970s, the University of California at San Diego had a system that executed p-code, a language very similar
to Bytecode. Programs written in Pascal and FORTRAN were translated into p-code, which could be executed on
any hardware with a p-code interpreter.

The JVM is a virtual machine, just like the Pep/8 system discussed in Chapter 6. In
that chapter, we defined a virtual machine as a hypothetical machine designed to illustrate
important features of a real machine. The JVM is a hypothetical machine designed to
execute Bytecode.

323

FIGURE 9.3 Portability provided by standardized languages versus interpretation by
Bytecode

9.3 Programming Language Paradigms

324

What is a paradigm? The American Heritage Dictionary of the English Language gives two
definitions that relate to how we, in computing, use the term: “one that serves as a pattern
or model” and “a set of assumptions, concepts, values, and practices that constitute a way of
viewing reality for the community that shares them, especially in an intellectual
discipline.”5 In Chapter 1, we outlined the history of software development, listing some of
the programming languages that were developed in each generation. Another way to view
programming languages is to look at the ways different languages reflect differing views of
reality—that is, to look at the different paradigms represented.

There are two main paradigms, imperative and declarative, and many subparadigms
within each. We later look at different languages within these paradigms.

Imperative Paradigm
The von Neumann model of sequential instructions that operates on values in memory
greatly influenced the most common model of a programming language: the imperative
model. The dominant languages used in industry throughout the history of computing
software come from this paradigm. These languages include FORTRAN, BASIC, C,
Pascal, and C++. In this paradigm, the program describes the processing necessary to solve
the problem. The imperative paradigm is, therefore, characterized by sequential execution
of instructions, the use of variables that represent memory locations, and the use of
assignment statements that change the values of these variables.7

?
What is a paradigm?

A search of the Internet results in many relevant definitions, including “a pattern or an example of something.” The
word also connotes the ideas of a mental picture and pattern of thought. Thomas Kuhn uses the word to mean the
model that scientists hold about a particular area of knowledge. Kuhn’s famous book, The Structure of Scientific
Revolutions, presents his view of the stages through which a science goes in getting from one paradigm to the next.6

Procedural Paradigm
Procedural programming is an imperative model in which the statements are grouped into
subprograms. A program is a hierarchy of subprograms, each of which performs a specific
task necessary to the solution of the overall program. Our pseudocode examples follow this
model. We write subprograms and pass the data to them that they need to accomplish their
function.

Object-Oriented Paradigm
The object-oriented view is one of a world of interacting objects. Each object has
responsibility for its own actions. In the procedural paradigm, data are considered passive
and are acted upon by the program. In the object-oriented paradigm, data objects are

325

active. Objects and the code that manipulates them are bundled together, making each
object responsible for its own manipulation. SIMULA and Smalltalk were the first two
object-oriented programming languages. Java and Python are two modern object-oriented
languages.

C++ and Java are imperative languages that are somewhat mixed in terms of their
paradigm. Although Java is considered object-oriented, it has some procedural features.
C++ is considered procedural, but it has some object-oriented features.

Examples of particular languages are presented in this book, but are not intended to be
comprehensive enough to give a student a working knowledge of the language. However,
the supplements available for this book include lab exercises for several languages, including
Java and C++, which go into more depth.

Declarative Paradigm
The declarative paradigm is a model in which the results are described, but the steps to
accomplish the results are not stated. There are two basic models within this paradigm,
functional and logic.

Functional Model
The functional model is based on the mathematical concept of the function. Computation
is expressed in terms of the evaluation of functions; the solution to a problem is expressed
in terms of function calls. Thus the basic mechanism is the evaluation of functions, and
there are no variables and no assignment statements. For example, the addition of two
values would be expressed this way:

(+ 30 40)

where the parentheses represent an expression to be evaluated by applying the first item
(which must be a function) to the rest of the list. This expression is evaluated by applying
the addition function to the next two numbers, which returns the value 70. There is no
looping construct; repetition is expressed in terms of recursive function calls. The most
well-known languages in the functional paradigm are Lisp, Scheme (a derivative of Lisp),
and ML.

Let’s examine a series of Scheme expressions that illustrate the flavor of the language.
Scheme is interpreted, so the result immediately follows the statement. One interpreter uses
#;> as a prompt to enter an expression; we shall use that here.8 The lines without the
prompt are what the system returns.

326

In the first expression, 3 is multiplied by 4, giving the result 12. In the second
expression, the results of multiplying 5 times 4 and adding 1 and 4 are summed, giving 25.
The third expression asks for the number of items in the list following the list indicated by
the ‘ mark. In the fourth expression, the maximum of the following values is returned.

In Chapter 7, we wrote a recursive algorithm to compute the factorial of a number.
lambda is the word for defining a function. Here is the corresponding Scheme code—
compare it with the first algorithm:

After the factorial function is defined, giving the name and argument within
parentheses executes the function, returning the value 5040.

Logic Programming
Logic programming is based on the principles of symbolic logic. This model comprises a set
of facts about objects and a set of rules about the relationships among the objects. A
program consists of asking questions about these objects and their relationships, which can
be deduced from the facts and the rules. The underlying problem-solving algorithm uses
the rules of logic to deduce the answer from the facts and rules.

Prolog is a third-generation logic programming language that was developed in France
in 1970. It rose to prominence in 1981, when Japanese researchers announced that logic
programming would play a major role in their fifth-generation computer. A Prolog
program consists of three types of statements: One type declares facts about objects and
their relationships with and to each other; another type defines rules about objects and their
relationships; and a third type asks questions about the objects and their relationships.9

For example, the following code defines a set of facts relating pets to owners:

327

Here owns is the relationship name, the objects are within parentheses, and the period
ends the statement of the fact. Does this mean that mary owns bo or bo owns mary?
That is up to the programmer. He or she must be consistent in his or her interpretation.

When you have a database of facts, Prolog allows you to ask questions about the
database. Look at these three Prolog statements:

The Prolog system replies yes to the first, no to the second, and no to the third.
In Prolog, a constant begins with a lowercase letter and a variable begins with an

uppercase letter. We ask questions about facts by substituting a variable for a constant in a
fact.

In this example, the first statement returns Cat = kitty. The second returns Name =
susy.

Both Lisp and Prolog are used in artificial intelligence applications (described in
Chapter 13). As you can see, programs in these languages bear little resemblance to the von
Neumann architecture reflected in languages in the imperative paradigm as represented in
our pseudocode.

9.4 Functionality in High-Level Languages
Two pseudocode constructs—selection and repetition (looping)—are hallmarks of
imperative languages. In Chapter 6, we implemented these constructions in assembly
language, showing how detailed the instructions had to be. We also examined these
constructs along with subprograms in pseudocode. In high-level languages, selection and
repetition are very easy. Subprograms and parameter passing, however, are more
complicated.

First, we review the concept of a Boolean expression, which is the construct that high-
level languages use to make choices. We then examine other constructs that high-level
languages provide to make programming easier and safer.

Boolean Expressions
In Chapter 6, we wrote an algorithm to read in pairs of numbers and print them in order.
It contained a selection statement within a loop. Here is the outline of the loop with the
selection statement:

328

Each of these statements asks a question. Notice how these questions are phrased:

Each phrase is actually a statement. If the statement is true, the answer to the question is
true. If the statement is not true, the answer to the question is false. Making statements and
then testing whether they are true or false is how programming languages ask questions.
These statements are called assertions or conditions. When we write algorithms, we make
assertions in English-like statements. When the algorithms are translated into a high-level
programming language, the English-like statements are rewritten as Boolean expressions.

What is a Boolean expression? In Chapter 4, we introduced the concept of Boolean
operations when we discussed gates and circuits. Here we are using them at the logical level
rather than the hardware level. A Boolean expression is a sequence of identifiers, separated
by compatible operators, that evaluates to either true or false. A Boolean expression can be
any of the following.

Boolean expression A sequence of identifiers, separated by compatible operators, that evaluates to either true or
false

■ A Boolean variable
■ An arithmetic expression followed by a relational operator followed by an arithmetic

expression
■ A Boolean expression followed by a Boolean operator followed by a Boolean

expression

So far in our examples, variables have contained numeric values. A Boolean variable is a
location in memory that is referenced by an identifier that can contain either true or
false. (When referring to code in a specific language or to what is actually stored in
memory, we use a monospace, or code, font.)

A relational operator is one that compares two values. The six relational operators are

329

summarized in the following chart, along with the symbols that various high-level
languages use to represent the relation.

A relational operator between two arithmetic expressions is asking if the relationship
exists between the two expressions. For example,

xValue < yValue

is making the assertion that xValue is less than yValue. If xValue is less than yValue, then the
result of the expression is true; if xValue is not less than yValue, then the result is false.

To avoid the confusion over the use of = and == to mean equality in different
programming languages, we have used the word “equal” rather than choosing one of the
symbols in our algorithms.

Recall that the three Boolean operators are the special operators AND, OR, and NOT.
The AND operator returns true if both expressions are true and false otherwise. The OR
operator returns false if both expressions are false and true otherwise. The NOT operator
changes the value of the expression.

Data Typing
When working in an assembly language, we assign identifiers to memory locations with no
regard as to what is to be stored into the locations. Many widely used, high-level languages
(including both C++ and Java) require you to state what can be stored in a place when you
associate it with an identifier. If a statement in a program tries to store a value into a
variable that is not the proper type, an error message is issued. The requirement that only a
value of the proper type can be stored into a variable is called strong typing.

Strong typing Each variable is assigned a type, and only values of that type can be stored in the variable

330

For example, look at the following eight bits: 00110001. What does it represent? It is a
byte in memory. Yes, but what does it mean? Well, it could be the binary representation of
the decimal number 49. It could also be the extended ASCII representation of the character
‘1’. Could it mean anything else? Yes, it could be the Pep/8 instruction specifier for the
DCI direct mode trap instruction. Thus, when a program is executing, it must know how
to interpret the contents of a place in memory.

In the next sections we look at common types of data values and explore how high-level
languages allow you to associate locations with identifiers. Each of these data types has
certain operations that legally can be applied to values of the type. A data type is a
description of the set of values and the basic set of operations that can be applied to values
of the type.

Data type A description of the set of values and the basic set of operations that can be applied to values of the type

Of the languages we explore, C++, Java, and VB .NET are strongly typed; Python is
not.

Data Types
Data are the physical symbols that represent information. Inside a computer, both data and
instructions are just binary bit patterns. The computer executes an instruction because the
address of the instruction is loaded into the program counter and the instruction is then
loaded into the instruction register. That same bit pattern that is executed can also
represent an integer number, a real number, a character, or a Boolean value. The key is that
the computer interprets the bit pattern to be what it expects it to be.

?
Consider the word bow

A word is a sequence of symbols taken from the alphabet. Some sequences or patterns of symbols have been
assigned meanings; others have not. The string bow is an English word. However, it can mean different things: part
of a ship, something a little girl wears in her hair, something you play the violin with, or the act of bending from
the waist. We can differentiate between the meanings based on the context of the word, just as a compiler can
differentiate based on the surrounding syntax.

For example, in Pep/8 the instruction for Stop is a byte of all zero bits. When this
instruction is loaded into the instruction register, the program halts. A byte of all zero bits
can also be interpreted as an eight-bit binary number containing the value 0 (zero). If the
location containing all zero bits is added to the contents of a register, the value is
interpreted as a number.

Most high-level languages have four distinct data types built into the language: integer
numbers, real numbers, characters, and Boolean values.

Integers The integer data type represents a range of integer values, from the smallest to the

331

largest. The range varies depending on how many bytes are assigned to represent an integer
value. Some high-level languages provide several integer types of different sizes, which
allows the user to choose the one that best fits the data in a particular problem.

The operations that can be applied to integers are the standard arithmetic and relational
operators. Addition and subtraction are represented by the standard symbols + and -.
Multiplication and division are usually represented by * and /. Depending on the
language, integer division may return a real number or the integer quotient. Some
languages have two symbols for division: one that returns a real result and one that returns
the integer quotient. Most languages also have an operator that returns the integer
remainder from division. This operator is called the modulus operator, but it may or may
not act as the mathematical modulus operator. The relational operators are represented by
the symbols shown in the table in the previous section.

Reals The real data type also represents a range from the smallest to the largest value with a
given precision. Like the integer data type, the range varies depending on the number of
bytes assigned to represent a real number. Many high-level languages have two sizes of real
numbers. The operations that can be applied to real numbers are the same as those that can
be applied to integer numbers. However, you must be careful when applying the relational
operators to real values, because real numbers are often not exact. For example, 1/3 + 1/3 +
1/3 in computer arithmetic is not necessarily 1.0. In fact, 1/10 * 10 is not 1.0 in computer
arithmetic.

Characters In Chapter 3, we said that a mapping of the ASCII character set to code
requires only one byte. One commonly used mapping for the Unicode character set uses
two bytes. In this mapping, our English alphabet is represented in ASCII, which is a subset
of Unicode. Applying arithmetic operations to characters doesn’t make much sense, and
many strongly typed languages will not allow you to do so. However, comparing characters
does make sense, so the relational operators can be applied to characters. The meanings of
“less than” and “greater than” when applied to characters are “comes before” and “comes
after,” respectively, in the character set. Thus the character ‘A’ is less than ‘B’, ‘B’ is less
than ‘C’, and so forth. Likewise, the character ‘1’ (not the number) is less than ‘2’, ‘2’ is less
than ‘3’, and so forth. If you want to compare ‘A’ to ‘1’, you must look up the relationship
between these two characters in the character set you are using.

Boolean As we said in the previous section, the Boolean data type consists of two values:
true and false. We can also assign a Boolean expression to a Boolean variable. Here is
the pairs program using Boolean variables:

332

Integers, reals, characters, and Booleans are called simple or atomic data types, because
each value is distinct and cannot be subdivided into parts. In the last chapter, we discussed
composite data types—that is, data types made up of a collection of values. The string data
type has some of the properties of a composite type but is often considered a simple data
type.

Strings A string is a sequence of characters that in some languages can be considered as one
data value. For example,

“This is a string.”

is a string containing 17 characters: 1 uppercase letter, 12 lowercase letters, 3 blanks, and a
period. The operations defined on strings vary from language to language, but often
include concatenation of strings and comparison of strings in terms of lexicographic order.
Other languages provide a complete array of operations, such as taking a substring of a
given string or searching a given string for a substring.

Note that we have used single quotes to enclose characters and double quotes to enclose
strings. Some high-level languages use the same symbol for both, thus not distinguishing
between a character and a string with one character.

Declarations
A declaration is a language statement that associates an identifier with a variable, an action,
or some other entity within the language that can be given a name so that the programmer
can refer to that item by name. In this section we discuss how a variable is declared. Later

333

we look at how actions are given names.

Declaration A statement that associates an identifier with a variable, an action, or some other entity within the
language that can be given a name so that the programmer can refer to that item by name

These examples illustrate some differences among high-level languages. For example,
VB .NET uses a reserved word to signal a declaration. A reserved word is a word in a
language that has special meaning; it cannot be used as an identifier. Dim is a reserved
word in VB .NET used to declare variables. C++ and Java do not use a reserved word for
this purpose.

Reserved word A word in a language that has special meaning; it cannot be used as an identifier

C++ and Java use the semicolon to end a statement in the language. VB .NET uses the
end of the line or the comment symbol to end the statement. Python programs do not
require declarations because Python is not a strongly typed language. Python uses the
pound sign (#) as the beginning of a comment that extends to the end of the line. Recall
that Pep/8 uses a semicolon to signal that what follows is a comment.

C++, Java, Python, and VB .NET are case sensitive, which means that two copies of
the same identifier, when capitalized differently, are considered different words. Thus
Integer, INTEGER, InTeGeR, and INTeger are considered four different identifiers in
case-sensitive languages. C++, Java, and VB .NET have a collection of type names for
various sizes of integer and real numbers. Although Python does not declare identifiers, it
does have the reserved words long, int, float, and bool.

Case sensitive Uppercase and lowercase letters are not considered the same; two identifiers with the same spelling
but different capitalization are considered to be two distinct identifiers

Are these differences important? They are if you are writing a program in one of these

334

languages. However, they are just syntactic issues—that is, different ways of doing the same
thing. The important concept is that an identifier is associated with a place in memory and
may or may not be associated with a data type. In the exercises, we ask you to compare the
syntactic differences that surface in these examples.

The use of uppercase and lowercase in identifiers is part of the culture of a language. In
our examples, we have tried to stick with the style that is common within the language’s
culture. For example, most C++ programmers begin variable names with lowercase and
subprograms with uppercase, while VB .NET programmers tend to begin variable names
with uppercase letters.

Input/Output Structures
In our pseudocode algorithms, we have used the expressions Read and Write or Print to
indicate that we were interacting with the environment outside the program. Read was for
getting a value from outside the program and storing it into a variable inside the program,
and Write and Print were for displaying a message for the human to see.

High-level languages view text data as a stream of characters divided into lines. How
the characters are interpreted depends on the data types of the places into which the values
are to be stored. Any input statement has three parts: the declaration of the variables into
which data are to be placed, the input statement with the names of the variables to be read,
and the data stream itself. As an example, let’s look at the pseudocode algorithm to input
three values:

In a strongly typed language, the variables name, age, and hourlyWage would have to
be declared along with their respective data types. Let’s assume the types are string, integer,
and real. The input statement would list the three variables. Processing would proceed as
follows. The first data item on the input stream would be assumed to be a string, because
name is of type string. The string would be read and stored into name. The next variable is
an integer, so the read operation expects to find an integer next in the input stream. This
value is read and stored in age. The third variable is a real number, so the read operation
expects to find a real value next on the input stream to be stored as hourlyWage.

The input stream may be from the keyboard or a data file, but the process is the same:
The order in which the variables are listed in the input statement must be the same as the
order in which the values occur in the input stream. The types of the variables being input
determine how the characters in the input stream are interpreted. That is, the input stream
is just a series of ASCII (or Unicode) characters. The type of the variable into which the
next value is to be stored determines how a sequence of characters is interpreted. For
simplicity, let’s assume that the input statement believes that a blank separates each data
value. For example, given the data stream

Maggie 10 12.50

“Maggie” would be stored in name, 10 would be stored in age, and 12.50 would be

335

stored in hourlyWage. Both 10 and 12.50 are read in as characters and converted to type
integer and real, respectively.

In a language that is not strongly typed, the format of the input determines the type. If
the input appears between quotes, it is assumed to be a string and is stored that way. If the
input is a number, it is stored that way.

Output statements create streams of characters. The items listed on the output
statement can be literal values or variable names. Literal values are numbers or strings
written explicitly in the output statement (or any statement, for that matter). The values to
be output are processed one at a time by looking at the type of the identifier or literal. The
type determines how the bit pattern is to be interpreted. If the type is a string, the
characters are written into the output stream. If the bit pattern is a number, the number is
converted to the characters that represent the digits and the characters are written out.

In a strongly typed language, regardless of the syntax of input/output statements or
where the input/output streams are, the key to the processing lies in the data type that
determines how characters are to be converted to a bit pattern (input) and how a bit pattern
is to be converted to characters (output). In a language that is not strongly typed, the
format of the input itself determines how the bit pattern is to be converted.

Here are input and output statements in the four languages we are using for
demonstrations. The prompts are omitted. The input statements are in black; the output
statements are in green.

Control Structures
Our pseudocode provided three ways to alter the flow of control of the algorithm:
repetition, selection, and subprogram. These constructs are called control structures
because they determine the order in which other instructions in a program are executed.

Control structure An instruction that determines the order in which other instructions in a program are executed

336

In the seminal article “Notes on Structured Programming,” published in 1972, Edsger
W. Dijkstra pointed out that programmers should be precise and disciplined—in other
words, they should use only selected control structures. This article and the others
published with it introduced the era of structured programming.10 According to this view,
each logical unit of a program should have just one entry and one exit. The program should
not jump randomly in and out of logical modules. Although programs could be designed in
this way in assembly language using instructions that branch to other parts of the program,
high-level languages introduced control constructs that made this discipline easy to follow.
These constructs are selection statements, looping statements, and subprogram statements.
With this approach, unrestricted branching statements are no longer necessary.

In our pseudocode algorithms, we used indention to group statements within the body
of an if statement or a while statement. Python uses indention, but the other languages use
actual markers. VB .NET uses End If and End While to end the corresponding
statements. Java and C++ use braces ({}).

The following tables show code segments using if and while statements in the
demonstration languages.

337

Edsger Dijkstra11

338

Courtesy of Staci Norman, UTCS, The University of Texas at Austin

Every field of human endeavor has its leading contributors who are acclaimed for their
theoretical insights, extensions of fundamental ideas, or innovative changes that have
redefined the subject. Just as Beethoven, Schubert, Mozart, and Hayden ring true in the
world of classical music, and the Beatles, Rolling Stones, and the Who stand out in
rock, so Edsger Dijkstra has a place reserved for him in the computer language hall of
fame.

Born to a Dutch chemist in Rotterdam in 1930, Dijkstra grew up with a formalist
predilection toward the world. While studying at the University of Leiden in the
Netherlands, he attended a summer course on programming in Cambridge, England,
and became fascinated with programming. He took a part-time job at the Mathematical
Centre in Amsterdam in 1952, and he continued to work there after his graduation.
Dijkstra came to the United States in the early 1970s as a research fellow for Burroughs
Corporation, and in September 1984 he came to the University of Texas at Austin,
where he held the Schlumberger Centennial Chair in Computer Sciences. He retired in
November 1999.

One of Dijkstra’s most famous contributions to programming was his strong
advocacy of structured programming principles. Dijkstra observed that programs written
with goto statements often turned into a rat’s nest of jumping back and forth among
disorganized, ad hoc sections of programs, making the programs difficult to understand
even for their authors—not to mention the colleagues who might later be asked to
maintain the program. Dijkstra argued that the goto was not the be-all and end-all of
control structures, and he strongly encouraged the use of iterative, or looping, constructs
that clearly bracket the scope of branching in a program and effectively self-document
the program. Dijkstra claimed that adhering to these structured programming principles
would make programs far easier to understand and maintain and less likely to contain
errors.

Beyond his clear theoretical contributions, Dijkstra is an interesting character in the
computing world. He developed a reputation for speaking his mind, often in
inflammatory or dramatic ways that most of us can’t get away with. For example,
Dijkstra once remarked that “the use of COBOL cripples the mind; its teaching should
therefore be regarded as a criminal offense.” Not a person to single out only one
language for his criticism, he also said that “it is practically impossible to teach good
programming to students [who] have had a prior exposure to BASIC; as potential
programmers they are mentally mutilated beyond hope of regeneration.” Some people
find his message cogent and believe that his manner is politically necessary to make his

339

point. Others, aware of the historical development of languages and the contexts in
which they were designed, appreciate his message but find his manner a bit strident.

Besides his work in language design, Dijkstra is noted for his work in proofs of
program correctness. The field of program correctness is an application of mathematics
to computer programming. Researchers are trying to construct a language and proof
technique that might be used to certify unconditionally that a program will perform
according to its specifications—entirely free of bugs. Needless to say, whether your
application is customer billing or flight control systems, this claim would be extremely
valuable.

In 1972, the Association for Computing Machinery acknowledged Dijkstra’s rich
contributions to the field by awarding him the distinguished Turing Award. The
citation for the award read:

Edsger Dijkstra was a principal contributor in the late 1950s to the development
of ALGOL, a high-level programming language that has become a model of
clarity and mathematical rigor. He is one of the principal exponents of the
science and art of programming languages in general, and has greatly
contributed to our understanding of their structure, representation, and
implementation. His fifteen years of publications extend from theoretical articles
on graph theory to basic manuals, expository texts, and philosophical
contemplations in the field of programming languages.

In 1989, the Special Interest Group for Computer Science Education (SIGCSE)
honored him with its award for Outstanding Contributions to Computer Science
Education.

Dijkstra and his wife returned to the Netherlands when he found that he had only
months to live. He had always said that he wanted to retire in Austin, Texas, but to die
in the Netherlands. Dijkstra died on August 6, 2002.

In March 2003, the following email was sent to the distributed computing
community:

This is to announce that the award formerly known as the “PODC Influential-
Paper Award” has been renamed the “Edsger W. Dijkstra Prize in Distributed
Computing” after the late Edsger W. Dijkstra, a pioneer in the area of
distributed computing. His foundational work on concurrency primitives (such
as the semaphore), concurrency problems (such as mutual exclusion and
deadlock), reasoning about concurrent systems, and self-stabilization comprises
one of the most important supports upon which the field of distributed
computing is built. No other individual has had a larger influence on research in
principles of distributed computing.

The information on the award can be found at www.podc.org/dijkstra/.
Dijkstra was known for many concise and witty sayings. One that all who study

computing should ponder is that “Computer science is no more about computers than
astronomy is about telescopes.”

340

http://www.podc.org/dijkstra/

The following table shows how VB .NET and C++ define a subprogram that does not
return a single value. In this example, there are two integer value parameters and one real
reference parameter. Again, this illustration is meant to give you a hint of the rich variety of
syntax that abounds in high-level languages, not to make you competent in writing this
construct in any of them. The ampersand (&) used in C++ is not a typographical error; it
signals that three is a reference parameter.

We do not show a Java or Python example because they handle memory very
differently, allowing only value parameters.

Nested Logic
The statements to be executed or skipped in any control statement can be simple
statements or blocks (compound statements)—there is no constraint on what these
statements can be. In fact, the statement to be skipped or repeated can contain a control
structure. Selection statements can be nested within looping structures; looping structures
can be nested within selection statements. Selection and looping statements can be nested
within subprograms, and subprogram calls can be nested within looping or selection
structures.

We have looked at nesting in our algorithms, but the topic is worth another look. Take,
for example, the algorithm that counts and sums ten positive numbers in a file:

341

The selection control structure is embedded within a looping control structure. If we
wanted to sum and print weekly rainfall figures for a year, we would have the following
nested looping structures:

Control structures within control structures within control structures … Theoretically,
there is no limit to how deeply control structures can be nested! However, if the nesting
becomes too difficult to follow, you should give the nested task a name and make it a
subprogram, giving its implementation later. For example, examine the alternative version
of the preceding pseudocode algorithm. Which is easier to follow?

?
Should programmers read philosophy?

“Computer programming and software design are essentially highly structured philosophy addressing a particular
aspect of the world. Philosophers would benefit from reading some books on programming, and programmers
would benefit from reading some books on philosophy.”12

342

Asynchronous Processing
You have likely grown up using a graphical user interface (GUI) that relies on the use of a
mouse to manipulate multiple window frames on a screen. Clicking has become a major
form of input to the computer. In fact, for many applications, filling in boxes and clicking
buttons to say the input is ready has become the only form of input.

In traditional stream processing, an input statement is executed in the sequence in
which it is encountered. Here are the first four statements in the algorithm shown earlier:

We expect these statements to be executed in sequence. Output is written to a window, a
value is read from the input stream, another value is stored, and the while loop is executed.
Stream input and output is within the sequential flow of the program.

Mouse clicking, in contrast, does not occur within the sequence of the program. That
is, a user can click a mouse at any time during the execution of a program. The program
must recognize when a mouse click has occurred, process the mouse click, and then
continue. This type of processing is called asynchronous, which means “not at the same
time.” The mouse can be clicked at any time; it is not synchronized with any other
instructions.

Asynchronous Not occurring at the same moment in time as some specific operation of the computer; in other
words, not synchronized with the program’s actions

Asynchronous processing is also called event-driven processing. In other words, the

343

processing is under the control of events happening outside the sequence of program
instructions.

Asynchronous processing is used frequently in Java and VB .NET but less often in the
other languages.

9.5 Functionality of Object-Oriented Languages
As you might guess from the earlier discussion of object-oriented design, the basic construct
in an object-oriented language is the class. In addition to looking at the class construct in
this section, we examine the three essential ingredients in an object-oriented language:
encapsulation, inheritance, and polymorphism. These ingredients foster reuse, thereby
reducing the cost of building and maintaining software.

Encapsulation
In Chapter 7, we talked about important threads running through the discussion of
problem solving. Two of these threads were information hiding and abstraction. Recall that
information hiding is the practice of hiding the details of a module with the goal of
controlling access to the details. We said in Chapter 7 that abstraction was a model of a
complex system that includes only the details essential to the viewer. We defined three
types of abstraction, but the definitions of each began and ended with the words “The
separation of the logical view of … from its implementation details.” Abstraction is the
goal; information hiding is a technique used to achieve the goal.

In the discussion of object-oriented design, we said that encapsulation is the bundling
of data and actions in such a way that the logical properties of the data and actions remain
separate from the implementation details. Another way of saying this is that encapsulation
is a language feature that enforces information hiding. A module’s implementation is
hidden in a separate block with a formally specified interface. An object knows things about
itself, but not about any other object. If one object needs information about another object,
it must request that information from that object.

Encapsulation (second definition) A language feature that enforces information hiding

The construct used to provide encapsulation is the class. Just as the concept of the class
dominates object-oriented design, so the class concept is the major feature of Java and other
object-oriented languages. Unfortunately, the related definitions are not standard across the
phases of design and implementation. In the design (problem-solving) phase, an object is a
thing or entity that makes sense within the context of the problem. In the implementation
phase, a class is a language construct that is a pattern for an object and provides a
mechanism for encapsulating the properties and actions of the object class.

Object (problem-solving phase) An entity or thing that is relevant in the context of a problem

Class (implementation phase) A pattern for an object

344

Object class (class) (problem-solving phase) A description of a group of objects with similar properties and
behaviors

Object (implementation phase) An instance of a class

Classes
Syntactically, a class is like a record in that it is a heterogeneous composite data type.
However, records have traditionally been considered passive structures; only in recent years
have they had subprograms as fields. The class, by contrast, is an active structure and almost
always has subprograms as fields. The only way to manipulate the data fields of a class is
through the methods (subprograms) defined in the class.

Here is how we might define class Person, based on one developed earlier:

FIGURE 9.4 visualizes class Person. The variable fields are blank. The subprogram
fields are orange to indicate that they do not contain values but are subprograms.

In our algorithms, we have used identifiers for simple variables and arrays without
worrying about where they come from. If we use an identifier to represent a class, however,
we must explicitly ask for the class to be created before we can use it. That is, we have to
instantiate the class by using the new operator to get an object that fits the pattern. This
operator takes the class name and returns an instance of the class. This algorithm
instantiates a class Person, gets an object aPerson of the class, and stores and retrieves
values in the object. We first instantiate a Name object but assume that string variables
email and telephone already have values.

345

Instantiate To create an object from a class

FIGURE 9.4 Class Person

The algorithms that declare class objects can access the fields of the class only through
the subprograms (called methods) of the class.

The fields in a class are private by default. That is, none of the fields, either data or
method, of an object of a particular class can be accessed by any other object unless the field
is marked public. If a class needs to make a method available to be called by an object of
another class, the class must explicitly specify that the method is public. The Person class
methods are marked public so that a using program can call them.

Inheritance
Inheritance is a property of object-oriented languages in which classes can inherit data and
methods from other classes. This relationship is an “is-a” relationship. A superclass is a class
being inherited from; a derived class is a class doing the inheriting. Classes form an
inheritance hierarchy. In the hierarchy, objects become more specialized the lower in the

346

hierarchy we go. Classes farther down in the hierarchy inherit all of the behaviors and data
of their parent superclass.

Inheritance A mechanism by which one class acquires the properties—data fields and methods—of another class

In our latest example, we have been working with class Person. In an object-oriented
language, we can define a class Student, which inherits all the properties of class Person
and adds more data fields to hold the local address and telephone number. Objects of class
Person have only one address and phone number, but objects of class Student have two:
one inherited from class Person and one defined within class Student. We say that class
Student is derived from class Person.

Here are the CRC card headings for Person and Student. Note that the Subclass and
Superclass fields in the CRC cards have been filled in.

Let’s assume that we have defined classes Person and Student. The following
algorithm instantiates classes Person and Student and manipulates them:

Inheritance fosters reuse by allowing an application to take an already-tested class and
derive a class from it that inherits the properties the application needs. Other necessary
properties and methods can then be added to the derived class.

?
Report software piracy

If you know of an incidence of software piracy, fill out a report online and you may be eligible for a reward. Go to
www.bsa.org and click “Report Piracy.”

347

http://www.bsa.org

Polymorphism
In the previous section, classes Person and Student both have methods named Print and
Initialize. The method in class Person prints the address defined in its class, and the
method in class Student prints the address defined in its class. Here we have two methods
with the same name but different implementations. The ability of a programming language
to handle this apparent ambiguity is called polymorphism. How does the language know
which method is meant when Initialize or Print is invoked by the calling unit? Methods
that are part of a class are applied to an instance of the class by the calling unit. The class of
object to which the method is applied determines which versions of the Initialize or Print
method are used.

Polymorphism The ability of a language to determine at runtime which of several possible methods will be
executed for a given invocation

For example, if we had jane as an instance of class Person and jack as an instance of
class Student, jane.Print would invoke the method defined in class Person to print jane’s
information. jack.Print would invoke the method defined in class Student to print jack’s
information. The Student class could add a method PrintHomeAddress, which would
then print the home address of a student.

The combination of inheritance and polymorphism allows the programmer to build
useful hierarchies of classes that can be reused in different applications. Reuse does not
apply only to object-oriented languages; however, the functionality of object-oriented
languages makes writing general, reusable sections of code easier.

9.6 Comparison of Procedural and Object-Oriented
Designs
At the end of Chapter 8, we used the implementation of ADT List algorithms to describe
the process of value-returning and non-value-returning subprograms. The implementation
of the List ADT was a record variable list, which contained an array values and a length
field, that was passed to the List algorithms to be acted upon. The calling program defined
the implementation of the list and wrote the algorithms to manipulate it. The subprograms
were tasks of the program that needed a list.

In an object-oriented design, the List data structure and subprograms would be bound
together in a class as follows:

348

The code of the methods has direct access to the class variables; the user’s code does
not. The class would be compiled separately and the program that wanted to use the class
would include it in its program. Here is a segment of pseudocode that would manipulate a
List object:

In the procedural version, the list is represented by a record that is passed to the

349

subprograms that operate on it. The data structure and the subprograms that manipulate it
are part of the user’s program. In the object-oriented version, the implementation of a class
object is hidden from the user through encapsulation.

SUMMARY

Object-oriented design focuses on determining the objects within a problem and
abstracting (grouping) those objects into classes based on like properties and behaviors.
There are four stages to object-oriented decomposition:

■ Brainstorming, in which we make a first pass at determining the classes in the
problem

■ Filtering, in which we review the proposed classes
■ Scenarios, in which the responsibilities of each class are determined
■ Responsibility algorithms, in which the algorithms are written for each of the

responsibilities

An assembler translates an assembly-language program into machine code. A compiler
translates a program written in a high-level language either into assembly language (to be
later translated into machine code) or into machine code. An interpreter is a program that
translates the instructions in a program and executes them immediately. An interpreter does
not output machine-language code.

Various models of high-level programming languages exist, classified as either
imperative (procedural and object-oriented) or declarative (functional and logic). The
imperative model describes the processing to be done. The declarative model describes what
is to be done, not how it is to be accomplished. The procedural model is based on the
concept of a hierarchy of tasks to be completed; the object-oriented model is based on the
concept of interacting objects. The functional model is based on the mathematical concept
of a function; the logic model is based on mathematical logic.

A Boolean expression is an assertion about the state of a program. Boolean expressions
are used to allow a program to execute one section of code or another (conditional
statements) and to repeat a section of code (looping statements).

Each variable in a program is a certain data type. Strong typing means that variables are
given a type and that only values of that data type can be stored into the variable. Storing a
value into a variable is called assigning the value to the variable (assignment statements).

Object-oriented programs are characterized by the following constructs:

■ Encapsulation, a language feature that enforces information hiding that is
implemented using the class construct

■ Inheritance, a language feature that allows one class to inherit the properties and
behaviors of another class

■ Polymorphism, the ability of a language to disambiguate between operations with the

350

same name

ETHICAL ISSUES
Hoaxes and Scams

There have always been scammers, con artists, and hoaxers. There have always been
people ready to be taken advantage of. Hoaxes are usually harmless, while a scam is
aimed to make money. The motives of a hoaxer are sometimes difficult to discern and
may be as simple as the adolescent’s impulse “to leave a mark” or create a hoax “just for
kicks.” Hoaxes are annoying and time-consuming. The ultimate motive of the con artist
and scammer, however, is to trick the naïve and unwary out of their money or
possessions.

For example, the Free Doritos Coupons Hoax sent email that said the attached file
contained coupons for $5 worth of Doritos products. The coupons were fake and were
not honored by Doritos. The results were annoying, but no one lost any money. Chain
letters asking the receiver to send some sort of message to all their friends is usually a
hoax; no money is requested. On the other hand, the emails that say the recipient has
won a lottery and must send a check for the handling fee is a scam. There is no lottery
and no winner except the scammer who receives a check for the so-called “handling
fee.”13

Before computers, the pool of potential victims for these con artists was limited.
Then came the Internet. With a few clicks of a mouse, a scammer can now reach
thousands of potential victims through email. The gathering of email addresses can be
automated, which creates an enormous population of potential victims. Websites can act
as virtual spider webs, entrapping those who innocently wander in.

There was a time when the most common complaint of Internet users was the
annoyance of commercial spam. Today, good email services provide filters that catch
most commercial spam before it reaches the individual. The most common complaints
today relate to scammers, not spammers. Internet auctions, credit card fraud, third-party
and creditor debt collection, foreign money offers and counterfeit check scams, travel
and vacation scams, and bogus business opportunities/investments are at the top of the
list.14

The most serious crimes are those that steal financial information and passwords
from web surfers. Websites can lull people into believing they are responding to a survey
or providing credit card information as proof of age. With passwords, criminals can gain
access to all their victims’ financial records. Identity theft is devastating to the victims
and it can take years for the victims to recover. Perhaps the greatest threat comes from
those who really want to wreak havoc. Today, airlines, banks, and municipal
infrastructures are all tied into computer networks. The damage a determined cyber-
criminal can cause is boundless.

Policing these schemes can be very difficult and very expensive. Perpetrators disguise
not only their identities, but also their geographical locations. For now, the best
protection users have is skepticism. Refuse to give out credit card or other personal
information to any request.

An example of a scam email sent to Nell Dale:

351

IT Department Service,
You have exceeded the limit of your mailbox set by your IT Department service. And you
will be having problems in sending and receiving new emails. To prevent this, you will have
to contact the IT Department Service by email with your:

Current username:{ } and Password:{ } to help increase your storage limit.
IT Department Service
E-mail: <mailto:it.dept@administrativos.com>it.dept@administrativos.com
Failure to do this, will result in limited access to your mailbox.
Regards,
IT Department Service

Would you have answered? What would have happened if you had?

KEY TERMS

Asynchronous
Boolean expression
Bytecode
Case sensitive
Class (implementation phase)
Compiler
Control structure
Data type
Declaration
Encapsulation
Fields
Inheritance
Instantiate
Interpreter
Method
Object
Object (implementation phase)
Object (problem-solving phase)
Object class (class)
Object class (class) (problem-solving phase)
Polymorphism
Reserved word
Strong typing

EXERCISES

352

For Exercises 1–10, match the activity with the phase of the object-oriented
methodology.

A. Brainstorming
B. Filtering
C. Scenarios
D. Responsibility algorithms

 1. Reviewing a list of possible classes, looking for duplicates or missing classes
 2. Asking “what if” questions
 3. Assigning responsibilities to classes
 4. Generating a first approximation to the list of classes in a problem
 5. Assigning collaborators to a responsibility
 6. Developing algorithms for the responsibilities listed on a CRC card
 7. Output from this phase is a fully developed CRC card for all classes
 8. Output from this phase is the design ready to be translated into a program
 9. During this phase, inheritance relationships are established
10. Phase in which functional programming techniques are appropriate

For Exercises 11–24, match the question with the appropriate translation or execution
system.

A. Interpreter
B. Assembler
C. Compiler
D. Machine code

11. What translates a high-level language into machine code?
12. What translates a Java program into Bytecode?
13. What executes Bytecode?
14. What translates an assembly-language program?
15. What is the output of an assembler?
16. What takes input in a high-level language and directs the computer to perform the

actions specified in each statement?
17. What executes the Java Virtual Machine?
18. What is used to translate a program in ALGOL?
19. What is used to translate a program in APL?
20. What is used to translate a program in COBOL?
21. What is used to translate a program in FORTRAN?
22. What is used to translate a program in Lisp?
23. What is used to translate a program in Prolog?
24. Which translator runs the most slowly? For Exercises 25–46, match the language

paradigm and the language or the language description.
A. Procedural
B. Functional
C. Logic
D. Object oriented
E. Procedural language with object-oriented features
F. Object-oriented language with some procedural features

25. Which paradigm most accurately describes FORTRAN?

353

26. Which paradigm most accurately describes C++?
27. Which paradigm most accurately describes PASCAL?
28. Which paradigm most accurately describes Java?
29. Which paradigm most accurately describes Lisp?
30. Which paradigm most accurately describes BASIC?
31. Which paradigm most accurately describes Prolog?
32. Which paradigm most accurately describes SIMULA?
33. Which paradigm most accurately describes ALGOL?
34. Which paradigm most accurately describes ML?
35. Which paradigm most accurately describes Scheme?
36. Which paradigm most accurately describes Python?
37. Which paradigm most accurately describes C?
38. Which paradigm most accurately describes Smalltalk?
39. The dominant languages used in industry throughout the history of computing

software come from which paradigm?
40. Which paradigm did Japanese researchers choose for the fifth-generation

computer?
41. Which paradigm allows the programmer to express algorithms as a hierarchy of

objects?
42. Which paradigm allows the programmer to express algorithms as a hierarchy of

tasks?
43. Which paradigm allows the programmer to express algorithms as mathematical

functions?
44. Which paradigm has no assignment statement?
45. Which paradigm uses recursion exclusively to express repetition?
46. Which paradigm has no variables?

Exercises 47–84 are problems or short-answer questions.
47. What is the hallmark of an assembly language?
48. Distinguish between an assembler and a compiler.
49. Distinguish between a compiler and an interpreter.
50. Compare and contrast an assembler, a compiler, and an interpreter.
51. Describe the portability provided by a compiler.
52. Describe the portability provided by the use of Bytecode.
53. Describe the process of compiling and running a Java program.
54. Discuss the word paradigm as it relates to computing.
55. Distinguish between imperative and declarative paradigms.
56. What are the characteristics of the imperative paradigm?
57. What are the characteristics of the functional paradigm?
58. What are the characteristics of the logic paradigm?
59. What are the characteristics of a declarative paradigm?
60. How do you ask questions in a programming language?
61. What is a Boolean variable?
62. What is a Boolean expression?
63. Given variables one, two, and three, write an assertion for each of the following

questions.

354

a. Is one greater than both two and three?
b. Is one greater than two, but less than three?
c. Are all three variables greater than zero?
d. Is one less than two or one less than three?
e. Is two greater than one and three less than two?

64. Write the operation table for the Boolean operation AND.
65. Write the operation table for the Boolean operation OR.
66. Write the operation table for the Boolean operation NOT.
67. What is a data type?
68. What is strong typing?
69. Define the following data types.

a. integer
b. real
c. character
d. Boolean

70. Is the string data type an atomic data type? Justify your answer.
71. If the same symbol is used for both single characters and strings, how can you

distinguish between a single character and a one-character string?
72. What is a declaration?
73. Fill in the following table showing the appropriate syntactic marker or reserved

word for the language shown based on your observations of the tables in this
chapter.

74. How do the .WORD and .BLOCK assembler directives in the Pep/8 assembly
language differ from the declarations in high-level languages?

75. Distinguish between instructions to be translated and instructions to the
translating program.

76. Consider the following identifiers: Address, ADDRESS, AddRess, Name,
NAME, NamE.
a. How many different identifiers are represented if the language is Python?
b. How many different identifiers are represented if the language is VB .NET?
c. How many different identifiers are represented if the language is C++ or Java?

77. Distinguish between the definition of an object in the design phase and in the
implementation phase.

355

78. Distinguish between the definition of a class in the design phase and in the
implementation phase.

79. Distinguish between a field and a method.
80. How can objects relate to one another?
81. Discuss the differences between a top-down design and an object-oriented design.
82. In this chapter, we outlined a strategy for developing an object-oriented

decomposition.
a. List the four stages.
b. Outline the characteristics of each stage.
c. What is the output from each of the four stages?
d. Are each of the stages independent? Explain.

83. Design the CRC cards for an inventory system for a car dealership, using
brainstorming, filtering, and scenarios.

84. Design the CRC cards for a database for a zoo, using brainstorming, filtering, and
scenarios.

THOUGHT QUESTIONS

 1. Distinguish between a program that the CPU can execute directly and a program
that must be translated.

 2. Top-down design and object-oriented design both create scaffolding that is used to
write a program. Is all of this scaffolding just a waste of effort? Is it ever used again?
Of what value is it after the program is up and running?

 3. Which of the problem-solving strategies do you use the most? Can you think of
some others that you use? Would they be appropriate for computing problem
solving?

 4. Have you ever been taken in by a hoax? Were you angry or just annoyed?
 5. Have you or anyone you know been the victim of a scam artist?
 6. Have you ever received an email similar to the one shown in this chapter? Did you

respond?

356

THE OPERATING SYSTEMS LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits
5 Computing Components

The Programming Layer
6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages

The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer
15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion
18 Limitations of Computing

357

10 OPERATING SYSTEMS

To understand a computer system, you must understand the software that manages and
coordinates its pieces. The operating system of a computer is the glue that holds the
hardware and software together. It is the software foundation on which all other software
rests, allowing us to write programs that interact with the machine. This chapter and the
next one explore the way in which an operating system manages computer resources. Just as
a policeman organizes the efficient flow of cars through an intersection, an operating system
organizes the efficient flow of programs through a computer system.

GOALS
After studying this chapter, you should be able to:

■ describe the two main responsibilities of an operating system.
■ define memory and process management.
■ explain how timesharing creates the virtual machine illusion.
■ explain the relationship between logical and physical addresses.
■ compare and contrast memory management techniques.
■ distinguish between fixed and dynamic partitions.
■ define and apply partition selection algorithms.
■ explain how demand paging creates the virtual memory illusion.
■ explain the stages and transitions of the process life cycle.
■ explain the processing of various CPU scheduling algorithms.

10.1 Roles of an Operating System
In Chapter 1, we talked about the changing role of the programmer. As early as the end of
the first generation of software development, there was a split between those programmers
who wrote tools to help other programmers and those who used the tools to solve
problems. Modern software can be divided into two categories, application software and
system software, reflecting this separation of goals. Application software is written to
address specific needs—to solve problems in the real world. Word processing programs,
games, inventory control systems, automobile diagnostic programs, and missile guidance
programs are all application software. Chapters 12 through 14 discuss areas of computer
science that relate to application software.

Application software Programs that help us solve real-world problems

358

System software manages a computer system at a more fundamental level. It provides
the tools and an environment in which application software can be created and run. System
software often interacts directly with the hardware and provides more functionality than
the hardware itself does.

System software Programs that manage a computer system and interact with hardware

The operating system of a computer is the core of its system software. An operating
system manages computer resources, such as memory and input/output devices, and
provides an interface through which a human can interact with the computer. Other
system software supports specific application goals, such as a library of graphics software
that renders images on a display. The operating system allows an application program to
interact with these other system resources.

Operating system System software that manages computer resources and provides an interface for system
interaction

FIGURE 10.1 shows the operating system in its relative position among computer
system elements. The operating system manages hardware resources. It allows application
software to access system resources, either directly or through other system software. It
provides a direct user interface to the computer system.

A computer generally has one operating system that becomes active and takes control
when the system is turned on. Computer hardware is wired to initially load a small set of
system instructions that is stored in permanent memory (ROM). These instructions load a
larger portion of system software from secondary memory, usually a magnetic disk.
Eventually all key elements of the operating system software are loaded, start-up programs
are executed, the user interface is activated, and the system is ready for use. This activity is
often called booting the computer. The term “boot” comes from the idea of “pulling
yourself up by your own bootstraps,” which is essentially what a computer does when it is
turned on.

A computer could have two or more operating systems from which the user chooses
when the computer is turned on. This configuration is often called a dual-boot or multi-boot
system. Only one operating system controls the computer at any given time, however.

359

FIGURE 10.1 An operating system interacts with many aspects of a computer system.

?
Who is Blake Ross?

Blake Ross was designing web pages by the age of 10. By 14, he was fixing bugs in Netscape’s web browser as a
hobby. Before finishing high school, he helped develop Firefox, which was officially released in November 2004.
While in college, Ross continued fixing bugs in the browser. In 2005, he was nominated for Wired magazine’s
Renegade of the Year award. He was Facebook’s product director until he resigned in 2013 at age 29. With a net
worth of $150 million, he never needs to work again.

You’ve likely used at least one operating system before. The various versions of
Microsoft® Windows (Windows NT, Windows 7, and Windows 8) are popular choices for
personal computers. The different versions of these operating systems indicate how the
software evolves over time as well as how changes occur in the way services are provided
and managed. The Mac OS family is the operating system of choice for computers
manufactured by Apple Computer. UNIX has been a favorite of serious programmers for
years, and a version of UNIX called Linux is popular for personal computer systems.

Mobile devices, such as smartphones and tablet computers, run operating systems that
are tailored to their needs. The memory constraints and the smaller set of peripherals
involved, for example, are different than those of a typical desktop or laptop computer.
Apple Computer’s iPod Touch, iPhone (shown in FIGURE 10.2), and iPad all run the
iOS mobile operating system, which is derived from Mac OS. The Android operating
system, developed by Google as an open source project through the Open Handset
Alliance, is the underlying system run on a variety of phones, and has become the most
popular platform for mobile devices. Android and iOS dominate the current market for
mobile operating systems, though there are still several others.

360

FIGURE 10.2 Smartphones and other mobile devices run operating systems tailored for
them.
© Hemera/Thinkstock

Any given operating system manages resources in its own particular way. Our goal in
this chapter is not to nitpick about the differences among operating systems, but rather to
discuss the ideas common to all of them. We occasionally refer to the methods that a
specific OS (operating system) uses, and we discuss some of their individual philosophies.
In general, however, we focus on the underlying concepts.

The various roles of an operating system generally revolve around the idea of “sharing
nicely.” An operating system manages resources, and these resources are often shared in one
way or another among the various programs that want to use them. Multiple programs
executing concurrently share the use of main memory. They take turns using the CPU.
They compete for an opportunity to use input/output devices. The operating system acts as
the playground monitor, making sure that everyone cooperates and gets a chance to play.

Memory, Process, and CPU Management
Recall from Chapter 5 that an executing program resides in main memory and its
instructions are processed one after another in the fetch–decode–execute cycle.
Multiprogramming is the technique of keeping multiple programs in main memory at the
same time; these programs compete for access to the CPU so that they can do their work.
All modern operating systems employ multiprogramming to one degree or another. An
operating system must therefore perform memory management to keep track of which
programs are in memory and where in memory they reside.

Multiprogramming The technique of keeping multiple programs in main memory at the same time, competing for
the CPU

Memory management The act of keeping track of how and where programs are loaded in main memory

361

Another key operating system concept is the idea of a process, which can be defined as
a program in execution. A program is a static set of instructions. A process is the dynamic
entity that represents the program while it is being executed. Through multiprogramming,
a computer system might have many active processes at once. The operating system must
manage these processes carefully. At any point in time a specific instruction may be the next
to be executed. Intermediate values have been calculated. A process might be interrupted
during its execution, so the operating system performs process management to carefully
track the progress of a process and all of its intermediate states.

Process The dynamic representation of a program during execution

Process management The act of keeping track of information for active processes

Related to the ideas of memory management and process management is the need for
CPU scheduling, which determines which process in memory is executed by the CPU at
any given point.

CPU scheduling The act of determining which process in memory is given access to the CPU so that it may
execute

Memory management, process management, and CPU scheduling are the three main
topics discussed in this chapter. Other key operating system topics, such as file
management and secondary storage, are covered in Chapter 11.

Keep in mind that the OS is itself just a program that must be executed. Operating
system processes must be managed and maintained in main memory along with other
system software and application programs. The OS executes on the same CPU as the other
programs, and it must take its turn among them.

Before we delve into the details of managing resources such as main memory and the
CPU, we need to explore a few more general concepts.

Batch Processing
A typical computer in the 1960s and 1970s was a large machine stored in its own frigidly
air-conditioned room. Its processing was managed by a human operator. A user would
deliver his or her program, usually stored as a deck of punched cards, to the operator to be
executed. The user would come back later—perhaps the next day—to retrieve the printed
results.

When delivering the program, the user would also provide a set of separate instructions
regarding the system software and other resources needed to execute the program. Together
the program and the system instructions were called a job. The operator would make any
necessary devices available and load any special system software required to satisfy the job.
Obviously, the process of preparing a program for execution on these early machines was
quite time consuming.

To perform this procedure more efficiently, the operator would organize various jobs
from multiple users into batches. A batch would contain a set of jobs that needed the same

362

or similar resources. With batch processing, the operator did not have to reload and prepare
the same resources over and over. FIGURE 10.3 depicts this procedure.

FIGURE 10.3 In early systems, human operators would organize jobs into batches

Batch systems could be executed in a multiprogramming environment. In that case, the
operator would load multiple jobs from the same batch into memory, and these jobs would
compete for the use of the CPU and other shared resources. As the resources became
available, the jobs would be scheduled to use the CPU.

Although the original concept of batch processing is not a function of modern
operating systems, the terminology persists. The term “batch” has come to mean a system
in which programs and system resources are coordinated and executed without interaction
between the user and the program. Modern operating systems incorporate batch-style
processing by allowing the user to define a set of OS commands as a batch file to control
the processing of a large program or a set of interacting programs. For example, files with
the extension .bat in Microsoft Windows originated from the idea of batch control files;
they contain system commands.

Although most of our computer use these days is interactive, some jobs still lend
themselves to batch processing. For example, processing a corporation’s monthly payroll is
a large job that uses specific resources with essentially no human interaction.

Early batch processing allowed multiple users to share a single computer. Although the
emphasis has changed over time, batch systems taught us valuable lessons about resource
management. The human operator of early computer systems played many of the roles that
modern operating system software handles now.

Timesharing
As we pointed out in Chapter 1, the problem of how to capitalize on computers’ greater
capabilities and speed led to the concept of timesharing. A timesharing system allows
multiple users to interact with a computer at the same time. Multiprogramming allowed
multiple processes to be active at once, which gave rise to the ability for programmers to

363

interact with the computer system directly, while still sharing its resources.

Timesharing A system in which CPU time is shared among multiple interactive users at the same time

Timesharing systems create the illusion that each user has exclusive access to the
computer. That is, each user does not have to actively compete for resources, though that is
exactly what is happening behind the scenes. One user may actually know he is sharing the
machine with other users, but he does not have to do anything special to allow it. The
operating system manages the sharing of the resources, including the CPU, behind the
scenes.

The word virtual means “in effect, though not in essence.” In a timesharing system,
each user has his or her own virtual machine, in which all system resources are (in effect)
available for use. In essence, however, the resources are shared among many such users.

Virtual machine The illusion created by a timesharing system that each user has a dedicated machine

Originally, timesharing systems consisted of a single computer, often called the
mainframe, and a set of dumb terminals connected to the mainframe. A dumb terminal is
essentially just a monitor display and a keyboard. A user sits at a terminal and “logs in” to
the mainframe. The dumb terminals might be spread throughout a building, with the
mainframe residing in its own dedicated room. The operating system resides on the
mainframe, and all processing occurs there.

Mainframe A large, multiuser computer often associated with early timesharing systems

Dumb terminal A monitor and keyboard that allowed the user to access the mainframe computer in early
timesharing systems

Each user is represented by a login process that runs on the mainframe. When the user
runs a program, another process is created (spawned by the user’s login process). CPU time
is shared among all of the processes created by all of the users. Each process is given a little
bit of CPU time in turn. The premise is that the CPU is so fast that it can handle the needs
of multiple users without any one user seeing any delay in processing. In truth, users of a
timesharing system can sometimes see degradation in the system’s responses, depending on
the number of active users and the CPU capabilities. That is, each user’s machine seems to
slow down when the system becomes overburdened.

Although mainframe computers are interesting now mostly for historical reasons, the
concept of timesharing remains highly relevant. Today, many desktop computers run
operating systems that support multiple users in a timesharing fashion. Although only one
user is actually sitting in front of the computer, other users can connect through other
computers across a network connection.

?

364

Influential computing jobs

There were many influential jobs in computing in the 1960s, but none more so than the computer operator. In his
or her hands rested the decision of whose computer jobs ran and when. Many a graduate student was known to
have bribed a weary operator with coffee and cookies in the wee hours of the morning for just one more run.

Other OS Factors
As computing technology improved, the machines themselves got smaller. Mainframe
computers gave rise to minicomputers, which no longer needed dedicated rooms in which to
store them. Minicomputers became the basic hardware platform for timesharing systems.
Microcomputers, which for the first time relied on a single integrated chip as the CPU, truly
fit on an individual’s desk. Their introduction gave rise to the idea of a personal computer
(PC). As the name implies, a personal computer is not designed for multiperson use, and
originally personal computer operating systems reflected this simplicity. Over time,
personal computers evolved in functionality and incorporated many aspects of larger
systems, such as timesharing. Although a desktop machine is still often referred to as a PC,
the term workstation is sometimes used and is perhaps more appropriate, describing the
machine as generally dedicated to an individual but capable of supporting much more.
Operating systems, in turn, evolved to support these changes in the use of computers.

Operating systems must also take into account the fact that computers are usually
connected to networks. Today with the Web, we take network communication for granted.
Networks are discussed in detail in a later chapter, but we must acknowledge here the effect
that network communication has on operating systems. Such communication is yet another
resource that an OS must support.

An operating system is responsible for communicating with a variety of devices. Usually
that communication is accomplished with the help of a device driver, a small program that
“knows” the way a particular device expects to receive and deliver information. With device
drivers, every operating system no longer needs to know about every device with which it
might possibly be expected to communicate in the future. It’s another beautiful example of
abstraction. An appropriate device driver often comes with new hardware, and the most up-
to-date drivers can often be downloaded for free from the manufacturing company’s
website.

One final aspect of operating systems is the need to support real-time systems. A real-
time system is one that must provide a guaranteed minimum response time to the user.
That is, the delay between receiving a stimulus and producing a response must be carefully
controlled. Real-time responses are crucial in software that, for example, controls a robot, a
nuclear reactor, or a missile. Although all operating systems acknowledge the importance of
response time, a real-time operating system strives to optimize it.

Real-time system A system in which response time is crucial given the nature of the application domain

Response time The time delay between receiving a stimulus and producing a response

10.2 Memory Management

365

Let’s review what we said about main memory in Chapter 5. All programs are stored in
main memory when they are executed. All data referenced by those programs are also stored
in main memory so that they can be accessed. Main memory can be thought of as a big,
continuous chunk of space divided into groups of 8, 16, or 32 bits. Each byte or word of
memory has a corresponding address, which is simply an integer that uniquely identifies
that particular part of memory. See FIGURE 10.4. The first memory address is 0.

Earlier in this chapter we stated that in a multiprogramming environment, multiple
programs (and their data) are stored in main memory at the same time. Thus operating
systems must employ techniques to perform the following tasks:

■ Track where and how a program resides in memory
■ Convert logical program addresses into actual memory addresses

A program is filled with references to variables and to other parts of the program code.
When the program is compiled, these references are changed into the addresses in memory
where the data and code reside. But given that we don’t know exactly where a program will
be loaded into main memory, how can we know which address to use for anything?

The solution is to use two kinds of addresses: logical addresses and physical addresses. A
logical address (sometimes called a virtual or relative address) is a value that specifies a
generic location relative to the program but not to the reality of main memory. A physical
address is an actual address in the main memory device, as shown in Figure 10.4.

Logical address A reference to a stored value relative to the program making the reference

Physical address An actual address in the main memory device

When a program is compiled, a reference to an identifier (such as a variable name) is
changed to a logical address. When the program is eventually loaded into memory, each
logical address is translated into a specific physical address. The mapping of a logical
address to a physical address is called address binding. The later we wait to bind a logical
address to a physical one, the more flexibility we have. Logical addresses allow a program to
be moved around in memory or loaded in different places at different times. As long as we
keep track of where the program is stored, we can always determine the physical address
that corresponds to any given logical address. To simplify our examples in this chapter, we
perform address-binding calculations in base 10.

Address binding The mapping from a logical address to a physical address

366

FIGURE 10.4 Memory is a continuous set of bits referenced by specific addresses

The following sections examine the underlying principles of three techniques:

■ Single contiguous memory management
■ Partition memory management
■ Paged memory management

Single Contiguous Memory Management
Let’s initially keep things simple by assuming that there are only two programs in memory:
the operating system and the application program we want to execute. We divide main
memory up into two sections, one for each program, as shown in FIGURE 10.5. The
operating system gets what space it needs, and the program is allocated the rest.

This approach is called single contiguous memory management because the entire
application program is loaded into one large chunk of memory. Only one program other
than the operating system can be processed at one time. To bind addresses, all we have to
take into account is the location of the operating system.

Single contiguous memory management The approach to memory management in which a program is loaded
into one continuous area of memory

367

In this memory management scheme, a logical address is simply an integer value
relative to the starting point of the program. That is, logical addresses are created as if the
program loaded at location 0 of main memory. Therefore, to produce a physical address,
we add a logical address to the starting address of the program in physical main memory.

FIGURE 10.5 Main memory divided into two sections

Let’s get a little more specific: If the program is loaded starting at address A, then the
physical address corresponding to logical address L is A + L. See FIGURE 10.6. Let’s plug
in real numbers to make this example clearer. Suppose the program is loaded into memory
beginning at address 555555. When a program uses relative address 222222, we know that
it is actually referring to address 777777 in physical main memory.

FIGURE 10.6 Binding a logical address to a physical address

It doesn’t really matter what address L is. As long as we keep track of A (the starting
address of the program), we can always translate a logical address into a physical one.

You may be saying at this point, “If we switched the locations of the operating system

368

and the program, then the logical and physical addresses for the program would be the
same.” That’s true. But then you’d have other things to worry about. For example, a
memory management scheme must always take security into account. In particular, in a
multiprogramming environment, we must prevent a program from accessing any addresses
beyond its allocated memory space. With the operating system loaded at location 0, all
logical addresses for the program are valid unless they exceed the bounds of main memory
itself. If we move the operating system below the program, we must make sure a logical
address doesn’t try to access the memory space devoted to the operating system. This
wouldn’t be difficult, but it would add to the complexity of the processing.

The advantage of the single contiguous memory management approach is that it is
simple to implement and manage. However, it almost certainly wastes both memory space
and CPU time. An application program is unlikely to need all of the memory not used by
the operating system, and CPU time is wasted when the program has to wait for some
resource.

Partition Memory Management
Once multiple programs are allowed in memory, it’s the operating system’s job to ensure
that one program doesn’t access another’s memory space. This is an example of a security
mechanism implemented at a low level, generally outside the knowledge of the user.
Higher-level issues are discussed in Chapter 17.

A more sophisticated approach is to have more than one application program in
memory at the same time, sharing memory space and CPU time. In this case, memory
must be divided into more than two partitions. Two strategies can be used to partition
memory: fixed partitions and dynamic partitions. With the fixed-partition technique,
main memory is divided into a particular number of partitions. The partitions do not have
to be the same size, but their size is fixed when the operating system initially boots. A job is
loaded into a partition large enough to hold it. The OS keeps a table of addresses at which
each partition begins and the length of the partition.

Fixed-partition technique The memory management technique in which memory is divided into a specific
number of partitions into which programs are loaded

With the dynamic-partition technique, the partitions are created to fit the unique
needs of the programs. Main memory is initially viewed as one large empty partition. As
programs are loaded, space is “carved out,” using only the space needed to accommodate
the program and leaving a new, smaller, empty partition, which may be used by another
program later. The operating system maintains a table of partition information, but in
dynamic partitions the address information changes as programs come and go.

Dynamic-partition technique The memory management technique in which memory is divided into partitions as
needed to accommodate programs

At any point in time in both fixed and dynamic partitions, memory is divided into a set

369

of partitions, some empty and some allocated to programs. See FIGURE 10.7.
Address binding is basically the same for both fixed and dynamic partitions. As with the

single contiguous memory management approach, a logical address is an integer relative to
a starting point of 0. There are various ways an OS might handle the details of the address
translation. One way is to use two special-purpose registers in the CPU to help manage
addressing. When a program becomes active on the CPU, the OS stores the address of the
beginning of that program’s partition into the base register. Similarly, the length of the
partition is stored in the bounds register. When a logical address is referenced, it is first
compared to the value in the bounds register to make sure the reference is within that
program’s allocated memory space. If it is, the value of the logical address is added to the
value in the base register to produce the physical address.

Base register A register that holds the beginning address of the current partition

Bounds register A register that holds the length of the current partition

FIGURE 10.7 Address resolution in partition memory management

Which partition should we allocate to a new program? There are three general
approaches to partition selection:

■ First fit, in which the program is allocated to the first partition big enough to hold it
■ Best fit, in which the program is allocated to the smallest partition big enough to

hold it
■ Worst fit, in which the program is allocated to the largest partition big enough to

370

hold it

It doesn’t make sense to use worst fit in fixed partitions because it would waste the
larger partitions. First fit and best fit both work for fixed partitions. In dynamic partitions,
however, worst fit often works best because it leaves the largest possible empty partition,
which may accommodate another program later on.

?
What is Bitcoin?

Bitcoin, a peer-to-peer payment system introduced in 2009, is loosely referred to as a digital currency or a
cryptocurrency. A currency is used as a medium of exchange or as a store of value. Bitcoin is a currency as long as
businesses choose to accept Bitcoins in payment. Their use and value have fluctuated widely since their
introduction.1

When a program terminates, the partition table is updated to reflect the fact that the
partition is now empty and available for a new program. In dynamic partitions, consecutive
empty partitions are merged into one big empty partition.

Partition memory management makes efficient use of main memory by maintaining
several programs in memory at one time. But keep in mind that a program must fit entirely
into one partition. Fixed partitions are easier to manage than dynamic ones, but they
restrict the opportunities available to incoming programs. The system may have enough
free memory to accommodate the program, just not in one free partition. In dynamic
partitions, the jobs could be shuffled around in memory to create one large free partition.
This procedure is known as compaction.

Paged Memory Management
Paged memory management places more of the burden on the operating system to keep
track of allocated memory and to resolve addresses. However, the benefits gained by this
approach are generally worth the extra effort.

In the paged memory technique, main memory is divided into small fixed-size blocks
of storage called frames. A process is divided into pages that (for the sake of our discussion)
we assume are the same size as a frame. When a program is to be executed, the pages of the
process are loaded into unused frames distributed through memory. Thus the pages of a
process may be scattered around, out of order, and mixed among the pages of other
processes. To keep track of these pages, the operating system maintains a separate page-
map table (PMT) for each process in memory; it maps each page to the frame in which it
is loaded. See FIGURE 10.8. Both pages and frames are numbered starting with zero,
which makes the address calculations easier.

Paged memory technique A memory management technique in which processes are divided into fixed-size pages
and stored in memory frames when loaded

Frame A fixed-size portion of main memory that holds a process page

Page A fixed-size portion of a process that is stored into a memory frame

371

Page-map table (PMT) The table used by the operating system to keep track of page/frame relationships

FIGURE 10.8 A paged memory management approach

A logical address in a paged memory management system begins as a single integer
value relative to the starting point of the program, as it was in a partitioned system. This
address is modified into two values, a page number and an offset, by dividing the address
by the page size. The page number is the number of times the page size divides the address,
and the remainder is the offset. So a logical address of 2566, with a page size of 1024,
corresponds to the 518th byte of page 2 of the process. A logical address is often written as
<page, offset>, such as <2, 518>.

To produce a physical address, you first look up the page in the PMT to find the frame
number in which it is stored. You then multiply the frame number by the frame size and
add the offset to get the physical address. For example, given the situation shown in
FIGURE 10.8, if process 1 is active, a logical address of <1, 222> would be processed as
follows: Page 1 of process 1 is in frame 12; therefore, the corresponding physical address is
12*1024 + 222 or 12510. Note that there are two ways in which a logical address could be
invalid: The page number could be out of bounds for that process, or the offset could be

372

larger than the size of a frame.
The advantage of paging is that a process no longer needs to be stored contiguously in

memory. The ability to divide a process into pieces changes the challenge of loading a
process from finding one large chunk of space to finding many small chunks.

An important extension to the idea of paged memory management is the idea of
demand paging, which takes advantage of the fact that not all parts of a program actually
have to be in memory at the same time. At any given point in time, the CPU is accessing
one page of a process. At that point, it doesn’t really matter whether the other pages of that
process are even in memory.

Demand paging An extension to paged memory management in which pages are brought into memory only when
referenced (on demand)

In demand paging, the pages are brought into memory on demand. That is, when a
page is referenced, we first see whether it is in memory already and, if so, complete the
access. If it is not already in memory, the page is brought in from secondary memory into
an available frame, and then the access is completed. The act of bringing in a page from
secondary memory, which often causes another page to be written back to secondary
memory, is called a page swap.

Page swap Bringing in one page from secondary memory, possibly causing another to be removed

The demand paging approach gives rise to the idea of virtual memory, the illusion that
there are no restrictions on the size of a program (because the entire program is not
necessarily in memory at the same time). In all of the memory management techniques we
examined earlier, the entire process had to be brought into memory as a continuous whole.
We therefore always had an upper bound on process size. Demand paging removes that
restriction.

Virtual memory The illusion that there is no restriction on program size because an entire process need not be in
memory at the same time

However, virtual memory comes with lots of overhead during the execution of a
program. With other memory management techniques, once a program was loaded into
memory, it was all there and ready to go. With the virtual memory approach, we constantly
have to swap pages between main and secondary memory. This overhead is usually
acceptable—while one program is waiting for a page to be swapped, another process can
take control of the CPU and make progress. Excessive page swapping is called thrashing
and can seriously degrade system performance.

Thrashing Inefficient processing caused by constant page swapping

373

10.3 Process Management
Another important resource that an operating system must manage is the use of the CPU
by individual processes. To understand how an operating system manages processes, we
must recognize the stages that a process goes through during its computational life and
understand the information that must be managed to keep a process working correctly in a
computer system.

The Process States
Processes move through specific states as they are managed in a computer system. That is, a
process enters the system, is ready to be executed, is executing, is waiting for a resource, or
is finished. FIGURE 10.9 depicts these process states. In the figure, each box represents a
state a process might be in, and the arrows indicate how and why a process might move
from one state to another.

Process states The conceptual stages through which a process moves as it is managed by the operating system

Let’s examine what is happing to a process in each state.

■ In the new state, a process is being created. It may, for instance, be a login process
created by a user logging onto a timesharing system, an application process created
when a user submits a program for execution, or a system process created by the
operating system to accomplish a specific system task.

FIGURE 10.9 The process life cycle

■ A process that has no barriers to its execution is in the ready state. A process in the
ready state is not waiting for an event to occur or for data to be brought in from
secondary memory. Instead, it is waiting for its chance to use the CPU.

■ A process in the running state is currently being executed by the CPU. Its
instructions are being processed in the fetch–execute cycle.

■ A process in the waiting state is currently waiting for resources (other than the

374

CPU). For example, a process in the waiting state may be waiting for a page of its
memory to be brought in from secondary memory or for another process to send it a
signal that it may continue.

■ A process in the terminated state has completed its execution and is no longer active.
At this point the operating system no longer needs to maintain the information
regarding the process.

Note that many processes may be in the ready state or the waiting state at the same
time, but only one process can be in the running state.

After a process is created, the operating system admits it to the ready state. When the
CPU scheduling algorithm dictates, a process is dispatched to the running state. (CPU
scheduling is discussed in more detail in Section 10.4.)

While running, the process might be interrupted by the operating system to allow
another process to have its chance on the CPU. In that case, the process simply returns to
the ready state. Alternatively, a running process might request a resource that is not
available or require I/O to retrieve a newly referenced part of the process, in which case it is
moved to the waiting state. A running process may finally get enough CPU time to
complete its processing and terminate normally; otherwise, it may generate an
unrecoverable error and terminate abnormally.

When a waiting process gets the resource it is waiting for, it moves to the ready state
again.

The Process Control Block
The operating system must manage a large amount of data for each active process. Usually
those data are stored in a data structure called a process control block (PCB). Generally,
each state is represented by a list of PCBs, one for each process in that state. When a
process moves from one state to another, its corresponding PCB moves from one state list
to another in the operating system. A new PCB is created when a process is first created
(the new state) and persists until the process terminates.

Process control block (PCB) The data structure used by the operating system to manage information about a
process

The PCB stores a variety of information about the process, including the current value
of the program counter, which indicates the instruction in the process that is to be executed
next. As the life cycle in Figure 10.8 indicates, a process may be interrupted many times
during its execution. At each point, its program counter must be stored so that the next
time the process gets into the running state it can pick up where it left off.

The PCB also stores the values of all other CPU registers for that process. Keep in mind
that there is only one CPU and therefore only one set of CPU registers. These registers
contain the values for the currently executing process (the one in the running state). Each
time a process moves to the running state, the register values for the currently running
process are stored into its PCB, and the register values of the new running state are loaded

375

into the CPU. This exchange of information is called a context switch.

Context switch The exchange of register information that occurs when one process is removed from the CPU and
another takes its place

The PCB also maintains information about CPU scheduling, such as the priority that a
process is given by the operating system. It contains memory management information as
well, such as base and bound register values (for partitions) or page tables (for paged
systems). Finally, the PCB holds accounting information, such as account numbers, time
limits, and the amount of CPU time used so far.

10.4 CPU Scheduling
CPU scheduling is the act of determining which process in the ready state should be moved
to the running state. That is, CPU scheduling algorithms decide which process should be
given over to the CPU so that it can make computational progress.

CPU scheduling decisions are made when a process switches from the running state to
the waiting state, or when a program terminates. This type of CPU scheduling is called
nonpreemptive scheduling, because the need for a new CPU process results from the
activity of the currently executing process.

Nonpreemptive scheduling CPU scheduling that occurs when the currently executing process gives up the CPU
voluntarily

CPU scheduling decisions may also be made when a process moves from the running
state to the ready state or when a process moves from the waiting state to the ready state.
These are examples of preemptive scheduling, because the currently running process
(through no fault of its own) is preempted by the operating system.

Preemptive scheduling CPU scheduling that occurs when the operating system decides to favor another process,
preempting the currently executing process

Scheduling algorithms are often evaluated using metrics, such as the turnaround time
for a process. This measure is the amount of time between when a process arrives in the
ready state and when it exits the running state for the last time. We would like, on average,
for the turnaround time for our processes to be small.

Turnaround time The CPU scheduling metric that measures the elapsed time between a process’s arrival in the
ready state and its ultimate completion

Several different approaches can be used to determine which process gets chosen first to
move from the ready state to the running state. We examine three of them in the next
sections.

376

First Come, First Served
In the first-come, first-served (FCFS) scheduling approach, processes are moved to the
CPU in the order in which they arrive in the running state. FCFS scheduling is
nonpreemptive. Once a process is given access to the CPU, it keeps that access unless it
makes a request that forces it to wait, such as a request for a device in use by another
process.

Suppose processes p1 through p5 arrive in the ready state at essentially the same time
(to make our calculations simple) but in the following order and with the specified service
time:

Process Service Time

p1 140

p2 75

p3 320

p4 280

p5 125

In the FCFS scheduling approach, each process receives access to the CPU in turn. For
simplicity, we assume here that processes don’t cause themselves to wait. The following
Gantt chart shows the order and time of process completion:

Because we are assuming the processes all arrived at the same time, the turnaround time
for each process is the same as its completion time. The average turnaround time is (140 +
215 + 535 + 815 + 940) / 5 or 529.

In reality, processes do not arrive at exactly the same time. In this case, the calculation
of the average turnaround time would be similar, but would take into account the arrival
time of each process. The turnaround time for each process would be its completion time
minus its arrival time.

The FCFS algorithm is easy to implement but suffers from its lack of attention to
important factors such as service time requirements. Although we used the service times in
our calculations of turnaround time, the algorithm didn’t use that information to
determine the best order in which to schedule the processes.

Shortest Job Next
The shortest-job-next (SJN) CPU scheduling algorithm looks at all processes in the ready
state and dispatches the one with the smallest service time. Like FCFS, it is generally
implemented as a nonpreemptive algorithm.

Below is the Gantt chart for the same set of processes we examined in the FCFS

377

example. Because the selection criteria are different, the order in which the processes are
scheduled and completed are different:

The average turnaround time for this example is (75 + 200 + 340 + 620 + 940) / 5 or
435.

Note that the SJN algorithm relies on knowledge of the future. That is, it gives access
to the CPU to the job that runs for the shortest time when it is allowed to execute. That
time is essentially impossible to determine. Thus, to run this algorithm, the service time
value for a process is typically estimated by the operating system using various probability
factors and taking the type of job into account. If these estimates are wrong, the premise of
the algorithm breaks down and its efficiency deteriorates. The SJN algorithm is provably
optimal, meaning that if we could know the service time of each job, the algorithm would
produce the shortest turnaround time for all jobs compared to any other algorithm.
However, because we can’t know the future absolutely, we make guesses and hope those
guesses are correct.

?
Tracking your workout

Nike and Apple have created a product that enables a sneaker to talk to an iPod wirelessly. The Nike sensor is
inserted into selected sneakers, together with a wireless rig. The system lets a runner record the distance, time, pace,
and calories burned during each workout and downloads its data digitally using Apple’s iTunes music software.

Round Robin
Round-robin CPU scheduling distributes the processing time equitably among all ready
processes. This algorithm establishes a particular time slice (or time quantum), which is the
amount of time each process receives before it is preempted and returned to the ready state
to allow another process to take its turn. Eventually the preempted process will be given
another time slice on the CPU. This procedure continues until the process gets all the time
it needs to complete and terminates.

Time slice The amount of time given to each process in the round-robin CPU scheduling algorithm

Steve Jobs

378

© Christophe Ena/AP Photos

Born in 1955, Steve Jobs is probably best known for founding Apple Computer
together with Steve Wozniak and Ronald Wayne in 1976. At the time, most computers
were either mainframes (sometimes as large as a small room) or minicomputers (about
the size of a refrigerator), often anything but user-friendly, and almost exclusively used
by big businesses. Jobs had a vision of a personal computer that would be accessible to
everyone. He is often credited with democratizing the computer.

Jobs and Wozniak designed the Apple I in Jobs’ bedroom and built it in the garage
of his parents’ house. Jobs and Wozniak sold their prize possessions (a Volkswagen
microbus and a Hewlett-Packard scientific calculator, respectively) to raise the $1300
capital with which they founded their company. Four years later, Apple went public. At
the end of the first day of trading, the company had a market value of $1.2 billion.

Jobs headed the team that developed the Apple Macintosh (named after the
McIntosh apple), perhaps the most famous of the Apple computers. The Macintosh was
the first commercially successful computer to be launched with a graphical user interface
and a mouse. Shortly after the launch of the Macintosh, Jobs was forced out of Apple
after a power struggle with John Sculley, Apple’s CEO at the time.

Having been ousted from the company he founded, Jobs began another computer
company, NeXT, which was purchased by Apple in 1996 for $402 million. Not only
did the acquisition bring Jobs back to his original company, but it also made him CEO
of Apple. Under his renewed leadership, Apple launched the iMac, which has been
described as the “gold standard of desk top computing.”

In 1986, Jobs moved into the field of computer-generated animation when he
bought a computer graphics company and renamed it Pixar. Pixar has produced a
number of box office hits, including A Bug’s Life, Toy Story, Monsters, Inc., and Finding
Nemo.

Jobs, himself a university dropout, gave the 2005 commencement address at
Stanford University, in which he imparted the following piece of career advice to the
graduates: “You’ve got to find what you love.”

In 2007 Jobs was named the most powerful person in business by Fortune magazine
and Governor Arnold Schwarzenegger inducted Jobs into the California Hall of Fame.
In August 2011 Jobs resigned as CEO of Apple; he was elected Chairman of the Board.
Tim Cook took over as CEO of Apple. After battling pancreatic cancer, Steve Jobs died
on October 5, 2011, at the age of 56.

Note that the round-robin algorithm is preemptive. The expiration of a time slice is an

379

arbitrary reason to remove a process from the CPU. This action is represented by the
transition from the running state to the ready state.

Suppose the time slice used for a particular round-robin scheduling algorithm was 50
and we used the same set of processes as our previous examples. The Gantt chart results are:

Each process is given a time slice of 50, unless it doesn’t need a full slice. For example,
process 2 originally needed 75 time units. It was given an initial time slice of 50. When its
turn to use the CPU came around again, it needed only 25 time units. Therefore, process 2
terminates and gives up the CPU at time 325.

The average turnaround time for this example is (515 + 325 + 940 + 920 + 640) / 5, or
668. This turnaround time is larger than the times in the other examples. Does that mean
the round-robin algorithm is not as good as the other options? No. We can’t make such
general claims based on one example. We can say only that one algorithm is better than
another for that specific set of processes. General analysis of algorithm efficiencies is much
more involved.

The round-robin CPU process scheduling algorithm is probably the most widely used.
It generally supports all kinds of jobs and is considered the most fair.

SUMMARY

An operating system is the part of the system software that manages resources on a
computer. It serves as moderator among human users, application software, and the
hardware devices in the system.

Multiprogramming is the technique for keeping multiple programs in memory at the
same time, contending for time on the CPU. A process is a program in execution. The
operating system must perform careful CPU scheduling, memory management, and process
management to ensure fair access to the CPU.

Batch processing organizes jobs into batches that use the same or similar resources.
Timesharing allows multiple users to interact with a computer at the same time, creating a
virtual machine for each user.

An operating system must manage memory to control and monitor where processes are
loaded into main memory. Any memory management technique must define the manner in
which it binds a logical address to a physical one. Various strategies have been developed for
memory management. The single contiguous approach allows only one program other than
the operating system to be in main memory. The partition approach divides memory into
several partitions into which processes are loaded. Fixed partitions have a set size, whereas
dynamic partitions are created to satisfy the unique needs of the processes loaded. Paging
divides memory into frames and programs into pages. The pages of a program need not be

380

contiguous in memory. Demand paging allows for only a portion of a program to be in
memory at any given time.

An operating system manages a process’s life states, which are the stages a program goes
through during its execution. The process control block stores the necessary information
for any process.

CPU scheduling algorithms determine which process gets priority to use the CPU next.
First-come, first-served CPU scheduling gives priority to the earliest-arriving job. The
shortest-job-next algorithm gives priority to jobs with short running times. Round-robin
scheduling rotates the CPU among active processes, giving a little time to each process.

ETHICAL ISSUES
Medical Privacy: HIPAA2,3

Beginning in 2003, when you went to the doctor, you had to sign several new forms.
The nurse would simply say “HIPAA,” and shrug his or her shoulders. To many,
HIPAA simply meant more papers to sign.

The Health Insurance Portability and Accountability Act (HIPAA) of 1996 took
effect in 2003. Title I of HIPAA protects health coverage for those that change or lose
their job. Title II of HIPAA, known as the Administrative Simplification provision,
required the establishment of national standards for electronic health care transactions
and provided security and privacy of health data. Thus many doctors’ visits and
procedures require the patient to sign that they understand their rights under HIPAA.

HIPAA sets a national standard for accessing and handling medical information.
Patients are now guaranteed the right to see their own medical records. Patients must be
given notices of privacy practices; thus, the influx of new paperwork. Patients have the
right to find out who has accessed their health records for the prior six years. Patients
may request that confidential communications be sent to their homes rather than their
offices. Patients do not have to have their names included in a hospital directory, and
they can choose with whom their medical information may be discussed.

The HIPAA Privacy Rule establishes a set of national standards for the protection of
certain health information. This rule applies to health plans, health care clearing-houses,
and any health care provider using electronic means to transmit heath care information.
The rule protects all “individually identifiable health information.” This information
includes demographic data that relates to an individual’s past, present, or future mental
or physical health condition, the provision of health care to the individual, and past,
present, or future payment for the provision of health care that can identify the
individual. Once all the identifying information has been removed, there is no
restriction on the use of this de-identified health information.

Current technology that allows collecting and sharing of de-identified information
can help doctors diagnose patients, researchers develop new drugs, and governments
track and combat public health threats like the 2003 outbreak of severe acute respiratory
syndrome (SARS).

However, privacy rights advocates claim that there are weaknesses in the system. For
example, HIPAA applies only to electronic medical records used by healthcare
professionals. Much health-related information exists outside of health care facilities.

381

For example, life insurance companies, workers’ compensation, agencies that deliver
Social Security and welfare benefits, automobile insurance plans that include health
benefits, Internet self-help sites, and those who conduct public screenings for blood
pressure and/or cholesterol are not covered under HIPAA.

As part of the 2009 Stimulus Law, $19 billion was allotted toward making
electronic health records for all Americans by 2014. The law also calls for changes to the
HIPAA Privacy Rule to offer better privacy protection and authorizes broader
enforcement against HIPAA violations.

KEY TERMS

Address binding
Application software
Base register
Bounds register
Context switch
CPU scheduling
Demand paging
Dumb terminal
Dynamic-partition technique
Fixed-partition technique
Frame
Logical address
Mainframe
Memory management
Multiprogramming
Nonpreemptive scheduling
Operating system
Page Page-map table (PMT)
Page swap
Paged memory technique
Physical address
Preemptive scheduling
Process
Process control block (PCB)
Process management
Process states
Real-time system
Response time
Single contiguous memory management
System software
Thrashing

382

Time slice
Timesharing
Turnaround time
Virtual machine
Virtual memory

EXERCISES

For Exercises 1–18, mark the answers true or false as follows:
A. True
B. False

 1. An operating system is an example of application software.
 2. An operating system provides a basic user interface that allows the user to use the

computer.
 3. A computer can have more than one operating system, but only one OS is in

control at any given time.
 4. Multiprogramming is the technique of using multiple CPUs to run programs.
 5. In the 1960s and 1970s, a human operator would organize similar computer jobs

into batches to be run.
 6. Batch processing implies a high level of interaction between the user and the

program.
 7. A timesharing system allows multiple users to interact with a computer at the same

time.
 8. A dumb terminal is an I/O device that connects to a mainframe computer.
 9. A logical address specifies an actual location in main memory.
10. An address in a single contiguous memory management system is made up of a

page and an offset.
11. In a fixed-partition system, main memory is divided into several partitions of the

same size.
12. The bounds register contains the last address of a partition.
13. The first page in a paged memory system is page 0.
14. A process in the running state is currently being executed by the CPU.
15. The process control block (PCB) is a data structure that stores all information

about a process.
16. CPU scheduling determines which programs are in memory.
17. The first-come, first-served scheduling algorithm is probably optimal.
18. A time slice is the amount of time each process is given before being preempted in

a round-robin scheduler.

For Exercises 19–23, match the operating system with information about it.
A. Mac OS
B. UNIX
C. Linux
D. DOS

383

E. Windows
19. Which is the operating system of choice for Apple computers?
20. Historically, which is the operating system of choice for serious programmers?
21. Which is the PC version of UNIX?
22. What is the Microsoft operating system family provided on PCs called?
23. What is the original PC operating system called?

For Exercises 24–26, match the following software type with its definition.
A. Systems software
B. Operating system
C. Application software

24. Programs that help us solve real-world problems
25. Programs that manage a computer system and interact with hardware
26. Programs that manage computer resources and provide interfaces for other

programs

Exercises 27–72 are problems or short-answer questions.
27. Distinguish between application software and system software.
28. What is an operating system?
29. Explain the term multiprogramming.
30. The following terms relate to how the operating system manages

multiprogramming. Describe the part each plays in this process.
a. Process
b. Process management
c. Memory management
d. CPU scheduling

31. What constitutes a batch job?
32. Describe the evolution of the concept of batch processing from the human

operator in the 1960s and 1970s to the operating systems of today.
33. Define timesharing.
34. What is the relationship between multiprogramming and timesharing?
35. Why do we say that users in a timesharing system have their own virtual machine?
36. In Chapter 6, we defined a virtual machine as a hypothetical machine designed to

illustrate important features of a real machine. In this chapter, we define a virtual
machine as the illusion created by a timesharing system that each user has a
dedicated machine. Relate these two definitions.

37. How does the timesharing concept work?
38. What is a real-time system?
39. What is response time?
40. What is the relationship between real-time systems and response time?
41. In a multiprogramming environment, many processes may be active. What are the

tasks that the operating system must accomplish to manage the memory
requirements of active processes?

42. Distinguish between logical addresses and physical addresses.
43. What is address binding?
44. Name three memory management techniques and describe the general approach

taken in each.

384

45. When is a logical address assigned to a variable?
46. When does address binding occur?
47. How is memory divided in the single contiguous memory management approach?
48. When a program is compiled, where is it assumed that the program will be loaded

into memory? That is, where are logical addresses assumed to begin?
49. If, in a single contiguous memory management system, the program is loaded at

address 30215, compute the physical addresses (in decimal) that correspond to the
following logical addresses:
a. 9223
b. 2302
c. 7044

50. In a single contiguous memory management approach, if the logical address of a
variable is L and the beginning of the application program is A, what is the formula
for binding the logical address to the physical address?

51. If, in a fixed-partition memory management system, the current value of the base
register is 42993 and the current value of the bounds register is 2031, compute the
physical addresses that correspond to the following logical addresses:
a. 104
b. 1755
c. 3041

52. If more than one partition is being used (either fixed or dynamic), what does the
base register contain?

53. Why is the logical address compared to the bounds register before a physical
address is calculated?

54. If, in a dynamic-partition memory management system, the current value of the
base register is 42993 and the current value of the bounds register is 2031,
compute the physical addresses that correspond to the following logical addresses:
a. 104
b. 1755
c. 3041

Exercises 55 and 56 use the following state of memory.

Operating system

Process 1

Empty
60 blocks

Process 2

Process 3

Empty
52 blocks

Empty
100 blocks

55. If the partitions are fixed and a new job arrives requiring 52 blocks of main

385

memory, show memory after using each of the following partition selection
approaches:
a. First fit
b. Best fit
c. Worst fit

56. If the partitions are dynamic and a new job arrives requiring 52 blocks of main
memory, show memory after using each of the following partition selection
approaches:
a. First fit
b. Best fit
c. Worst fit

57. If a logical address in a paged memory management system is <2, 133>, what do
the values mean?

Exercises 58–60 refer to the following PMT.

58. If the frame size is 1024, what is the physical address associated with the logical
address <2, 85>?

59. If the frame size is 1024, what is the physical address associated with the logical
address <3, 555>?

60. If the frame size is 1024, what is the physical address associated with the logical
address <3, 1555>?

61. What is virtual memory and how does it apply to demand paging?
62. What are the conceptual stages through which a process moves while being

managed by the operating system?
63. Describe how a process might move through the various process states. Cite

specific reasons why this process moves from one state to another.
64. What is a process control block?
65. How is each conceptual stage represented in the operating system?
66. What is a context switch?
67. Distinguish between preemptive scheduling and nonpreemptive scheduling.
68. Name and describe three CPU scheduling algorithms.

Use the following table of processes and service time for Exercises 69 through 72.

386

69. Draw a Gantt chart that shows the completion times for each process using first-
come, first-served CPU scheduling.

70. Draw a Gantt chart that shows the completion times for each process using
shortest-job-next CPU scheduling.

71. Draw a Gantt chart that shows the completion times for each process using round-
robin CPU scheduling with a time slice of 60.

72. Distinguish between fixed partitions and dynamic partitions.

THOUGHT QUESTIONS

 1. In Chapter 5, we said that the control unit was like the stage manager who
organized and managed the other parts of the von Neumann machine. Suppose we
now say the operating system is also like a stage manager, but on a much grander
scale. Does this analogy hold or does it break down?

 2. The user interface that the operating system presents to the user is like a hallway
with doors leading to rooms housing applications programs. To go from one room
to another, you have to go back to the hallway. Continue with this analogy: What
would files be? What would be analogous to a time slice?

 3. What is the difference between medical data and de-identified medical data?
 4. Have you ever read the HIPAA papers you have signed?
 5. Would you withhold sensitive personal and medical information from your doctor

if you knew there was a possibility that it might not remain private?
 6. Should medical identity cards contain genetic marker information if they ever

become widely used in the United States?

387

THE OPERATING SYSTEMS LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits
5 Computing Components

The Programming Layer
6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages

The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer
15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion
18 Limitations of Computing

388

11 FILE SYSTEMS AND DIRECTORIES

The previous chapter examined some of the roles an operating system plays. In particular, it
described the management of processes, the CPU, and main memory. Another key resource
that the operating system manages is secondary memory—most importantly, magnetic
disks. The organization of files and directories on disk plays a pivotal role in everyday
computing. Like a card file on a desktop, the file system provides a way to access particular
data in a well-organized manner. The directory structure organizes files into categories and
subcategories. File systems and directory structures are explored in detail in this chapter.

GOALS
After studying this chapter, you should be able to:

■ describe the purpose of files, file systems, and directories.
■ distinguish between text and binary files.
■ identify various file types by their extensions.
■ explain how file types improve file usage.
■ define the basic operations on a file.
■ compare and contrast sequential and direct file access.
■ discuss the issues related to file protection.
■ describe a directory tree.
■ create absolute and relative paths for a directory tree.
■ describe several disk-scheduling algorithms.

11.1 File Systems
In Chapter 5 we established the differences between main and secondary memory. Recall
that main memory is where active programs and data are held while in use. Main memory
is volatile, meaning that the data stored on it is lost if electric power is turned off.
Secondary memory is nonvolatile—the data stored on it is maintained even when power is
not on. Thus we use secondary memory for permanent storage of our data.

The most widely used secondary storage device is the magnetic disk drive. It includes
both the hard drives that are found in the computer’s main box and disks that are portable
and can be moved easily between computers. The basic concepts underlying both types of
disks are the same. Other secondary memory devices, such as tape drives, are used primarily
for archival purposes. While many of the concepts that we explore in this chapter apply to
all secondary storage devices, it’s perhaps easiest to think about a standard disk drive.

We store data on a disk in files, a mechanism for organizing data on an electronic

389

medium. A file is a named collection of related data. From the user’s point of view, a file is
the smallest amount of data that can be written to secondary memory. Organizing
everything into files presents a uniform view for data storage. A file system is the logical
view that an operating system provides so that users can manage data as a collection of files.
A file system is often organized by grouping files into directories.

File A named collection of data, used for organizing secondary memory

File system The operating system’s logical view of the files it manages

Directory A named group of files

A file is a generic concept. Different types of files are managed in different ways. A file,
in general, contains a program (in some form) or data (of one type or another). Some files
have a very rigid format; others are more flexible.

A file may be considered a sequence of bits, bytes, lines, or records, depending on how
you look at it. As with any data in memory, you have to apply an interpretation to the bits
stored in a file before they have meaning. The creator of a file decides how the data in a file
is organized, and any users of the file must understand that organization.

Text and Binary Files
All files can be broadly classified as either text files or binary files. In a text file, the bytes of
data are organized as characters from the ASCII or Unicode character sets. (Character sets
are described in Chapter 3.) A binary file requires a specific interpretation of the bits based
on the data in the file.

Text file A file that contains characters

Binary file A file that contains data in a specific format, requiring a special interpretation of its bits

The terms “text file” and “binary file” are somewhat misleading. They seem to imply
that the information in a text file is not stored as binary data. Ultimately, however, all data
on a computer is stored as binary digits. These terms refer to how those bits are formatted:
as chunks of 8 or 16 bits, interpreted as characters, or in some other special format.

Some information lends itself to a character representation, which often makes it easier
for a human to read and modify the information. Though text files contain only characters,
those characters can represent a variety of information. For example, an operating system
may store much of its data as text files, such as information about user accounts. A program
written in a high-level language is stored as a text file, which is sometimes referred to as a
source file. Any text editor can be used to create, view, and change the contents of a text file,
no matter what specific type of information it contains.

For other information types, it is more logical and efficient to represent data by
defining a specific binary format and interpretation. Only programs set up to interpret that
type of data can then be used to view or modify it. For example, many types of files store
image information: bitmap, GIF, JPEG, and TIFF, to name a few. As we discussed in

390

Chapter 3, even though each stores information about an image, all of these files store that
information in different ways. Their internal formats are very specific. A program must be
set up to view or modify a specific type of binary file. That’s why a program that can handle
a GIF image may not be able to handle a TIFF image, or vice versa.

Some files you might assume to be text files actually are not. Consider, for instance, a
report that you type in a word processing program and save to disk. The document is
actually stored as a binary file because, in addition to the characters in the document, it
contains information about formatting, styles, borders, fonts, colors, and “extras” such as
graphics or clip art. Some of the data (the characters themselves) are stored as text, but the
additional information requires that each word processing program have its own format for
storing the data in its document files.

File Types
Most files, whether they are in text or binary format, contain a specific type of information.
For example, a file may contain a Java program, or a JPEG image, or an MP3 audio clip.
Other files contain files created by specific applications, such as a Microsoft® Word
document or a Visio drawing. The kind of information contained in a document is called
the file type. Most operating systems recognize a list of specific file types.

File type The specific kind of information contained in a file, such as a Java program or a Microsoft Word
document

A common mechanism for specifying a file type is to indicate the type as part of the
file’s name. File names are often separated, usually by a period, into two parts: the main
name and the file extension. The extension indicates the type of the file. For example, the
.java extension in the file name MyProg. java indicates that it is a Java source code
program file. The .jpg extension in the file name family. jpg indicates that it is a
JPEG image file. FIGURE 11.1 lists some common file extensions.

File extension Part of a file name that indicates the file type

FIGURE 11.1 Some common file types and their extensions

391

File types allow the operating system to operate on the file in ways that make sense for
that file. They also usually make life easier for the user. The operating system keeps a list of
recognized file types and associates each type with a particular kind of application program.
In an operating system with a graphical user interface (GUI), a particular icon is often
associated with a file type as well. When you see a file in a folder, it is shown with the
appropriate icon in the GUI. That makes it easier for the user to identify a file at a glance
because now both the name of the file and its icon indicate which type of file it is. When
you double-click on the icon to open the program, the operating system starts the program
associated with that file type and loads the file.

For example, you might like a particular editor that you use when developing a Java
program. You can register the .java file extension with the operating system and
associate it with that editor. Then whenever you open a file with a .java extension, the
operating system runs the appropriate editor. The details of how you associate an extension
with an application program depend on the operating system you are using.

Some file extensions are associated with particular programs by default, which you may
change if appropriate. In some cases, a file type could be associated with various types of
applications, so you have some choice. For example, your system may currently associate
the .gif extension with a particular web browser, so that when you open a GIF image
file, it is displayed in that browser window. You may choose to change the association so
that when you open a GIF file, it is brought into your favorite image editor instead.

A file extension is merely an indication of what the file contains. You can name a file
anything you want (as long as you use the characters that the operating system allows for
file names). You could give any file a .gif extension, for instance, but that doesn’t make
it a GIF image file. Changing the extension does not change the data in the file or its
internal format. If you attempt to open a misnamed file in a program that expects a
particular format, you will get an error message.

File Operations
With the help of the operating system, you might perform any of several operations to and
with a file:

■ Create a file
■ Delete a file
■ Open a file
■ Close a file
■ Read data from a file
■ Write data to a file
■ Reposition the current file pointer in a file
■ Append data to the end of a file
■ Truncate a file (delete its contents)
■ Rename a file
■ Copy a file

392

Let’s briefly examine how each of these operations is accomplished.
The operating system keeps track of secondary memory in two ways. It maintains a

table indicating which blocks of memory are free (that is, available for use) and, for each
directory, it maintains a table that records information about the files in that directory. To
create a file, the operating system finds enough free space in the file system for the file
content, puts an entry for the file in the appropriate directory table, and records the name
and location of the file. To delete a file, the operating system indicates that the memory
space previously used by the file is now free and removes the appropriate entry in the
directory table.

Most operating systems require that a file be opened before read and write operations
are performed on it. The operating system maintains a small table of all currently open files
to avoid having to search for the file in the large file system every time a subsequent
operation is performed. To close the file when it is no longer in active use, the operating
system removes the entry in the open file table.

?
RFID tags

As you leave a store after buying a pack of batteries, the batteries “tell” the store’s inventory system to order
batteries because stock is low. Radio-frequency identification (RFID) makes this type of communication possible.
In addition to items in retail stores, RFID technology is used to track shipping pallets, library books, vehicles, and
animals.
If you’ve ever used EZPass to go through a toll booth, or SpeedPass to pay for your gas, you’ve used RFID
technology.

At any point in time, an open file has a current file pointer (an address) indicating the
place where the next read or write operation should occur. Some systems keep a separate
read pointer and write pointer for a file. Reading a file means that the operating system
delivers a copy of the data in the file, starting at the current file pointer. After the read
occurs, the file pointer is updated. When data is written to a file, the data is stored at the
location indicated by the current file pointer, and then the file pointer is updated. Often an
operating system allows a file to be open for reading or writing, but not for both operations
at the same time.

The current file pointer for an open file might be repositioned to another location in
the file to prepare for the next read or write operation. Appending data to the end of a file
requires that the file pointer be positioned to the end of a file; the appropriate data is then
written at that location.

It is sometimes useful to “erase” the data in a file. Truncating a file means deleting the
contents of the file without removing the administrative entries in the file tables. This
operation avoids the need to delete a file and then recreate it. Sometimes the truncating
operation is sophisticated enough to erase part of a file, from the current file pointer to the
end of the file.

An operating system also provides an operation to change the name of a file, which is
called renaming the file. Likewise, it provides the ability to create a complete copy of the
contents of a file, giving the copy a new name.

393

File Access
The data in a file can be accessed in several different ways. Some operating systems provide
only one type of file access, whereas others provide a choice of access methods. The type of
access available for a given file is established when the file is created.

Let’s examine the two primary access techniques: sequential access and direct access.
The differences between these two techniques are analogous to the differences between the
sequential nature of magnetic tape and the direct access offered by a magnetic disk, as
discussed in Chapter 5. However, both types of files can be stored on either type of
medium. File access techniques define the ways that the current file pointer can be
repositioned. They are independent of the physical restrictions of the devices on which the
file is stored.

The most common access technique, and the simplest to implement, is sequential file
access, which views the file as a linear structure. It requires that the data in the file be
processed in order. Read and write operations move the current file pointer according to
the amount of data that is read or written. Some systems allow the file pointer to be reset to
the beginning of the file and/or to skip forward or backward by a certain number of
records. See FIGURE 11.2.

Sequential file access The technique in which data in a file is accessed in a linear fashion

FIGURE 11.2 Sequential file access

FIGURE 11.3 Direct file access

Files with direct file access are conceptually divided into numbered logical records.

394

Direct access allows the user to set the file pointer to any particular record by specifying the
record number. Therefore, the user can read and write records in any particular order
desired, as shown in FIGURE 11.3. Direct access files are more complicated to implement,
but they are helpful in situations where specific portions of large data stores must be
available quickly, such as in a database.

Direct file access The technique in which data in a file is accessed directly by specifying logical record numbers

File Protection
In multiuser systems, file protection is of primary importance. That is, we don’t want one
user to be able to access another user’s files unless such access is specifically allowed. It is the
operating system’s responsibility to ensure valid file access. Different operating systems
administer their file protection in different ways. In any case, a file protection mechanism
determines who can use a file and for what general purpose.

For example, a file’s protection settings in the UNIX operating system are divided into
three categories: Owner, Group, and World. Under each category you can determine
whether the file can be read, written, and/or executed. Under this mechanism, if you can
write to a file, you can also delete the file.

Each file is “owned” by a particular user, who is often the creator of the file. The
Owner usually has the strongest permissions regarding the file. A file may also have a group
name associated with it—a group is simply a list of users. The Group permissions apply to
all users in the associated group. You might create Group permissions, for instance, for all
users who are working on a particular project. Finally, World permissions apply to anyone
who has access to the system. Because these per missions give access to the largest number
of users, they are usually the most restricted.

In Chapter 10 we discussed the need for the operating system to protect main memory
by ensuring that one program doesn’t access the memory space of another. Protections are
also needed in file systems to protect inappropriate access to files. Security issues at higher
levels are discussed in Chapter 17.

Using this technique, the permissions on a file can be shown in a 3 × 3 grid:

Suppose that this grid represents the permissions on a data file used in project Alpha.
The owner of the file (perhaps the manager of the project) may read from or write to the
file. Suppose also that the owner sets up a group (using the operating system) called
TeamAlpha, which contains all members of the project team, and associates that group
with this data file. The members of the TeamAlpha group may read the data in the file but
may not change it. No one else is given any permission to access the file. Note that no user

395

is given execute privileges for the file because it is a data file, not an executable program.
Other operating systems set up their protection schemes in different ways, but the goal

is the same: to control access so as to protect against deliberate attempts to gain
inappropriate access as well as minimize inadvertent problems caused by well-intentioned
but hazardous users.

11.2 Directories
As mentioned earlier, a directory is a named collection of files. It is a way to group files so
that you can organize them in a logical manner. For example, you might place all of your
papers and notes for a particular class in a directory created for that class. The operating
system must carefully keep track of directories and the files they contain.

A directory, in most operating systems, is represented as a file. The directory file
contains data about the other files in the directory. For any given file, the directory contains
the file name, the file type, the address on disk where the file is stored, and the current size
of the file. The directory also contains information about the protections set up for the file.
In addition, it may hold information describing when the file was created and when it was
last modified.

The internal structure of a directory file could be set up in a variety of ways, and we
won’t explore those details here. However, once it is set up, this structure must be able to
support the common operations that are performed on directory files. For instance, the user
must be able to list all of the files in the directory. Other common operations are creating,
deleting, and renaming files within a directory. Furthermore, the directory is often searched
to see whether a particular file is in the directory.

Another key issue when it comes to directory management is the need to reflect the
relationships among directories, as discussed in the next section.

Directory Trees
A directory of files can be contained within another directory. The directory containing
another directory is usually called the parent directory, and the one inside is called a
subdirectory. You can set up such nested directories as often as needed to help organize the
file system. One directory can contain many subdirectories. Furthermore, subdirectories
can contain their own subdirectories, creating a hierarchy structure. To visualize this
hierarchy, a file system is often viewed as a directory tree, showing directories and files
within other directories. The directory at the highest level is called the root directory.

Directory tree A structure showing the nested directory organization of the file system

Root directory The topmost directory, in which all others are contained

As an example, consider the directory tree shown in FIGURE 11.4. This tree
represents a very small part of a file system that might be found on a computer using some
flavor of the Microsoft Windows operating system. The root of the directory system is
referred to using the drive letter C: followed by the backslash (\).

396

In this directory tree, the root directory contains three subdirectories: WINDOWS, My
Documents, and Program Files. Within the WINDOWS directory, there is a file
called calc.exe as well as two other subdirectories (Drivers and System). Those
directories contain other files and subdirectories. Keep in mind that all of these directories
in a real system would typically contain many more subdirectories and files.

Personal computers often use an analogy of folders to represent the directory structure,
which promotes the idea of containment (folders inside other folders, with some folders
ultimately containing documents or other data). The icon used to show a directory in the
graphical user interface of an operating system is often a graphic of a manila file folder such
as the kind you would use in a physical file drawer.

FIGURE 11.4. A Windows directory tree

In Figure 11.4, two files have the name util.zip (in the My Documents
directory, and in its subdirectory called downloads). The nested directory structure
allows for multiple files to have the same name. All the files in any one directory must have
unique names, but files in different directories or subdirectories can have the same name.
These files may or may not contain the same data; all we know is that they have the same
name.

At any point in time, you can be thought of as working in a particular location (that is,

397

a particular subdirectory) of the file system. This subdirectory is referred to as the current
working directory. As you “move” around in the file system, the current working directory
changes.

Working directory The currently active subdirectory

FIGURE 11.5 A UNIX directory tree

The directory tree shown in FIGURE 11.5 is representative of one from a UNIX file
system. Compare and contrast it to the directory tree in Figure 11.4. Both show the same
concepts of subdirectory containment, but the naming conventions for files and directories
are different. UNIX was developed as a programming and system-level environment, so it
uses much more abbreviated and cryptic names for directories and files. Also, in a UNIX
environment, the root is designated using a forward slash (/).

Path Names
How do we specify one particular file or subdirectory? Well, there are several ways to do it.

If you are working in a graphical user interface to the operating system, you can double-
click with your mouse to open a directory and see its contents. The active directory window
shows the contents of the current working directory. You can continue “moving” through
the file system by using mouse clicks, thereby changing the current working directory, until
you find the desired file or directory. To move up the directory structure, you can often use

398

an icon on the window bar or a pop-up menu option to move to the parent directory.

?
RFID tags in people?

Researchers experimented with implanting RFID tags in people! In 2004, a club owner in Barcelona, Spain, and
Rotterdam, the Netherlands, offered to implant his VIP customers with RFID tags. These chips identified the
customers as VIPs, and the chips were used by the customers to pay for their drinks.

Most operating systems also provide a nongraphical (text-based) interface to the
operating system. Therefore, we must be able to specify file locations using text. This ability
is very important for system instructions stored in operating system batch command files.
Commands such as cd (which stands for “change directory”) can be used in text mode to
change the current working directory.

To indicate a particular file using text, we specify that file’s path, which is the series of
directories through which you must go to find the file. A path may be absolute or relative.
An absolute path name begins at the root and specifies each step down the tree until it
reaches the desired file or directory. A relative path name begins from the current working
directory.

Path A text designation of the location of a file or subdirectory in a file system

Absolute path A path that begins at the root and includes all successive subdirectories

Relative path A path that begins at the current working directory

Let’s look at examples of each type of path. The following are absolute path names
based on the directory tree shown in Figure 11.4:

Each path name begins at the root and proceeds down the directory structure. Each
subdirectory is separated by the backslash (\). Note that a path can specify a specific
document (as it does in the first two examples) or an entire subdirectory (as it does in the
third example).

Absolute paths in a UNIX system work the same way, except that the character used to
separate subdirectories is the forward slash (/). Here are some examples of absolute path
names that correspond to the directory tree in Figure 11.5:

Relative path names are based on the current working directory. That is, they are
relative to your current position (hence the name). Suppose the current working directory

399

is C:\My Documents\letters (from Figure 11.4). Then the follow ing relative path
names could be used:

The first example specifies just the name of the file, which can be found in the current
working directory. The second example specifies a file in the applications
subdirectory. By definition, the first part of any valid relative path is located in the working
directory.

Sometimes when using a relative path we need to work our way back up the tree. Note
that this consideration was not an issue when we used absolute paths. In most operating
systems, two dots (..) are used to specify the parent directory (a single dot is used to
specify the current working directory). Therefore, if the working directory is C:\My
Documents\ letters, the following relative path names are also valid:

UNIX systems work essentially the same way. Using the directory tree in Figure 11.5,
and assuming that the current working directory is /home/jones, the following are
valid relative path names:

Most operating systems allow the user to specify a set of paths that are searched (in a
specific order) to help resolve references to executable programs. Often that set of paths is
specified using an operating system variable called PATH, which holds a string that contains
several absolute path names. Suppose, for instance, that user jones (from Figure 11.5)
has a set of utility programs that he uses from time to time. They are stored in the directory
/home/jones/utilities. When that path is added to the PATH variable, it
becomes a standard location used to find programs that jones attempts to execute.
Therefore, no matter what the current working directory is, when jones executes the
printall program (just the name by itself), it is found in his utilities directory.

11.3 Disk Scheduling
The most important hardware device used as secondary memory is the magnetic disk drive.
File systems stored on these drives must be accessed in an efficient manner. It turns out that
transferring data to and from secondary memory is the worst bottleneck in a general
computer system.

Recall from Chapter 10 that the speed of the CPU and the speed of main memory are
much faster than the speed of data transfer to and from secondary memory such as a

400

magnetic disk. That’s why a process that must perform I/O to disk is made to wait while
that data is transferred, to give another process a chance to use the CPU.

Because secondary I/O is the slowest aspect of a general computer system, the
techniques for accessing data on a disk drive are of crucial importance to file systems. As a
computer deals with multiple processes over a period of time, requests to access the disk
accumulate. The technique that the operating system uses to determine which requests to
satisfy first is called disk scheduling. We examine several specific disk-scheduling
algorithms in this section.

Disk scheduling The act of deciding which outstanding requests for disk I/O to satisfy first

Recall from Chapter 5 that a magnetic disk drive is organized as a stack of platters,
where each platter is divided into tracks, and each track is divided into sectors. The set of
corresponding tracks on all platters is called a cylinder. FIGURE 11.6 revisits the disk drive
depicted in Chapter 5 to remind you of this organization.

Of primary importance to us in this discussion is the fact that the set of read/write
heads hovers over a particular cylinder along all platters at any given point in time. The seek
time is the amount of time it takes for the heads to reach the appropriate cylinder. The
latency is the additional time it takes the platter to rotate into the proper position so that
the data can be read or written. Seek time is the more restrictive of these two parameters
and, therefore, is the primary issue dealt with by the disk-scheduling algorithms.

FIGURE 11.6 A magnetic disk drive.

At any point in time, a disk drive may have a set of outstanding requests that must be
satisfied. For now, we consider only the cylinder (the parallel concentric circles) to which
the requests refer. A disk may have thousands of cylinders. To keep things simple, let’s also

401

assume a range of 110 cylinders. Suppose at a particular time the following cylinder
requests have been made, in this order:

49, 91, 22, 61, 7, 62, 33, 35

Suppose also that the read/write heads are currently at cylinder 26. Now a question arises:
To which cylinder should the disk heads move next? Different algorithms produce different
answers to this question.

?
Soothing software

Chronic stress can lead to cardiovascular disease, diabetes, impaired cognitive function, and a weakened immune
system. One measure of stress level is heart rate variability (HRV), the period in milliseconds between heartbeats
that cardiologists study in at-risk patients. In a healthy person, HRV should be high but within a certain zone. One
software package that measures HRV is supplied by HeartMath®. The emWave® measures stress with a finger or ear
sensor that detects the user’s pulse. Just a few minutes of breathing with the emWave’s pacer and thinking positive
thoughts can bring HRV into the target zone.

First-Come, First-Served Disk Scheduling
In Chapter 10 we examined a CPU scheduling algorithm called first come, first served
(FCFS). An analogous algorithm can be used for disk scheduling. It is one of the easiest to
implement, though not usually the most efficient.

In FCFS, we process the requests in the order they arrive, without regard to the current
position of the heads. Therefore, under a FCFS algorithm, the heads move from cylinder
26 (the current position) to cylinder 49. After the request for cylinder 49 is satisfied (that is,
the data is read or written), the heads move from 49 to 91. After processing the request at
91, the heads move to cylinder 22. Processing continues in this manner, satisfying requests
in the order that they were received.

Note that at one point the heads move from cylinder 91 all the way back to cylinder
22, during which they pass over several cylinders whose requests are currently pending.

Shortest-Seek-Time-First Disk Scheduling
The shortest-seek-time-first (SSTF) disk-scheduling algorithm moves the heads by the
minimum amount necessary to satisfy any pending request. This approach could
potentially result in the heads changing directions after each request is satisfied.

Let’s process our hypothetical situation using this algorithm. From our starting point at
cylinder 26, the closest cylinder among all pending requests is 22. So, ignoring the order in
which the requests came, the heads move to cylinder 22 to satisfy that request. From 22,
the closest request is for cylinder 33, so the heads move there. The closest unsatisfied
request to 33 is at cylinder 35. The distance to cylinder 49 is now the smallest, so the heads
move there next. Continuing that approach, the rest of the cylinders are visited in the
following order: 49, 61, 62, 91, 7.

This approach does not guarantee the smallest overall head movement, but it generally

402

offers an improvement in performance over the FCFS algorithm. However, a major
problem can arise with this approach. Suppose requests for cylinders continue to build up
while existing ones are being satisfied. And suppose those new requests are always closer to
the current position than an earlier request. It is theoretically possible that the early request
never gets processed because requests keep arriving that take priority. This situation is
called starvation. By contrast, FCFS disk scheduling cannot suffer from starvation.

?
Keeping the elderly at home

Many new technologies are being developed to make it easier for elderly people to continue living independent lives
at home. One example is the eNeighbor® system, a system with 12 kinds of sensors (e.g., bed, toilet flush, home
away, open/closed) and an optional web camera. Changes in a person’s habits (if a person falls down and does not
move in his or her regular pattern, for example) will be relayed to a central monitoring system. An operator then
calls the house to ask if the patient is okay. If no response is received, the family, a neighbor, or 911 is called.

SCAN Disk Scheduling
A classic example of algorithm analysis in computing comes from the way an elevator is
designed to visit floors that have people waiting. In general, an elevator moves from one
extreme to the other (say, the top of the building to the bottom), servicing requests as
appropriate. It then travels from the bottom to the top, servicing those requests.

The SCAN disk-scheduling algorithm works in a similar way, except that instead of
moving up and down, the read/write heads move in toward the spindle, then out toward
the platter edge, then back toward the spindle, and so forth.

Let’s use this algorithm to satisfy our set of requests. Unlike in the other approaches,
though, we need to decide which way the heads are moving initially. Let’s assume they are
moving toward the lower cylinder values (and are currently at cylinder 26).

As the read/write heads move from cylinder 26 toward cylinder 1, they satisfy the
requests at cylinders 22 and 7 (in that order). After reaching cylinder 1, the heads reverse
direction and move all the way out to the other extreme. Along the way, they satisfy the
following requests, in order: 33, 35, 49, 61, 62, 91.

New requests are not given any special treatment under this scheme. They may or may
not be serviced before earlier requests—it depends on the current location of the heads and
direction in which they are moving. If a new request arrives just before the heads reach that
cylinder, it is processed right away. If it arrives just after the heads move past that cylinder,
it must wait for the heads to return. There is no chance for starvation because each cylinder
is processed in turn.

Some variations on this algorithm can improve its performance. For example, a request
at the edge of the platter may have to wait for the heads to move almost all the way to the
spindle and all the way back. To improve the average wait time, the Circular SCAN
algorithm treats the disk as if it were a ring and not a disk. That is, when it reaches one
extreme, the heads return all the way to the other extreme without processing requests.

403

Tony Hoare

Courtesy of Inamori Foundation

Tony Hoare’s interest in computing was awakened in the early 1950s, when he studied
philosophy (together with Latin and Greek) at Oxford University under the tutelage of
John Lucas. He was fascinated by the power of mathematical logic as an explanation of
the apparent certainty of mathematical truth. During his National Service (1956–1958),
he studied Russian in the Royal Navy. Then he took a qualification in statistics, and
incidentally a course in programming given by Leslie Fox. In 1959, as a graduate
student at Moscow State University, he studied the machine translation of languages
(together with probability theory) in the school of Kolmogorov. To assist in efficient
lookup of words in a dictionary, he discovered the well-known sorting algorithm
Quicksort.

On return to England in 1960, he worked as a programmer for Elliott Brothers, a
small scientific computer manufacturer. He led a team (including his later wife, Jill) in
the design and delivery of the first commercial compiler for the programming language
ALGOL 60. He attributes the success of the project to the use of ALGOL itself as the
design language for the compiler, although the implementation used decimal machine
code. Promoted to the rank of Chief Engineer, he then led a larger team on a disastrous
project to implement an operating system. After managing a recovery from the failure,
he moved as Chief Scientist to the computing research division, where he worked on the
hardware and software architecture for future machines.

These machines were cancelled when the company merged with its rivals, and in
1968 Tony took a chance to apply for the Professorship of Computing Science at the
Queen’s University, Belfast. His research goal was to understand why operating systems
were so much more difficult than compilers, and to see if advances in programming
theory and languages could help with the problems of concurrency. In spite of civil
disturbances, he built up a strong teaching and research department and published a
series of papers on the use of assertions to prove correctness of computer programs. He
knew that this was long-term research, unlikely to achieve industrial application within
the span of his academic career.

In 1977 he moved to Oxford University and undertook to build up the
Programming Research Group, founded by Christopher Strachey. With the aid of
external funding from government initiatives, industrial collaborations, and charitable
donations, Oxford now teaches a range of degree courses in computer science, including

404

an external Master’s degree for software engineers from industry. The research of his
teams at Oxford pursued an ideal that takes provable correctness as the driving force for
the accurate specification, design, and development of computing systems, both critical
and noncritical. Well-known results of the research include the Z specification language
and the CSP concurrent programming model. A recent personal research goal has been
the unification of a diverse range of theories applying to different programming
languages, paradigms, and implementation technologies.

Throughout more than 30 years as an academic, Tony has maintained strong
contacts with industry through consultation, teaching, and collaborative research
projects. He took a particular interest in the sustenance of legacy code, where assertions
are now playing a vital role, not for his original purpose of program proof, but rather in
instrumentation of code for testing purposes. On reaching retirement age at Oxford, he
welcomed an opportunity to return to industry as a senior researcher with Microsoft
Research in Cambridge. He hopes to expand the opportunities for industrial application
of good academic research and to encourage academic researchers to continue the
pursuit of deep and interesting questions in areas of long-term interest to the software
industry and its customers.

Note: This biographical sketch was written by Sir Tony Hoare himself and reprinted with his permission. What he does
not say is that he received the Turing Award in 1980 for his fundamental contributions to the definition and design of
programming languages, and he was awarded a Knighthood in 1999 for his services to education and computer science.

Another variation is to minimize the extreme movements at the spindle and at the edge
of the platter. Instead of going to the edge, the heads move only as far out (or in) as the
outermost (or innermost) request. Before moving on to tackle the next request, the list of
pending requests is examined to see whether movement in the current direction is
warranted. This variation is referred to as the LOOK disk-scheduling algorithm, because it
looks ahead to see whether the heads should continue in the current direction.

SUMMARY

A file system defines the way our secondary memory is organized. A file is a named
collection of data with a particular internal structure. Text files are organized as a stream of
characters; binary files have a particular format that is meaningful only to applications set
up to handle that format.

File types are often indicated by the file extension of the file name. The operating
system maintains a list of recognized file types so that it may open them in the correct kind
of application and display the appropriate icons in the graphical user interface. The file
extension can be associated with any particular kind of application that the user chooses.

The operations performed on files include creating, deleting, opening, and closing files.
Of course, files must be able to be read from and written to as well. The operating system
provides mechanisms to accomplish the various file operations. In a multiuser system, the
operating system must also provide file protection to ensure that only authorized users have
access to files.

405

Directories are used to organize files on disk. They can be nested to form hierarchical
tree structures. Path names that specify the location of a particular file or directory can be
absolute, originating at the root of the directory tree, or relative, originating at the current
working directory.

Disk-scheduling algorithms determine the order in which pending disk requests are
processed. First-come, first-served disk scheduling takes all requests in order but is not very
efficient. Shortest-seek-time-first disk scheduling is more efficient but could suffer from
starvation. SCAN disk scheduling employs the same strategy as an elevator, sweeping from
one end of the disk to the other.

ETHICAL ISSUES
Privacy: Opt-In or Opt-Out?1, 2

These terms—opt-in and opt-out—refer to privacy policies. When you sign up at a
banking institution, do you want the bank to share your information with other
financial institutions? If you buy an item on the Internet from Company A, do you
want to receive email from a similar Company B? When you apply for a credit card, do
you want to get offers from other credit card companies?

Opt-in says that you must explicitly say you want to share your information. Opt-out
says that the information will be shared unless you explicitly say you do not want to
share your information. That is, a website’s default is either opt-in or opt-out.

In the United States, the CAN-SPAM Act covers commercial email messages; the
E.U. directive covers all email marketing messages in the European Union. The CAN-
SPAM Act allows direct marketing to anyone until the recipient requests the email to
stop (the default is opt-in; you must check a box to opt-out). The E.U. directive says
that email can only be sent to subscribers who have given their prior consent (the default
is opt-out; you must check a box to opt-in). Companies using opt-out must give the
recipients a way to cancel the emails.*

The different approaches to privacy, evidenced by how the United States and E.U.
handle email, has surfaced in other areas. One of the authors went online, Googled their
own name, and received over 7 million hits in 0.23 seconds. The Spanish government
has ordered Google to stop indexing information about 90 citizens who filed a formal
complaint. In 2012, the E.U. adopted a “right to be forgotten” regulation. In contrast,
U.S. courts have consistently found that the right to publish the truth supersedes any
right to privacy.

Parallel questions are should the people in pictures posted on the Internet be
identified without the person’s consent? Should cyber maps give pictures of a residence
without the owner’s consent? In the United States, Facebook announced that it was
changing its policy of posting names without consent. In Germany, Google allowed
individuals and businesses to opt out of Street View. Approximately 250,000 people
have done so. These issues have not been, nor will they be, decided easily or quickly.

*While writing this feature, one of the authors received five marketing emails within 20 minutes. The next morning
there were 17 more marketing emails. Each one required going online and explicitly unsubscribing.

406

KEY TERMS

Absolute path
Binary file
Direct file access
Directory
Directory tree
Disk scheduling
File
File extension
File system
File type
Path
Relative path
Root directory
Sequential file access
Text file
Working directory

EXERCISES

For Exercises 1–15, mark the answers true or false as follows:
A. True
B. False

 1. A text file stores binary data that is organized into groups of 8 or 16 bits that are
interpreted as characters.

 2. A program written in a high-level language is stored in a text file that is also called
a source file.

 3. The type of a file determines which kinds of operations can be performed on it.
 4. The current file pointer indicates the end of a file.
 5. Sequential access and direct access take about the same amount of time to retrieve

data.
 6. Some operating systems maintain a separate read pointer and write pointer for a

file.
 7. UNIX file permissions allow a group of users to access a file in various ways.
 8. In most operating systems, a directory is represented as a file.
 9. Two files in a directory system can have the same name if they are in different

directories.
10. A relative path is relative to the root of the directory hierarchy.
11. An absolute path and a relative path will always be the same length.
12. An operating system is responsible for managing the access to a disk drive.
13. The seek time is the amount of time it takes for the heads of a disk to reach a

407

particular cylinder.
14. The shortest-seek-time-first disk scheduling algorithm moves the heads the

minimum amount it can to satisfy a pending request.
15. The first-come, first-served disk scheduling algorithm moves the heads the

minimum amount it can to satisfy a pending request.

For Exercises 16–20, match the file extensions with the appropriate file.
A. txt
B. mp3, au, and wav
C. gif, tiff, and jpg
D. doc and wp3
E. java, c, and cpp

16. Audio file
17. Image file
18. Text data file
19. Program source file
20. Word processing file

For Exercises 21–23, match the symbol with its use.
A. /
B. \
C. ..

21. Symbol used to separate the names in a path in a Windows environment
22. Symbol used to separate the names in a path in a UNIX environment
23. Symbol used to represent the parent directory in a relative path name Exercises

24–57 are problems or short-answer questions.
24. What is a file?
25. Distinguish between a file and a directory.
26. Distinguish between a file and a file system.
27. Why is a file a generic concept and not a technical one?
28. Name and describe the two basic classifications of files.
29. Why is the term binary file a misnomer?
30. Distinguish between a file type and a file extension.
31. What would happen if you give the name myFile.jpg to a text file?
32. How can an operating system make use of the file types that it recognizes?
33. How does an operating system keep track of secondary memory?
34. What does it mean to open and close a file?
35. What does it mean to truncate a file?
36. Compare and contrast sequential and direct file access.
37. File access is independent of any physical medium.

a. How could you implement sequential access on a disk?
b. How could you implement direct access on a magnetic tape?

38. What is a file protection mechanism?
39. How does UNIX implement file protection?
40. Given the following file permission, answer these questions.

408

a. Who can read the file?
b. Who can write or delete the file?
c. Who can execute the file?
d. What do you know about the content of the file?

41. What is the minimum amount of information a directory must contain about each
file?

42. How do most operating systems represent a directory?
43. Answer the following questions about directories.

a. A directory that contains another directory is called what?
b. A directory contained within another directory is called what?
c. A directory that is not contained in any other directory is called what?
d. The structure showing the nested directory organization is called what?
e. Relate the structure in (d) to the binary tree data structure examined in Chapter

8.
44. What is the directory called in which you are working at any one moment?
45. What is a path?
46. Distinguish between an absolute path and a relative path.
47. Show the absolute path to each of the following files or directories using the

directory tree shown in Figure 11.4:
a. QTEffects.qtx
b. brooks.mp3
c. Program Files
d. 3dMaze.scr
e. Powerpnt.exe

48. Show the absolute path to each of the following files or directories using the
directory tree shown in Figure 11.5:
a. tar
b. access.old
c. named.conf
d. smith
e. week3.txt
f. printall

49. Assuming the current working directory is C:\WINDOWS\System, give the
relative path name to the following files or directories using the directory tree
shown in Figure 11.4:
a. QTImage.qtx
b. calc.exe
c. letters

409

d. proj3.java
e. adobep4.hlp
f. WinWord.exe

50. Show the relative path to each of the following files or directories using the
directory tree shown in Figure 11.5:
a. localtime when working directory is the root directory
b. localtime when the working directory is etc
c. printall when the working directory is utilities d. week1.txt

when the working directory is man2
51. What is the worst bottleneck in a computer system?
52. Why is disk scheduling concerned more with cylinders than with tracks and

sectors?
53. Name and describe three disk scheduling algorithms.

Use the following list of cylinder requests in Exercises 54–56. They are listed in the
order in which they were received.

40, 12, 22, 66, 67, 33, 80

54. List the order in which these requests are handled if the FCFS algorithm is used.
Assume that the disk is positioned at cylinder 50.

55. List the order in which these requests are handled if the SSTF algorithm is used.
Assume that the disk is positioned at cylinder 50.

56. List the order in which these requests are handled if the SCAN algorithm is used.
Assume that the disk is positioned at cylinder 50 and the read/write heads are
moving toward the higher cylinder numbers.

57. Explain the concept of starvation.

THOUGHT QUESTIONS

 1. The concept of a file permeates computing. Would the computer be useful if there
were no secondary memory on which to store files?

 2. The disk scheduling algorithms examined in this chapter sound familiar. In what
other context have we discussed similar algorithms? How are these similar and how
are they different?

 3. Are there any analogies between files and directories and file folders and filing
cabinets? Clearly, the name “file” came from this concept. Where does this analogy
hold true and where does it not?

 4. Spamming is the Internet equivalent of unsolicited telephone sales pitches. There
are laws now that allow a telephone user to request that his or her name be
removed from the solicitor’s calling list. Should there be similar laws relating to
spamming?

 5. In your opinion, is spamming a reasonable business strategy, like regular direct or
“junk” mail, or is it a form of electronic harassment? Why or why not?

 6. Which approach is better, opt-in or opt-out?

410

THE APPLICATIONS LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits
5 Computing Components

The Programming Layer
6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages

The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer
15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion
18 Limitations of Computing

411

12 INFORMATION SYSTEMS

Most people interact with computers at the application level. That is, even if a person
doesn’t know anything about the details of the other underlying levels of computing, the
chances are that he or she has used application software. Our goal at this level is to give you
an appreciation for how various application systems work. Application software can be
classified in several ways. In this chapter we focus on general information systems. In
Chapter 13 we discuss applications in the realm of artificial intelligence, and in Chapter 14
we focus on simulations, graphics, and gaming.

Computers exist to manage and analyze data. Today they affect almost all aspects of our
lives. We use general information systems to manage everything from sports statistics to
payroll data. Likewise, cash registers and ATMs are supported by large information systems.
In this chapter we examine general-purpose software, particularly spreadsheets and database
management systems; these help us organize and analyze the huge amounts of data with
which we must deal.

GOALS
After studying this chapter, you should be able to:

■ define the role of general information systems.
■ explain how spreadsheets are organized.
■ create spreadsheets for basic analysis of data.
■ define appropriate spreadsheet formulas using built-in functions.
■ design spreadsheets to be flexible and extensible.
■ describe the elements of a database management system.
■ describe the organization of a relational database.
■ establish relationships among elements in a database.
■ write basic SQL statements.
■ describe an entity-relationship diagram.
■ define and explain the role of e-commerce in society today.

12.1 Managing Information
In this book we’ve used the term data to describe raw facts and information to mean data
that has been organized to help us answer questions and solve problems. An information
system can be generally defined as software that helps us organize and analyze data.

Information system Software that helps the user organize and analyze data

412

Any particular application program manages data, and some programs manage data in
particular ways using particular structures. Other specialized applications use specific
techniques that are geared toward the type of problems they are trying to solve. For
example, as we discuss in the next chapter, data can be organized so as to support the
analysis that typically occurs in the computing field of artificial intelligence.

Most situations, however, are more general. In fact, innumerable situations don’t
require any special consideration. We simply have data to manage and relationships within
that data to capture. These situations don’t necessarily require special organization or
processing. What they do require, however, are flexible application software tools that allow
the user to dictate and manage the organization of data, and that have basic processing
capabilities to analyze the data in various ways.

Three of the most popular general application information systems are electronic
spreadsheets, database management systems, and e-commerce. A spreadsheet is a convenient
tool for basic data analysis based on extensible formulas that define relationships among the
data. Database management systems are geared toward managing large amounts of data
that are often searched and organized into appropriate subsections.

Entire books have been written about spreadsheets and how they are set up and used.
The same can be said for database management systems. Our goal for this chapter is not to
exhaustively explore either of these systems, but rather introduce the usefulness and
versatility of both. After this discussion you should be able to create basic versions of either
type of system, and you will have a foundation on which to explore them in more detail.

Spreadsheets and database management systems have been around since the 1970s.
Electronic commerce, by comparison, is newer, coming about with the advent of the World
Wide Web. These systems manage all aspects of buying and selling on the Internet.

?
Ellis Island

The Ellis Island Immigration Station processed arriving immigrants between 1892 and 1954. The Ellis Island
website (www.ellisisland.org) has a searchable database that includes the name, age, country of origin, and even the
ship on which each of the 25 million passengers arrived in the United States. It has been estimated that 40% of all
current U.S. citizens can trace at least one of their ancestors to Ellis Island.

12.2 Spreadsheets
A variety of spreadsheet programs are available today. You may already have some
experience with spreadsheets, though we don’t assume any background knowledge in this
discussion. Each spreadsheet program has its own particular nuances regarding its abilities
and syntax, but all spreadsheets embrace a common set of concepts. Our discussion in this
chapter focuses on these common concepts. The specific examples that we explore are
consistent with the syntax and functionality of the Microsoft® Excel spreadsheet program.

413

http://www.ellisisland.org

FIGURE 12.1 A spreadsheet, made up of a grid of labeled cells

A spreadsheet is a software application that allows the user to organize and analyze data
using a grid of labeled cells. A cell can contain data or a formula that is used to calculate a
value. Data stored in a cell can be text, numbers, or “special” data such as dates.

Spreadsheet A program that allows the user to organize and analyze data using a grid of cells

Cell An element of a spreadsheet that can contain data or a formula

As shown in FIGURE 12.1, spreadsheet cells are referenced by their row and column
designation, usually using letters to specify the column and numbers to specify the row.
Thus we refer to cells such as A1, C7, and G45. After the 26th column, spreadsheets begin
to use two letters for the column designation, so some cells have designations such as AA19.
There is usually some reasonably large maximum number of rows in a spreadsheet, such as
256. Furthermore, in most spreadsheet programs, multiple sheets can be combined into
one large interacting system.

Spreadsheets are useful in many situations, and they are often designed to manage
thousands of data values and calculations. Let’s look at a small example that demonstrates
fundamental spreadsheet principles. Suppose we have collected data on the number of
students who came to get help from a set of tutors over a period of several weeks. We’ve
kept track of how many students went to each of three tutors (Hal, Amy, and Frank) each
week for a period of five weeks. Now we want to perform some basic analysis on that data.
We might end up with the spreadsheet shown in FIGURE 12.2.

This spreadsheet contains, among other things, the raw data to be analyzed. Cell C4,
for instance, contains the number of students whom Hal tutored in week 1. The column of
data running from C4 to C8 contains the number of students tutored by Hal in each of the
five weeks during which data was collected. Likewise, the data for Amy is stored in cells D4
through D8, and the data for Frank is stored in cells E4 through E8. This same data can be
thought of in terms of the row it is in. Each row shows the number of students helped by
each tutor in any given week.

414

FIGURE 12.2 A spreadsheet containing data and computations

In cells C9, D9, and E9, the spreadsheet computes and displays the total number of
students helped by each tutor over all five weeks. In cells C10, D10, and E10, the
spreadsheet also computes and displays the average number of students helped by each
tutor each week. Likewise, the total number of students helped each week (by all tutors) is
shown in the column of cells running from F4 to F8. The average number of students
helped per week is shown in cells G4 to G8.

In addition to the totals and averages per tutor and per week, the spreadsheet calculates
some other overall statistics. Cell F9 shows the total number of students helped by all tutors
in all weeks. The average per week (for all tutors) is shown in cell F10 and the average per
tutor (for all weeks) is shown in cell G9. Finally, the average number of students helped by
any tutor in any week is shown in cell G10.

The data stored in columns A and B and in rows 2 and 3 are simply used as labels to
indicate what the values in the rest of the spreadsheet represent. These labels are meant to
enhance the spreadsheet’s human readability only and do not contribute to the calculations.

Note that the labels and some of the values in the spreadsheet in Figure 12.2 are shown
in different colors. Most spreadsheet programs allow the user to control the look and
format of the data in specific cells in various ways. The user can specify the font, style, and
color of the data as well as the alignment of the data within the cell (such as centered or left
justified). In the case of real numeric values, such as the averages computed in this example,
the user can specify how many decimal places should be displayed. In most spreadsheet
programs, the user can also dictate whether the grid lines for each cell are displayed or
remain invisible (in this example they are all displayed) and what the background color or
pattern of a cell should be. All of these user preferences are specified using menu options or
buttons in the spreadsheet application software.

415

Spreadsheet Formulas
In our example spreadsheet, we performed several calculations that gave us insight into the
overall situation regarding tutor support. It turns out that it is relatively easy to set up these
calculations. You might say that it wouldn’t take long to sit down with these numbers and
produce the same statistics with a calculator, and you would be right. However, the beauty
of a spreadsheet is that it is both easily modified and easily expanded.

If we’ve set up the spreadsheet correctly, we could add or remove tutors, add additional
weeks of data, or change any of the data we have already stored—and the corresponding
calculations would automatically be updated. For example, although we set up the tutor
spreadsheet to use the data of three tutors, the same spreadsheet could be expanded to
handle hundreds of tutors. Instead of five weeks of data, we could just as easily process a
year’s worth.

The power of spreadsheets comes from the formulas that we can create and store in
cells. All of the totals and averages in the example in Figure 12.2 are computed using
formulas. When a formula is stored in a cell, the result of the formula is displayed in the
cell. Therefore, when we look at the values in a spreadsheet, it is sometimes challenging to
tell whether the data shown in a particular cell was entered directly or computed by an
underlying formula.

FIGURE 12.3 shows the same spreadsheet as Figure 12.2, indicating the formulas
underlying some of the cells. Formulas in our examples (as in many spreadsheet programs)
begin with an equal sign (=). That’s how the spreadsheet knows which cells contain
formulas that must be evaluated.

The formulas in this example refer to particular cells (by their column and row
designation). When a formula is evaluated, the values stored in the referenced cells are used
to compute the result. Formulas in a spreadsheet are reevaluated whenever the spreadsheet
changes; therefore, the results are always kept current. A spreadsheet is dynamic—it
responds to changes immediately. If we changed the number of students whom Frank
tutored in week 2, the totals and averages that use that value would be recalculated
immediately to reflect the revised data.

416

FIGURE 12.3 The formulas behind some of the cells

Formulas can make use of basic arithmetic operations using the standard symbols (+, −,
*, and /). They can also take advantage of spreadsheet functions that are built into the
software. In the tutor example, the formula in cell C9 uses the SUM function to compute
the sum of the values in the cells C4, C5, C6, C7, and C8.

Spreadsheet function A computation provided by the spreadsheet software that can be incorporated into formulas

Because functions often operate on a set of contiguous cells, spreadsheets provide a
convenient way to specify a range of cells. Syntactically, a range is specified with two dots
(periods) between the two cell endpoints. A range can specify a set of cells along a row, such
as C4..E4, or it can specify a set of cells down a column, such as C4..C8. A range can also
specify a rectangular block of cells, ranging from the top left to the bottom right. For
example, the range C4..E8 includes the cells C4 to C8, D4 to D8, and E4 to E8.

Range A set of contiguous cells specified by the endpoints

?
Another player in elder care

Lively is a product featuring sensors that can give feedback to children about an elderly parent who is living alone.
For example, did the parent get something out of the refrigerator? Open the front door? Open a bottle of prescribed
medicine? With the number of Americans age 65 or older projected to grow from 40 million in 2010 to 72 million
in 2030, the need for such monitoring is bound to increase as well. Although only about $15 million of such
equipment was sold in 2013, forecasts predict that the market will grow to about $25 million in 2017.1

417

Several of the formulas shown in Figure 12.3 use the COUNT function, which
computes the number of nonblank cells in the specified range. For example, the formula in
cell G7 divides the value in cell F7 by the count of cells in the range C7..E7, which is 3.

The formula in cell G7 could have been written as follows:

=SUM(C7..E7)/3

Given the current status of the spreadsheet, this formula would compute the same result.
However, this formula is not as good as the original, for two reasons. First, the sum of the
values in C7 to E7 has already been computed (and stored in F7), so there is no need to
recompute it. Any change to the data would affect the value of F7, and consequently
change the value of G7 as well. Spreadsheets take all such relationships into account.

Second (and far more important), it is always a good idea to avoid using a constant in a
formula unless it is specifically appropriate. In this case, using the value 3 as the
predetermined number of tutors limits our ability to easily add or delete tutors from our
analysis. Spreadsheet formulas respond to insertions and deletions just as they do to changes
in raw data itself. If we insert a column for another tutor, the ranges in the original
formulas in columns F and G (which would move to columns G and H due to the
insertion) would automatically change to reflect the insertion. For example, if a new tutor
column is inserted, the formula in cell F4 would be shifted to cell G4 and would now be

=SUM(C4..F4)

That is, the range of cells would increase to include the newly inserted data. Likewise, the
ranges used by the COUNT function in other functions would change, resulting in a new
—and correct—average. If we had used the constant 3 in the formula of cell G7, the
calculation would be incorrect after the new column was inserted.

Usually a spreadsheet program provides a large number of functions that we can use in
formulas. Some perform math or statistical calculations, common financial calculations, or
special operations on text or dates. Others allow the user to set up logical relationships
among cells. Examples of some common spreadsheet functions appear in FIGURE 12.4. A
typical spreadsheet program provides dozens of functions that the user may incorporate
into formulas.

Another dynamic aspect of spreadsheets is the ability to copy values or formulas across a
row or down a column. When formulas are copied, the relationships among cells are
maintained. As a result, it becomes easy to set up a whole set of similar calculations. For
instance, to enter the total calculations in our tutor example down the column from cell F4
to cell F8, we simply had to enter the formula in cell F4, and then copy that formula down
the column. As the formula is copied, the references to the cells are automatically updated
to reflect the row that the new formula is in. For our small example that tracks five weeks,
the copy ability didn’t save that much effort. But imagine we were tracking this data for a
whole year and had 52 summation formulas to create. The copy aspect of spreadsheets
makes setting up that entire column a single operation.

418

FIGURE 12.4 Some common spreadsheet functions

Circular References
Spreadsheet formulas could be defined such that they create a circular reference—that is, a
reference that can never be resolved because the result of one formula is ultimately based on
another, and vice versa. For instance, if cell B15 contains the formula

Circular reference A set of formulas that ultimately, and erroneously, rely on each other to compute their results

=D22+D23

and cell D22 contains the formula

=B15+B16

there is a circular reference. Cell B15 uses the value in cell D22 for its result, but cell D22
relies on B15 for its result.

Daniel Bricklin

419

Courtesy of Louis Fabian Bachrach/Dan Bricklin

Many of the people whose biographies appear in this book have been winners of the
ACM Turing Award, the highest award given in computer science. The ACM also gives
an award for outstanding work done by someone younger than age 35, called the Grace
Murray Hopper Award. The charge for this award reads:

Awarded to the outstanding young computer professional of the year … selected on
the basis of a single recent major technical or service contribution…. The candidate
must have been 35 years of age or less at the time the qualifying contribution was
made.

Daniel Bricklin won the Hopper Award in 1981, with the following citation:

For his contributions to personal computing and, in particular, to the design of
VisiCalc. Bricklin’s efforts in the development of the “Visual Calculator” provide
the excellence and elegance that ACM seeks to sustain through such activities as the
Awards program.

Daniel Bricklin, born in 1951, is a member of the computer generation. He began
his college career at the Massachusetts Institute of Technology in 1969 as a math major,
but quickly changed to computer science. He worked in MIT’s Laboratory for
Computer Science, where he worked on interactive systems and met his future business
partner, Bob Franksten. After graduation, he was employed by Digital Equipment
Corporation, where he worked with computerized typesetting and helped to design the
WPS-8 word processing product.

After a very short stint with FasFax Corporation, a cash register manufacturer,
Bricklin enrolled in the MBA program at the Harvard Business School in 1977. While
there, he began to envision a program that could manipulate numbers much in the same
way that word processors manipulate text. As Bricklin realized, such a program would
have an immense impact on the business world. He teamed up with his MIT buddy
Franksten and turned the dream into a reality. With Bricklin doing the design and
Franksten doing the programming, the pair created VisiCalc, the first spreadsheet
program. In 1978, they formed Software Arts to produce and market VisiCalc. In the
fall of 1979, a version was made available for the Apple II for $100 per copy. A version

420

for the IBM PC became available in 1981.
Bricklin made the decision not to patent VisiCalc, believing that software should

not be proprietary. Although it didn’t own a patent on its product, the company grew to
125 employees in four years. Soon, however, another start-up named Lotus came out
with a spreadsheet package called Lotus 1-2-3, which was both more powerful and more
user-friendly than Visi-Calc. Software Arts’ sales suffered. After a long expensive court
battle between Software Arts and VisiCorp (the company marketing VisiCalc), Bricklin
was forced to sell to Lotus Software. In turn, Lotus 1-2-3 was surpassed by Microsoft’s
Excel spreadsheet program. Both Lotus 1-2-3 and Excel were based on VisiCalc.

After working for a short time as a consultant with Lotus Software, Bricklin again
formed a new company. As president of Software Garden, he developed a program for
prototyping and simulating other pieces of software, which won the 1986 Software
Publishers Association Award for “Best Programming Tool.” In 1990, he cofounded
Slate Corporation to develop applications software for pen computers—that is,—small
computers that use a pen rather than a keyboard for input. After four years, Slate closed
its doors, and Bricklin went back to Software Garden.

In 1995, Bricklin founded Trellix Corporation, a leading provider of private-label
website publishing technology. Trellix was acquired by Interland, Inc., in 2003. In early
2004, Bricklin returned to Software Garden as president. In 2013, he joined Alpha
Software as their chief technical officer.

When Bricklin was asked to share his view of the Internet, here is his reply as
captured by the interviewer: “Most people don’t understand it. They fail to grasp the
capabilities of its underpinnings.” He likens the Net to a primitive road during the early
days of the automobile, when few saw the potential that a massive interstate highway
system might one day provide. “We need to understand not so much the technology,”
he explains, “but the progression of technology and what might be built with it. E-
commerce, like electricity or the telephone, simply enables us to use technology to do
what we now do, only better.”

Circular references are not usually this blatant and may involve many cells. A more
complicated situation is presented in FIGURE 12.5. Ultimately, cell A1 relies on cell D13
for its value, and vice versa. Spreadsheet software usually detects such a problem and
indicates the error.

FIGURE 12.5 A circular reference situation that cannot be resolved

421

Spreadsheet Analysis
One reason spreadsheets are so useful is their versatility. The user of a spreadsheet
determines what the data represents and how it is related to other data. Therefore,
spreadsheet analysis can be applied to just about any topic area. We might, for instance, use
a spreadsheet to perform the following tasks:

■ Track sales
■ Analyze sport statistics
■ Maintain student grades
■ Keep a car maintenance log
■ Record and summarize travel expenses
■ Track project activities and schedules
■ Plan stock purchases

The list of potential applications is virtually endless. Business, in general, has a huge
number of specific situations in which spreadsheet calculations are essential. It makes you
wonder how we got along without them.

Their dynamic nature also makes spreadsheets highly useful. If we set up the
spreadsheet formulas correctly, then our changes, additions, and deletions to the data are
automatically taken into account by the appropriate calculations.

The dynamic nature of spreadsheets also provides the powerful ability to carry out
what-if analysis. We can set up spreadsheets that take into account certain assumptions,
and then challenge those assumptions by changing the appropriate values.

What-if analysis Modifying spreadsheet values that represent assumptions to see how changes in those assumptions
affect related data

As an example, suppose we are setting up a spreadsheet to estimate the costs and
potential profits for a seminar we are considering holding. We can enter values for the
number of attendees, ticket prices, costs of materials, room rental, and other data that
affects the final results. Then we can ask ourselves some what-if questions to see how our
scenario changes as the situation changes:

What if the number of attendees decreased by 10%?
What if we increase the ticket price by $5?
What if we could reduce the cost of materials by half?

As we ask these questions, we change the data accordingly. If we’ve set up the relationships
among all of the formulas correctly, then each change immediately shows us how it affects
the other data.

Business analysts have formalized this process in various ways, and spreadsheets have
become an essential tool in their daily work. Cost–benefit analysis, break-even calculations,
and projected sales estimates all become a matter of organizing the spreadsheet data and
formulas to take the appropriate relationships into account.

422

12.3 Database Management Systems
Almost all sophisticated data management situations rely on an underlying database and the
support structure that allows the user (either a human or a program) to interact with it. A
database can simply be defined as a structured set of data. A database management system
(DBMS) is a combination of software and data made up of three components:

Database A structured set of data

Database management system A combination of software and data made up of the physical database, the database
engine, and the database schema

■ The physical database—a collection of files that contain the data
■ The database engine—software that supports access to and modification of the

database contents
■ The database schema—a specification of the logical structure of the data stored in

the database

The database engine software interacts with specialized database languages that allow
the user to specify the structure of data; add, modify, and delete data; and query the
database to retrieve specific stored data.

Query A request to retrieve data from a database

The database schema provides the logical view of the data in the database, independent
of how it is physically stored. Assuming that the underlying physical structure of the
database is implemented in an efficient way, the logical schema is the more important point
of view from the database user’s perspective because it shows how the data items relate to
each other.

Schema A specification of the logical structure of data in a database

FIGURE 12.6 depicts the relationships among the various elements of a database
management system. The user interacts with the database engine software to determine
and/or modify the schema for the database. The user then interacts with the engine
software to access and possibly modify the contents of the database stored on disk.

423

FIGURE 12.6 The elements of a database management system

The Relational Model
Several popular database management models have been proposed, but the one that has
dominated for many years is the relational model. In a relational DBMS, the data items
and the relationships among them are organized into tables. A table is a collection of
records. A record is a collection of related fields. Each field of a database table contains a
single data value. Each record in a table contains the same fields.

Relational model A database model in which data and the relationships among them are organized into tables

Table A collection of database records

Record (or object, or entity) A collection of related fields that make up a single database entry

Field (or attribute) A single value in a database record

A record in a database table is also called a database object or an entity. The fields of a
record are sometimes called the attributes of a database object.

As an example, consider the database table shown in FIGURE 12.7, which contains
information about movies. Each row in the table corresponds to a record. Each record in
the table is made up of the same fields in which particular values are stored. That is, each
movie record has a MovieId, a Title, a Genre, and a Rating that contains the specific data
for each record. A database table is given a name, such as Movie in this case.

Usually, one or more fields of a table are identified as key fields. The key field(s)
uniquely identifies a record among all other records in the table. That is, the value stored in
the key field(s) for each record in a table must be unique. In the Movie table, the MovieId
field would be the logical choice for a key. That way, two movies could have the same title.
Certainly the Genre and Rating fields are not appropriate key fields in this case.

Key One or more fields of a database record that uniquely identifies it among all other records in the table

424

FIGURE 12.7 A database table, made up of records and fields

Each value in the key field MovieId must be unique. Most DBMSs allow such fields to
be automatically generated to guarantee unique entries. The key values do not have to be
consecutive, however. The last three entries of the table contain radically different movie
identification numbers. As long as they are unique values, the MovieId field can serve as the
key.

The Movie table in Figure 12.7 happens to be presented in the order of increasing
MovieId value, but it could have been displayed in other ways, such as alphabetical by movie
title. In this case, there is no inherent relationship among the rows of data in the table.
Relational database tables present a logical view of the data and have nothing to do with the
underlying physical organization (how the records are stored on disk). Ordering records
becomes important only when we query the database for particular values, such as all
movies that are rated PG. At that point we might want to sort the results of the query by
title.

The structure of the table corresponds to the schema it represents. That is, a schema is
an expression of the attributes of the records in a table. We can express the schema for this
part of the database as follows:

Movie (MovieId:key, Title, Genre, Rating)

Sometimes a schema representation indicates the type of data that is stored in
individual fields, such as numeric or text. It may also indicate the specific set of values that
are appropriate for a given field. For instance, the schema could indicate in this example
that the Rating field can be only G, PG, PG-13, R, or NC-17. The schema for an entire
database is made up of the individual schema that corresponds to individual tables.

Suppose we wanted to create a movie rental business. In addition to the list of movies
for rent, we must create a database table to hold information about our customers. The
Customer table in FIGURE 12.8 could represent this information.

Similar to what we did with our Movie table, the Customer table contains a

425

CustomerId field to serve as a key. The fact that some CustomerId values correspond to
some MovieId values is irrelevant. Key values must be unique only within a table.

?
Won’t they ever stop?

“I am Mr. Cham Tao Soon, Chairman Audit Committee of UOB Bank, Singapore. I have a project for you in the
tons of One Hundred & Five Million EUR, after successful transfer, we shall share in the ratio of forty for you and
sixty for me. Please reply for specifics.” Contact Email: taosoon@rogers.com2

In a real database, we would be better off subdividing the Name field of our Customer
table into FirstName and LastName fields. Also, we would probably use separate fields to
hold various parts of a complete address, such as City and State. For our examples we are
keeping things simple.

The Movie table and the Customer table show how data can be organized as records
within isolated tables. The real power of relational database management systems, though,
lies in the ability to create tables that conceptually link various tables together, as discussed
in the next section.

FIGURE 12.8 A database table containing customer data

Relationships
Recall that records represent individual database objects, and that fields of a record are the
attributes of these objects. We can create a record to represent a relationship among objects
and include attributes about the relationship in that record. In this way, we can use a table
to represent a collection of relationships among objects.

Continuing our movie rental example, we need to be able to represent the situation in
which a particular customer rents a particular movie. Because “rents” is a relationship
between a customer and a movie, we can represent it as a record. The date rented and the
date due are attributes of the relationship that should be in the record. The Rents table in
FIGURE 12.9 contains a collection of these relationship records that represents the movies

426

mailto:taosoon@rogers.com

that are currently rented.
The Rents table contains information about the objects in the relationship (customers

and movies), as well as the attributes of the relationship. It does not hold all of the data
about a customer or a movie, however. In a relational database, we avoid duplicating data as
much as possible. For instance, there is no need to store the customer’s name and address in
the rental table—that data is already stored in the Customer table. When we need that
data, we use the CustomerId stored in the Rents table to look up the customer’s detailed
data in the Customer table. Likewise, when we need data about the movie that was rented,
we look it up in the Movie table using the MovieId.

FIGURE 12.9 A database table storing current movie rentals

Universal Product Code

When you look on the packaging of most products, you will find a Universal Product
Code (UPC) and its associated bar code, such as the one shown to the right. UPC codes
were created to speed up the process of purchasing a product at a store and to help keep
better track of inventory.

A UPC symbol is made up of the machine-readable bar code and the corresponding
human-readable 12-digit UPC number. The first six digits of the UPC number are the
manufacturer identification number. For example, General Mills has a manufacturer ID
number of 016000. The next five digits are the item number. Each type of product, and
each different packaging of the same product, is assigned a unique item number. For
example, a 2-liter bottle of Coke has a different item number than a 2-liter bottle of
Diet Coke, and a 10-ounce bottle of Heinz ketchup has a different item number than a
14-ounce bottle of Heinz ketchup.

The last digit of the UPC code is the check digit, which allows the scanner to
determine whether it scanned the number correctly. After reading the number, a
calculation is performed on the rest of the digits of the number to determine the check

427

digit. The result is then verified against the actual check digit. (See Chapter 18 for more
information on check digits.)

For some products, particularly small ones, a technique has been developed to create
UPC numbers that can be shortened by eliminating certain digits (all zeros). In this
way, the entire UPC symbol can be reduced in size.

Note that a product’s price is not stored in the UPC number. When a product is
scanned at a cash register—more formally called a point of sale (POS)—the
manufacturer and item numbers are used to look up that item in a database. The
database might contain a great deal of product information, including its price. Keeping
only basic information in the UPC number makes it easy to change other information,
such as the price, without having to relabel the products. Unfortunately, this flexibility
also makes it easy to create situations of “scanner fraud” in which the database price of
an item does not match the price on the store shelf, whether intentionally or not.

Note that the CustomerId value 103 is shown in two records in the Rents table. Its
two appearances indicate that the same customer rented two different movies.

Data is modified in, added to, and deleted from our various database tables as needed.
When movies are added or removed from the available stock, we update the records of the
Movie table. As people become new customers of our store, we add them to the Customer
table. On an ongoing basis we add and remove records from the Rents table as customers
rent and return videos.

Structured Query Language
Structured Query Language (SQL) is a comprehensive database language for managing
relational databases. It includes statements that specify database schemas as well as
statements that add, modify, and delete database content. In addition, as its name implies,
SQL provides the ability to query the database to retrieve specific data.

Structured Query Language (SQL) A comprehensive relational database language for data management and
queries

The original version of SQL was Sequal, developed by IBM in the early 1970s. In
1986, the American National Standards Institute (ANSI) published the SQL standard,
which serves as the basis for commercial database languages for accessing relational
databases.

SQL is not case sensitive, so keywords, table names, and attribute names can be
uppercase, lowercase, or mixed case. Spaces are used as separators in a statement. Because
this is a specific programming language, we use a monospaced code font.

Queries
Let’s first focus on simple queries. The select statement is the primary tool for this purpose.
The basic select statement includes a select clause, a from clause, and a where clause:

428

select attribute-list from table-list where condition

The select clause determines which attributes are returned. The from clause determines
which tables are used in the query. The where clause restricts the data that is returned. For
example:

select Title from Movie where Rating = ‘PG’

The result of this query is a list of all titles from the Movie table that have a PG rating.
The where clause can be eliminated if no special restrictions are necessary:

select Name, Address from Customer

This query returns the name and address of all customers in the Customer table. An
asterisk (*) can be used in the select clause to denote that all attributes in the selected
records should be returned:

select * from Movie where Genre like ‘%action%’

This query returns all attributes of records from the Movie table in which the Genre
attribute contains the word “action.” The like operator in SQL performs some simple
pattern matching on strings, and the % symbol matches any string.

Select statements can also dictate how the results of the query should be sorted using
the order by clause:

select * from Movie where Rating = ‘R’ order by Title

This query returns all attributes of R-rated movies sorted by the movie title.
SQL supports many more variations of select statements than are shown here. Our goal

is simply to introduce the database concepts—you would require much more detail to
become truly proficient at SQL queries.

?
Mathematical basis of SQL

SQL incorporates operations in an algebra that is defined for accessing and manipulating data represented in
relational tables. E. F. Codd of IBM defined this algebra and he won the Turing Award for his work. SQL’s
fundamental operations include these:

■ Select operation, to identify records in a table

■ Project operation, to produce a subset of the columns in a table

■ Cartesian product operation, to concatenate rows from two tables

Other operations include the set operations union, difference, intersection, natural join (a subset of Cartesian
product), and division.

Modifying Database Content
SQL’s insert, update, and delete statements allow the data in a table to be changed. The
insert statement adds a new record to a table. Each insert statement specifies the values of

429

the attributes for the new record. For example:

This statement inserts a new record into the Customer table with the specified attributes.
The update statement changes the values in one or more records of a table. For

example:

This statement changes the Genre attribute of the movie Unbreakable to “thriller drama.”
The delete statement removes all records from a table matching the specified condition.

For example, if we wanted to remove all R-rated movies from the Movie table, we could use
the following delete statement:

delete from Movie where Rating = ‘R’

As with the select statement, there are many variations of the insert, update, and delete
statements.

Database Design
A database must be carefully designed from the outset if it hopes to fulfill its role. Poor
planning in the early stages can lead to a database that does not support the required
relationships.

One popular technique for designing relational databases is called entity-relationship
(ER) modeling. Chief among the tools used for ER modeling is the ER diagram. An ER
diagram captures the important record types, attributes, and relationships in a graphical
form. From an ER diagram, a database manager can define the necessary schema and create
the appropriate tables to support the database specified by the diagram.

Entity-relationship (ER) modeling A popular technique for designing relational databases

ER diagram A graphical representation of an ER model

FIGURE 12.10 presents an ER diagram showing various aspects of the movie rental
example. Specific shapes are used in ER diagrams to differentiate among the various parts
of the database. Types of records (which can also be thought of as classes for the database
objects) are shown in rectangles. Fields (or attributes) of those records are shown in
attached ovals. Relationships are shown in diamonds.

The positions of the various elements of an ER diagram are not particularly important,
though giving some thought to them will make the diagram easier to read. Note that a
relationship such as Rents can have its own associated attributes.

Also note that the relationship connectors are labeled, one side with a 1 and the other
side with an M. These designations show the cardinality constraint of the relationship. A
cardinality constraint puts restrictions on the number of relationships that may exist at one
time. Three general cardinality relationships are possible:

430

Cardinality constraint The number of relationships that may exist at one time among entities in an ER diagram

■ One-to-one
■ One-to-many
■ Many-to-many

FIGURE 12.10 An ER diagram for the movie rental database

The relationship between a customer and a movie is one-to-many. That is, one
customer is allowed to rent many movies, but a movie can be rented by only a single
customer (at any given time). Cardinality constraints help the database designer convey the
details of a relationship.

?
Secondhand shopping

Websites such as eBay. com, craigslist.com, and i-soldit.com make it easy for people to sell unwanted goods. Some
experts predict that the secondary auction industry may eventually change the way people think about what they
buy. As it becomes easier to resell items, people may take this factor into consideration when purchasing an item.
This trend could lead to temporary ownership of increasingly more goods, with people effectively “leasing” things
rather than buying items and later discarding them.

12.4 E-Commerce
Computer applications in the realm of electronic commerce, or e-commerce, deal with
purchases made through the Web. It includes all aspects of the marketing, sales, and buying
of both products and services. These days, more and more people are turning to the Web as
their first option when making a purchase.

Electronic commerce The process of buying and selling products and services using the World Wide Web

431

http://craigslist.com
http://i-soldit.com

When the Web burst into public view in 1994, many people predicted that it would
have a large impact on the way we do business. In fact, it took several years for e-commerce
to begin to be trusted enough, and become functional enough, to take root in our culture.
The dot-com collapse of 2001, instead of diminishing e-commerce, seemed to promote it
by clearing the way for organizations with legitimate business models to make a place for
themselves online. During this period, in addition to new, purely online businesses
cropping up, traditional “bricks-and-mortar” businesses developed a significant online
presence.

Amazon.com, one of the oldest e-commerce sites on the Web, did not make a profit for
many years. But by persevering through (sometimes painful) growth spurts, it has emerged
as a premiere e-commerce destination for shoppers. eBay, a popular auction site, allowed
anyone to sell their products online, even without an underlying formal business; today,
many retailers conduct their transactions purely through the eBay environment. Companies
such as PayPal, which make the process of online purchases much easier by abstracting the
buyer’s financial details, were also key to e-commerce success. In fact, eBay purchased
PayPal in 2002; like many online sites, eBay uses PayPal exclusively as its electronic
payment system.

The evolution of web-based technologies was a major factor in the success of e-
commerce and the driving force behind some of it. The ability for an online application to
provide enhanced user interaction was critical in this growth, as was the development of
secure protocols and other factors that permit the secure transfer of electronic funds.

Electronic shopping carts are a key part of the e-commerce process, allowing users to
maintain an ongoing collection of items and purchase those items in a single transaction.
Many e-commerce sites track a user’s purchases and make suggestions for other items that a
user might find interesting. This is an aspect of e-commerce that is not easily replicated
with traditional store purchases.

Another important aspect to the success of e-commerce is the evolution of sellers’
understanding of how shoppers shop. That is, the best e-commerce sites now have facilities
that allow a user to search for and compare items in various ways. Again, these functional
aspects often surpass the user’s experience when visiting a physical store.

One of the biggest challenges that remains for e-commerce is the need to ensure
security in the financial transactions inherent in the process. Many people still have strong
misgivings about conducting business online, but trust in online transactions is growing
rapidly. Indeed, the need for computer security is greater than ever.

SUMMARY

An information system is application software that allows the user to organize and manage
data. General information system software includes spreadsheets and database management
systems. Other domain areas, such as artificial intelligence, have their own specific
techniques and support for data management.

A spreadsheet is a software application that sets up a grid of cells to organize data and
the formulas used to compute new values. Cells are referenced by their row and column

432

http://Amazon.com

designations, such as A5 or B7. Formulas usually refer to the values in other cells and may
rely on built-in functions to compute their result. In addition, formulas may use data across
a range of cells. When a formula is stored in a spreadsheet cell, the value computed by the
formula is actually shown in the cell. It is important that formulas in a spreadsheet avoid
circular references, in which two or more cells rely on one another to compute their results.

Spreadsheets are both versatile and extensible. They can be used in many different
situations, and they respond dynamically to change. As values in the spreadsheet change,
affected formulas are automatically recalculated to produce updated results. If spreadsheet
rows or columns are added, the ranges in spreadsheet formulas are adjusted immediately.
Spreadsheets are particularly appropriate for what-if analysis, in which assumptions are
modified to see their effect on the rest of the system.

A database management system includes the physical files in which the data are stored,
the software that supports access to and modification of that data, and the database schema
that specifies the logical layout of the database. The relational model is the most popular
database approach today. It is based on organizing data into tables of records (or objects)
with particular fields (or attributes). A key field, whose value uniquely identifies individual
records in the table, is usually designated for each table.

Relationships among database elements are represented in new tables that may have
their own attributes. Relationship tables do not duplicate data in other tables. Instead, they
store the key values of the appropriate database records so that the detailed data can be
looked up when needed.

Structured Query Language (SQL) is the language used for querying and manipulating
relational databases. The select statement is used to formulate queries and has many
variations so that particular data can be accessed from the database. Other SQL statements
allow data to be added, updated, and deleted from a database.

A database should be carefully designed. Entity-relationship modeling, with its
associated ER diagrams, is a popular technique for database design. ER diagrams
graphically depict the relationships among database objects and show their attributes and
cardinality constraints.

E-commerce is the process of buying and selling services over the Internet. As e-
commerce has become increasingly more popular, more stringent security measures have
had to be employed to ensure the integrity of sales over the Internet.

ETHICAL ISSUES
Politics and the Internet: The Candidate’s View

It is generally agreed that the Internet has changed the way presidential campaigns are
run. President Barack Obama was not the first, or only, candidate to use the Internet in
his campaign. A single-day record for raising campaign contributions was set by Ron
Paul (Republican), who collected $6 million in one day in 2007 through Internet
donations. More notable was Howard Dean (Democrat), who used the Internet as a
fundamental tool in his “50-state strategy” primary run in 2004. Although Dean was
ultimately defeated in the election, none could deny his success at raising funds through
his pioneering Internet campaign of a “$100 revolution,” in which 2 million Americans
would give $100 to Dean’s campaign so he could compete with the Republican

433

candidate, George W. Bush. In 2008, Obama, taking a lead from Dean’s emphasis on
small donors and the Internet, raised almost half of his $639 million in campaign funds
from 3 million donors who gave $300 or less. Understanding that a successful campaign
is run on its cash flow, Obama’s staff directed much of its social networking and
Internet time toward raising campaign funds.

In the 2008 campaign, staffers for Obama and the Republican candidate, John
McCain, used the Internet in many similar ways. Both campaigns created an entire
social media platform that pushed information and ideals to the masses, both online and
off. The websites of both candidates became focal points where their supporters
campaigned for them and undecided voters went to get information. Both campaigns
used other Internet tools, such as Facebook, MySpace, Twitter, and YouTube, along
with thousands of personal blogging sites and forums. On sites such as YouTube, more
than 14.5 million hours of election coverage were available that pushed opinions and the
campaign agenda—and those hours were cost-free to the candidates. The Internet allows
candidates to increase their visibility to larger audiences of potential voters at costs
substantially less than those incurred for television campaign commercials that might
reach fewer people. Moreover, the Internet allows candidates to quickly respond to
negative feedback by simply editing text and video, whereas a television spot that is run
cannot be undone.

Even those who argue that television is still “the” influential medium for reaching
potential voters admit the influence of the Internet. An issue might start as a blogging
buzz between hardcore followers. If the blogging buzz becomes loud enough,
mainstream media pick up the issue in their articles and broadcasts. From there, the
issue enters general discussions in day-to-day life.

In 2012, it was generally agreed that Obama won the election through his team’s use
of data mining the Internet. To quote Time, “Data-driven decisionmaking played a
huge role in creating a second term for the 44th president and will be one of the more
closely studied elements in the 2012 cycle.” For the 2012 race, Obama’s campaign
manager, Jim Messina, promised a metric-driven kind of campaign. The campaign’s
analytics department was five times larger than that of the 2008 campaign. For two
years they collected, stored, and analyzed data. This data collection and mining effort
helped Obama raise $1 billion, created detailed models of swing-state voters, and
updated the process of targeting TV ads.3

The campaign of the 2012 Republican candidate, Mitt Romney, had a mobile-
optimized application called ORCA to be used to get out the vote on Election Day.
Volunteers in polling stations would report which voters had turned out. Those who
had not voted could be contacted in a last-minute effort to get them to the polls.
However, the system had major problems on Election Day. The system crashed
periodically and volunteers complained about a lack of prior briefing. One surge of
traffic was misinterpreted as a denial-of-service attack and the system was intentionally
taken down.4

KEY TERMS

434

Cardinality constraint
Cell
Circular reference
Database
Database management system
Electronic commerce
Entity-relationship (ER) modeling
ER diagram
Field (or attribute)
Information system
Key (database)
Query
Range
Record (or object, or entity)
Relational model
Schema
Spreadsheet
Spreadsheet function
Structured Query Language (SQL)
Table
What-if analysis

EXERCISES

For Exercises 1–20, mark the answers true or false as follows:
A. True
B. False

 1. A cell in a spreadsheet can contain only raw data.
 2. The values in a spreadsheet can be formatted in a variety of ways.
 3. A spreadsheet should be set up so that changes to the data are automatically

reflected in any cells affected by that data.
 4. A spreadsheet function is a program that the user writes to compute a value.
 5. A range of cells can be specified that go horizontally or vertically, but not both.
 6. A circular reference in a spreadsheet is a powerful and useful tool.
 7. A spreadsheet is useful for performing what-if analysis.
 8. What-if analysis can affect only one value at a time in a spreadsheet.
 9. A database engine is software that supports access to the database contents.
10. The physical database represents the logical structure of the data in the database.
11. A query is a request to a database for information.
12. The results of a query can be structured in many ways.
13. The hierarchical model is the most popular database management model today.
14. A database table is a collection of records, and a record is a collection of fields.
15. The values in the key fields of a table uniquely identify a record among all other

435

records in the table.
16. A database engine often interacts with a particular language for accessing and

modifying the database.
17. An entity-relationship (ER) diagram represents primary database elements in a

graphical form.
18. The cardinality of a relationship puts restrictions on the number of relationships

that can exist at one time.
19. E-commerce is the process of keeping financial records, such as accounts payable,

online.
20. The dot-com collapse promoted electronic commerce.

For Exercises 21–25, match the solution to the question.
A. dynamic
D. range
B. function
E. schema
C. circular
F. field

21. A spreadsheet is ____ in that it responds to changes in the data by immediately
updating all affected values.

22. A spreadsheet formula may operate on a ____ of cells, such as C4..C18.
23. The database ____ is the specification of the logical structure of the data in the

database.
24. A ____ reference occurs when the result of one formula is ultimately based on

another, and vice versa.
25. A ____ contains a single data value.

Exercises 26–38 are problems or short-answer questions.
Use the following spreadsheet containing student grades for Exercises 26–34.

436

26. Specify the grades for Exam 2.
27. Specify the average for Exam 1.
28. Specify the average for Sarah.
29. Specify the third exam grade for Mari.
30. Specify the exam grades for Suzy.
31. What formula is stored in F15?
32. D16 contains the formula D15/COUNT(D4..D14). What is another formula

that would yield the same value?
33. What formula is stored in E13?
34. Which values would change if Phil’s Exam 2 score was corrected to 87?
35. What is a spreadsheet circular reference? Why is it a problem?
36. Give a specific example of an indirect circular reference similar to the one shown

in Figure 12.5.
37. What is what-if analysis?
38. Name some what-if analysis questions that you might ask if you were using a

spreadsheet to plan and track some stock purchases. Explain how you might set up
a spreadsheet to help answer those questions.

For Exercises 39–65, use the paper spreadsheet form supplied on the textbook’s website
or use an actual spreadsheet application program to design the spreadsheets. Your
instructor may provide more specific instructions regarding these questions.
39. Design a spreadsheet to track the statistics of your favorite major league baseball

team. Include data regarding runs, hits, errors, and runs batted in (RBIs).
Compute appropriate statistics for individual players and the team as a whole.

40. Design a spreadsheet to maintain a grade sheet for a set of students. Include tests
and projects, giving various weights to each in the calculation of the final grade for
each student. Compute the average grade per test and project for the whole class.

437

41. Assume you are going on a business trip. Design a spreadsheet to keep track of
your expenses and create a summary of your totals. Include various aspects of travel
such as car mileage, flight costs, hotel costs, and miscellaneous expenses (such as
taxis and tips).

42. Design a spreadsheet to estimate and then keep track of a particular project’s
activities. List the activities, the estimated and actual dates for those activities, and
schedule slippage or gain. Add other data as appropriate for your project.

43. Compare a database with a database management system.
44. What is a database schema?
45. Describe the general organization of a relational database.
46. What is a field (attribute) in a database?
47. Which other fields (attributes) might we include in the database table of Figure

12.7?
48. Which other fields (attributes) might we include in the database table of Figure

12.8?
49. What is a key in a relational database table?
50. Specify the schema for the database table of Figure 12.8.
51. How are relationships represented in a relational database?
52. Define an SQL query that returns all attributes of all records in the Customer

table.
53. Define an SQL query that returns the

MovieId number and title of all movies that have an R rating.
54. Define an SQL query that returns the address of every customer in the Customer

table who lives on Lois Lane.
55. Define an SQL statement that inserts the movie Armageddon into the Movie table.
56. Define an SQL statement that changes the address of Amy Stevens in the

Customer table.
57. Define an SQL statement that deletes the customer with a CustomerId of 103.
58. What is an ER diagram?
59. How are entities and relationships represented in an ER diagram?
60. How are attributes represented in an ER diagram?
61. What are cardinality constraints, and how are they shown in ER diagrams?
62. What are the three general cardinality constraints?
63. Design a database that stores data about the books in a library, the students who

use them, and the ability to check out books for a period of time. Create an ER
diagram and sample tables.

64. Design a database that stores data about the courses taught at a university, the
professors who teach those courses, and the students who take those courses.
Create an ER diagram and sample tables.

65. What were some of the web-based technologies that allowed e-commerce to
become viable?

THOUGHT QUESTIONS

438

 1. Other than the examples given in this chapter, think of five situations for which
you might set up a spreadsheet.

 2. Other than the examples given in this chapter, think of five situations for which
you might set up a database.

 3. Does the use of computerized databases mean that we can do away with paper
files? What sorts of paper files might still be needed?

 4. One of the reasons that U.S. elections are so costly is that they cover such a large
span of time. The United Kingdom has only about six weeks in which the
candidates campaign. Would shortening the election cycle be a good idea? Does
the use of the Internet to disseminate information affect your answer?

 5. How has the Internet changed the funding of political campaigns?
 6. Is the change in funding a good or a bad thing?
 7. Were you actively involved in the 2012 presidential election? From where did you

get your information—print media, television, friends, or the Internet?
 8. Is the Internet helping or hurting the democratic process?
 9. Where do you get your political news?
10. Do you think that the Internet has supported political extremes?

439

THE APPLICATIONS LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits
5 Computing Components

The Programming Layer
6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages

The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer
15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion
18 Limitations of Computing

440

13 ARTIFICIAL INTELLIGENCE

The subdiscipline of computing called artificial intelligence (AI) is important in many ways.
To many people it represents the future of computing—the evolution of a machine to
make it more like a human. To others it is an avenue for applying new and different
technologies to problem solving.

The term artificial intelligence probably conjures up various images in your mind, such
as a computer playing chess or a robot doing household chores. These are certainly aspects
of AI, but it goes far beyond that. AI techniques affect the way we develop many types of
application programs, from the mundane to the fantastic. The world of artificial
intelligence opens doors that no other aspect of computing does. Its role in the
development of state-of-the-art application programs is crucial.

GOALS
After studying this chapter, you should be able to:

■ distinguish between the types of problems that humans do best and those that computers do best.
■ explain the Turing test.
■ define knowledge representation and demonstrate how knowledge is represented in a semantic network.
■ develop a search tree for simple scenarios.
■ explain the processing of an expert system.
■ explain the processing of biological and artificial neural networks.
■ list the various aspects of natural language processing.
■ explain the types of ambiguities in natural language comprehension.

13.1 Thinking Machines
Computers are amazing devices. They can draw complex three-dimensional images, process
the payroll of an entire corporation, and determine whether the bridge you’re building will
stand up to the pressure of the traffic expected. Yet they have trouble understanding a
simple conversation and might not be able to distinguish between a table and a chair.

Certainly a computer can do some things better than a human can. For example, if you
are given the task of adding 1000 four-digit numbers together using pencil and paper, you
could do it. But the task would take you quite a long time, and you might very likely make
an error while performing the calculations. A computer could perform the same calculation
in a fraction of a second without error.

However, if you are asked to point out the cat in the picture shown in FIGURE 13.1,

441

you could do it without hesitation. A computer, by contrast, would have difficulty making
that identification and might very well get it wrong. Humans bring a great deal of
knowledge and reasoning capability to these types of problems; we are still struggling with
ways to perform human-like reasoning using a computer.

FIGURE 13.1 A computer might have trouble identifying the cat in this picture
Courtesy of Amy Rose

In our modern state of technology, computers are good at computation, but less adept
at things that require intelligence. The field of artificial intelligence (AI) is the study of
computer systems that attempt to model and apply the intelligence of the human mind.

Artificial intelligence (AI) The study of computer systems that model and apply the intelligence of the human
mind

The Turing Test
In 1950, English mathematician Alan Turing wrote a landmark paper that asked the
question: Can machines think? After carefully defining terms such as intelligence and
thinking, he ultimately concluded that we would eventually be able to create a computer
that thinks. But then he asked another question: How will we know when we’ve succeeded?

442

His answer to that question came to be called the Turing test, which is used to
empirically determine whether a computer has achieved intelligence. The test is based on
whether a computer could fool a human into believing that the computer is another
human.

Turing test A behavioral approach to determining whether a computer system is intelligent

Variations on Turing tests have been defined over the years, but we focus on the basic
concept here. The test is set up as follows: A human interrogator sits in a room and uses a
computer terminal to communicate with two respondents, A and B. The interrogator
knows that one respondent is human and the other is a computer, but doesn’t know which
is which. (See FIGURE 13.2.) After holding conversations with both A and B, the
interrogator must decide which respondent is the computer. This procedure is repeated
with numerous human subjects. The premise is that if the computer could fool enough
interrogators, then it could be considered intelligent.

Some people argue that the Turing test is a good test for intelligence because it requires
that a computer possess a wide range of knowledge and have the flexibility necessary to deal
with changes in conversation. To fool a human interrogator, the knowledge required by the
computer goes beyond facts; it includes an awareness of human behavior and emotions.

Others argue that the Turing test doesn’t really demonstrate that a computer
understands language discourse, which is necessary for true intelligence. They suggest that a
program could simulate language comprehension, perhaps enough to pass the Turing test,
but that alone does not make the computer intelligent.

A computer that passes the Turing test would demonstrate weak equivalence, meaning
that the two systems (human and computer) are equivalent in results (output) but do not
arrive at those results in the same way. Strong equivalence indicates that two systems use
the same internal processes to produce results. Some AI researchers assert that true artificial
intelligence will not exist until we have achieved strong equivalence—that is, until we create
a machine that processes information as the human mind does.

Weak equivalence The equality of two systems based on their results

Strong equivalence The equality of two systems based on their results and the process by which they arrive at those
results

443

FIGURE 13.2 In a Turing test, the interrogator must determine which respondent is the
computer and which is the human

New York philanthropist Hugh Loebner organized the first formal instantiation of the
Turing test. This competition has been run annually since 1991. A grand prize of $100,000
and a solid gold medal will be awarded for the first computer whose responses are
indistinguishable from a human’s. So far the grand prize remains up for grabs. A prize of
$2000 and a bronze medal is awarded each year for the computer that is determined to be
the most human-like, relative to the rest of the competition that year. The Loebner prize
contest has become an important annual event for computing enthusiasts interested in
artificial intelligence.

Loebner prize The first formal instantiation of the Turing test, held annually

Various programs, often referred to as chatbots, have been developed to perform this
kind of conversational interaction between a computer and a person. Many are available
through the World Wide Web and focus on a particular topic. Depending on how well
they are designed, these programs can carry on a reasonable conversation. In most cases,

444

though, it doesn’t take long for the user to discover awkward moments in the conversation
that betray the fact that a human mind is not determining the responses.

Chatbot A program designed to carry on a conversation with a human user

Aspects of AI
The field of artificial intelligence has many branches. Our overall goal in this chapter is to
give you some insight into the primary issues involved and the challenges yet to be
overcome. In the remaining sections of this chapter, we explore the following issues in the
world of AI:

■ Knowledge representation—the techniques used to represent knowledge so that a
computer system can apply it to intelligent problem solving

■ Expert systems—computer systems that embody the knowledge of human experts
■ Neural networks—computer systems that mimic the processing of the human brain
■ Natural language processing—the challenge of processing languages that humans

use to communicate
■ Robotics—the study of robots

13.2 Knowledge Representation
The knowledge we need to represent an object or event varies based on the situation.
Depending on the problem we are trying to solve, we need specific information. For
example, if we are trying to analyze family relationships, it’s important to know that Fred is
Cathy’s father, but not that Fred is a plumber or that Cathy owns a pickup truck.
Furthermore, not only do we need particular information, but we also need it in a form
that allows us to search and process that information efficiently.

There are many ways to represent knowledge. For example, we could describe it in
natural language. That is, we could write an English paragraph describing, for instance, a
student and the ways in which the student relates to the world. However, although natural
language is very descriptive, it doesn’t lend itself to efficient processing. Alternatively, we
could formalize the language, by describing a student using an almost mathematical
notation. This formalization lends itself to more rigorous computer processing, but it is
difficult to learn and use correctly.

Herbert A. Simon

445

Courtesy of Carnegie Mellon University

Herbert A. Simon was a Renaissance man of modern times. His website included
sections on Computer Science, Psychology, and Philosophy, yet his PhD was in Political
Science and his Nobel Prize was in Economics.

Simon was born in Milwaukee in 1916. His father was an engineer who became a
patent attorney, and his mother was an accomplished pianist. Simon received his
undergraduate degree in 1936 from the University of Chicago and worked for several
years as an editor and administrator. He completed his PhD in political science at the
University of Chicago in 1943 and then began a 58-year academic career, the last 52
years of which were at Carnegie Mellon.

In 1955, Simon, Allen Newell, and J. C. Shaw (a programmer) created Logic
Theorist, a program that could discover geometric theorem proofs. At about the same
time, Simon was working with E. A. Feigenbaum on EPAM, a program that modeled
their theory of human perception and memory. These programs and the subsequent
series of papers on the simulation of human thinking, problem solving, and verbal
learning marked the beginning of the field of artificial intelligence. In 1988, Simon and
Newell received the Turing Award of the Association for Computing Machinery for
their work in human problem solving. In 1995, Simon received the Research Excellence
Award of the International Joint Conference on Artificial Intelligence.

Simon’s interest in information processing and decision making led him to develop
his economic theory of “bounded rationality,” for which he received the 1978 Nobel
Prize in economics. Classical economics had argued that people make rational choices so
as to get the best item at the best price. Simon reasoned that determining the “best”
choice was impossible because there are too many choices and too little time to analyze
them. Instead, he argued, people choose the first option that is good enough to meet
their needs. His Nobel Prize citation read “for his pioneering research into the decision-
making process within economic organizations.”

Simon remained extraordinarily productive throughout his long career. His
bibliography contains 173 entries before 1960, 168 in the 1960s, 154 in the 1970s, 207
in the 1980s, and 236 in the 1990s. Outside of his professional life, Simon enjoyed
playing the piano, especially with friends who played violin, viola, and other
instruments. He died in February 2001, having continued his research and interactions
with students until just a few weeks before his death.

In general, we want to create a logical view of the data, independent of its actual

446

underlying implementation, so that it can be processed in specific ways. In the world of
artificial intelligence, the information we want to capture often leads to new and interesting
data representations. We want to capture not only facts, but also relationships. The kind of
problem we are trying to solve may dictate the structure we impose on the data.

As specific problem areas have been investigated, new techniques for representing
knowledge have been developed. We examine two in this section: semantic networks and
search trees.

Semantic Networks
A semantic network is a knowledge representation technique that focuses on the
relationships between objects. A directed graph is used to represent a semantic network or
net. The nodes of the graph represent objects, and the arrows between nodes represent
relationships. The arrows are labeled to indicate the types of relationships that exist.

Semantic network A knowledge representation technique that represents the relationships among objects

Semantic nets borrow many object-oriented concepts, which were discussed in Chapter
9, including inheritance and instantiation. An inheritance relationship indicates that one
object is-a more specific version of another object. Instantiation is the relationship between
an actual object and something that describes it (like a class).

Examine the semantic network shown in FIGURE 13.3. It has several is-a relationships
and several instance-of relationships. But it also has several other types of relationships, such
as lives-in (John lives in Heritage Acres). There are essentially no restrictions on the types of
relationships that can be modeled in a semantic network.

Many more relationships could be represented in this semantic net. For instance, we
could have indicated that any person is either left- or right-handed, that John owns a car
that is a Honda, or that every student has a grade point average. The relationships that we
represent are completely our choice, based on the information we need to answer the kinds
of questions that we will face.

The way in which we establish the relationships can vary as well. For example, instead
of showing that individual students live in particular dwellings, we could show that
dwellings house certain people. In other words, we could turn those arrows around,
changing the lives-in relationship to a houses relationship. Again, the choice is ours as we
design the network. Which approach best describes the kind of issues we address? In some
situations we may choose to represent both relationships.

The types of relationships represented determine which questions are easily answered,
which are more difficult to answer, and which cannot be answered. For example, the
semantic net in Figure 13.3 makes it fairly simple to answer the following questions:

447

FIGURE 13.3 A semantic network

■ Is Mary a student?
■ What is the gender of John?
■ Does Mary live in a dorm or an apartment?
■ What is Mary’s student ID number?

However, the following questions are more difficult to answer with this network:

■ How many students are female and how many are male?
■ Who lives in Dougherty Hall?

Note that the information to answer these questions is present in the network; it’s just
not as easy to process. These last questions require the ability to easily find all students, and
there are no relationships that make this information easy to obtain. This network is
designed more for representing the relationships that individual students have to the world
at large.

This network cannot be used to answer the following questions, because the knowledge
required is simply not represented:

■ What kind of car does John drive?

448

■ What color are Mary’s eyes?

We know that Mary has an eye color, because she is a student, all students are people,
and all people have a particular eye color. We just don’t know what Mary’s particular eye
color is, given the information stored in this network.

A semantic network is a powerful, versatile way to represent a lot of information. The
challenge is to model the right relationships and to populate (fill in) the network with
accurate and complete data.

?
The power of television

It has been observed that the then-relatively recent invention of television was responsible for getting John F.
Kennedy elected in 1960. In a presidential debate with the Republican candidate, Richard Nixon, Kennedy was
seen by television audiences as handsome, erudite, and relaxed, whereas Nixon was seen as ill at ease and sporting a
five o’clock shadow. The debate, it is said, swayed just enough voters to give Kennedy the election. Some
disgruntled analysts suggested that had television existed in 1860, the great but physically unattractive Abraham
Lincoln would not have been elected. Television, it is argued, robbed something from the democratic process. The
Internet, we might now argue, has given some of it back.

Search Trees
In Chapter 8, we mentioned the use of tree structures to organize data. Such structures play
an important role in artificial intelligence. For example, we can use a tree to represent
possible alternatives in adversarial situations, such as game playing.

A search tree is a structure that represents all possible moves in a game, for both you
and your opponent. You can create a game program that maximizes its chances to win. In
some cases it may even be able to guarantee a win.

Search tree A structure that represents alternatives in adversarial situations, such as game playing

In search trees, the paths down a tree represent the series of decisions made by the
players. A decision made at one level dictates the options left to the next player. Each node
of the tree represents a move based on all other moves that have occurred thus far in the
game.

Let’s define a simplified variation of a game called Nim to use as an example. In our
version, there are a certain number of spaces in a row. The first player may place one, two,
or three Xs in the leftmost spaces. The second player may then place one, two, or three Os
immediately adjacent to the Xs. Play continues back and forth. The goal is to place your
mark in the last (rightmost) space.

Here is an example of a play of our version of Nim using nine spaces:

Initial: _ _ _ _ _ _ _ _ _

Player 1: X X X _ _ _ _ _ _

Player 2: X X X O _ _ _ _ _

449

Player 1: X X X O X _ _ _ _

Player 2: X X X O X O O _ _

Player 1: X X X O X O O X X Player 1 wins.

The search tree in FIGURE 13.4 shows all possible moves in our version of the game
using only five spaces (rather than the nine spaces used in the preceding example). At the
root of the tree, all spaces are initially empty. The next level shows the three options the
first player has (to place one, two, or three Xs). At the third level, the tree shows all options
that Player 2 has, given the move that Player 1 already made.

Note that when a large number of marks are made in one turn, fewer options may be
available to the next player, and the paths down the tree tend to be shorter. Follow the
various paths down from the root, noting the different options taken by each player. Every
single option in our simplified game is represented in this tree.

We’ve deliberately simplified the game of Nim so that we can show a simple search
tree. The real game of Nim has some important differences—for example, there are
multiple rows, and items are removed instead of added. However, even our simplified
version demonstrates several interesting mathematical ideas.

The concepts of search tree analysis can be applied nicely to other, more complicated
games such as chess. In such complex games the search trees are far more complicated,
having many more nodes and paths. Think about all the possible moves you might initially
make in a chess game. Then consider all the possible moves your opponent might make in
response. A full chess search tree contains all possible moves at each level, given the current
status of the board. Because these trees are so large, only a fraction of the tree can be
analyzed in a reasonable time limit, even with modern computing power.

FIGURE 13.4 A search tree for a simplified version of Nim

As machines have become faster, more of the search tree can be analyzed, but still not
all of the branches. Programmers have come up with ways to “prune” the search trees,
eliminating paths that no human player would consider reasonable. Even so, the trees are
too large to completely analyze for each move.

This leaves us with a question: Do we choose a depth-first approach, analyzing
selective paths all the way down the tree that we hope will result in successful moves? Or do

450

we choose a breadth-first approach, analyzing all possible paths but only for a short
distance down the tree? Both approaches, shown in FIGURE 13.5, may miss key
possibilities. While this issue has been debated among AI programmers for many years, a
breadth-first approach tends to yield the best results. It seems that it’s better to make
consistently error-free conservative moves than to occasionally make spectacular moves.

Depth-first approach Searching down the paths of a tree prior to searching across levels

Breadth-first approach Searching across levels of a tree prior to searching down specific paths

Programs that play chess at the master level have become commonplace. In 1997, the
computer chess program Deep Blue, developed by IBM using an expert system, defeated
world champion Garry Kasparov in a six-game match. This event marked the first time a
computer had defeated a human champion at master-level play.

FIGURE 13.5 Depth-first and breadth-first searches

13.3 Expert Systems
We often rely on experts for their unique knowledge and understanding of a particular
field. We go to a doctor when we have a health problem, an auto mechanic when our car
won’t start, and an engineer when we need to build something.

A knowledge-based system is a software system that embodies and uses a specific set of
information (organized data) from which it extracts and processes particular pieces. The
terms expert system and knowledge-based system are often used interchangeably, although
expert systems usually embody the knowledge of a specialized field, modeling the expertise
of a professional in that field. A user consults an expert system when confronted with a
particular problem, and the system uses its expertise to advise the user how to proceed.

451

Knowledge-based system Software that uses a specific set of information

Expert system A software system based on the knowledge of human experts

An expert system uses a set of rules to guide its processing, so it is called a rule-based
system. The set of rules in an expert system is referred to as its knowledge base. The
inference engine is the part of the software that determines how the rules are followed and,
therefore, which conclusions can be drawn.

Rule-based system A software system based on a set of if-then rules

Inference engine The software that processes rules to draw conclusions

A doctor is the living equivalent of an expert system. He or she gathers data by asking
you questions and running tests. Your initial answers and the test results may lead to more
questions and more tests. The rules embodied by the doctor’s knowledge allow him or her
to know which questions to ask next. The doctor then uses the information to rule out
various possibilities and eventually narrows the alternatives to a specific diagnosis. Once the
problem is identified, that specific knowledge allows the doctor to suggest the appropriate
treatment.

Let’s walk through an example of expert-system processing. Suppose you wanted to
answer this question: What type of treatment should I put on my lawn?

An expert system that embodies the knowledge of a gardener would be able to guide
you in this decision. Let’s define a few variables so that we can abbreviate the rules in our
gardening system:

?
LISP is the language for AI

LISP (LISt Processor) is one of the most popular programming languages for AI. LISP’s essential data structure is
an ordered sequence of elements called a list. The elements in this list may be indivisible entities or they may be
other lists. A list can be used to represent an almost limitless number of things, from expert rules to computer
programs to thought processes to system components. To make decisions, LISP programs rely on recursion rather
than looping. LISP and its dialects belong to the functional paradigm of languages.1 LISP even has its own wiki;
Cliki is a wiki that provides common LISP information.

These values represent various conclusions that the expert system might draw after
analyzing the situation. The following Boolean variables represent the current state of the
lawn:

452

We assume that initially the system has no direct data regarding the status of the lawn.
The user would have to be questioned to determine, for instance, if the lawn has large, bare
areas. Other data may be available directly to the system through some calculation or in
some type of database:

Now we can formulate some rules that our system can use to draw a conclusion. Rules
take the form of if-then statements.

Note that this is only a sample of the types of rules that may exist in such a system. Real
expert systems may incorporate thousands of rules to help analyze a situation. The rules
presented here do not cover all situations, even in our small example.

When executed, the inference engine selects a rule to determine whether it is applicable.
That determination may be made only by questioning the user. If it is applicable, that rule
may affect the applicability of other rules. The inference engine continues to apply rules
until no applicable rules remain. Don’t think of the rules as being a linear path (followed in
sequence); instead, the inference engine applies whichever rules it can and continually loops
until it reaches a conclusion.

An execution of our inference engine may result in the following interaction:

Note that the system doesn’t ask about things it can look up, such as the date of the last
treatment. And apparently our scenario didn’t take place in winter, because the system
asked about a potential bug problem. If it had been winter, the bug issue would have

453

already been eliminated.
An expert system has many advantages over other advising techniques. First, it is goal

oriented: It doesn’t focus on abstract or theoretical information, but rather focuses on
solving a specific problem. Second, it is efficient: It records previous responses and doesn’t
ask irrelevant questions. Third, a real expert system, through a carefully constructed set of
rules, can usually provide useful guidance even if you don’t know the answers to some
questions.

13.4 Neural Networks
As mentioned earlier, some artificial intelligence researchers focus on how the human brain
actually works and try to construct computing devices that work in similar ways. An
artificial neural network in a computer attempts to mimic the actions of the neural
networks of the human body. Let’s first look at how a biological neural network works.

Artificial neural network A computer representation of knowledge that attempts to mimic the neural networks of
the human body

Biological Neural Networks
A neuron is a single cell that conducts a chemically based electronic signal. The human
brain contains billions of neurons connected into a network. At any point in time a neuron
is in either an excited state or an inhibited state. An excited neuron conducts a strong signal;
an inhibited neuron conducts a weak signal. A series of connected neurons forms a
pathway. The signal along a particular pathway is strengthened or weakened according to
the state of the neurons it passes through. A series of excited neurons creates a strong
pathway.

A biological neuron has multiple input tentacles called dendrites and one primary
output tentacle called an axon. The dendrites of one neuron pick up the signals from the
axons of other neurons to form the neural network. The gap between an axon and a
dendrite is called a synapse. (See FIGURE 13.6.) The chemical composition of a synapse
tempers the strength of its input signal. The output of a neuron on its axon is a function of
all of its input signals.

454

FIGURE 13.6 A biological neuron

A neuron accepts multiple input signals and then controls the contribution of each
signal based on the “importance” the corresponding synapse assigns to it. If enough of these
weighted input signals are strong, the neuron enters an excited state and produces a strong
output signal. If enough of the input signals are weak or are weakened by the weighting
factor of that signal’s synapse, the neuron enters an inhibited state and produces a weak
output signal.

Neurons fire, or pulsate, up to 1000 times per second, so the pathways along the neural
nets are in a constant state of flux. The activity of our brain causes some pathways to
strengthen and others to weaken. As we learn new things, new strong neural pathways form
in our brain.

Artificial Neural Networks
Each processing element in an artificial neural network is analogous to a biological neuron.
An element accepts a certain number of input values and produces a single output value of
either 0 or 1. These input values come from the output of other elements in the network,
so each input value is either 0 or 1. Associated with each input value is a numeric weight.
The effective weight of the element is defined as the sum of the weights multiplied by their
respective input values.

Effective weight In an artificial neuron, the sum of the weights multiplied by the corresponding input values

Suppose an artificial neuron accepts three input values: v1, v2, and v3. Associated with
each input value is a weight: w1, w2, and w3. The effective weight is therefore

v1 * w1 + v2 * w2 + v3 * w3

Each element has a numeric threshold value. The element compares the effective weight
to this threshold value. If the effective weight exceeds the threshold, the unit produces an
output value of 1. If it does not exceed the threshold, it produces an output value of 0.

This processing closely mirrors the activity of a biological neuron. The input values
correspond to the signals passed in by the dendrites. The weight values correspond to the
controlling effect of the synapse for each input signal. The computation and use of the
threshold value correspond to the neuron producing a strong signal if “enough” of the
weighted input signals are strong.

Let’s look at an actual example. In this case, we assume there are four inputs to the
processing element. There are, therefore, four corresponding weight factors. Suppose the
input values are 1, 1, 0, and 0; the corresponding weights are 4, −2, −5, and −2; and the
threshold value for the element is 4. The effective weight is

1(4) + 1(−2) + 0(−5) + 0(−2)

or 2. Because the effective weight does not exceed the threshold value, the output of this
element is 0.

Although the input values are either 0 or 1, the weights can be any value at all. They

455

can even be negative. We’ve used integers for the weights and threshold values in our
example, but they can be real numbers as well.

The output of each element is truly a function of all pieces of the puzzle. If the input
signal is 0, its weight is irrelevant. If the input signal is 1, the magnitude of the weight, and
whether it is positive or negative, greatly affects the effective weight. And no matter what
effective weight is computed, it’s viewed relative to the threshold value of that element.
That is, an effective weight of 15 may be enough for one element to produce an output of
1, but for another element it results in an output of 0.

The pathways established in an artificial neural net are a function of its individual
processing elements. And the output of each processing element changes on the basis of the
input signals, the weights, and/or the threshold values. But the input signals are really just
output signals from other elements. Therefore, we affect the processing of a neural net by
changing the weights and threshold value in individual processing elements.

The process of adjusting the weights and threshold values in a neural net is called
training. A neural net can be trained to produce whatever results are required. Initially, a
neural net may be set up with random weights, threshold values, and initial inputs. The
results are compared to the desired results and changes are made. This process continues
until the desired results are achieved.

Training The process of adjusting the weights and threshold values in a neural net to get a desired outcome

Consider the problem we posed at the beginning of this chapter: Find a cat in a
photograph. Suppose a neural net is used to address this problem, using one output value
per pixel. Our goal is to produce an output value of 1 for every pixel that contributes to the
image of the cat, and to produce a 0 if it does not. The input values for the network could
come from some representation of the color of the pixels. We then train the network using
multiple pictures containing cats, reinforcing weights and thresholds that lead to the
desired (correct) output.

Think about how complicated this problem is! Cats come in all shapes, sizes, and
colors. They can be oriented in a picture in thousands of ways. They might blend into their
background (in the picture) or they might not. A neural net for this problem would be
incredibly large, taking all kinds of situations into account. The more training we give the
network, however, the more likely it will produce accurate results in the future.

What else are neural nets good for? They have been used successfully in thousands of
application areas, in both business and scientific endeavors. They can be used to determine
whether an applicant should be given a mortgage. They can be used in optical character
recognition, allowing a computer to “read” a printed document. They can even be used to
detect plastic explosives in luggage at airports.

The versatility of neural nets lies in the fact that there is no inherent meaning in the
weights and threshold values of the network. Their meaning comes from the interpretation
we apply to them.

13.5 Natural Language Processing

456

In a science fiction movie, it’s not uncommon to have a human interact with a computer
by simply talking to it. The captain of a spaceship might say, “Computer, what is the
nearest starbase with medical facilities sufficient to handle Laharman’s syndrome?” The
computer might then respond, “Starbase 42 is 14.7 light-years away and has the necessary
facilities.”

How far is this science fiction from science fact? Ignoring space travel and advanced
medicine for now, why don’t we interact with computers just by talking to them? To a
limited extent, we can. We don’t tend to have free-flowing verbal conversations yet, but
we’ve certainly made headway. Some computers can be set up to respond to specific verbal
commands.

To probe this issue further, we must first realize that three basic types of processing
occur during human/computer voice interaction:

■ Voice recognition—recognizing human words
■ Natural language comprehension—interpreting human communication
■ Voice synthesis—recreating human speech

Voice recognition Using a computer to recognize the words spoken by a human

Natural language comprehension Using a computer to apply a meaningful interpretation to human
communication

Voice synthesis Using a computer to create the sound of human speech

The computer must first recognize the distinct words that are being spoken to it, then
understand the meaning of those words, and finally (after determining the answer) produce
the words that make up the response.

Common to all of these problems is the fact that we are using a natural language,
which can be any language that humans use to communicate, such as English, Farsi, or
Russian. Natural languages have inherent grammatical irregularities and ambiguities that
make some of this processing quite challenging.

Natural language Languages that humans use to communicate, such as English

Computing technology has made great strides in all of these areas, albeit in some areas
more than others. Let’s explore each one in more detail.

Voice Synthesis
Voice synthesis is generally a well-understood problem. There are two basic approaches to
the solution: dynamic voice generation and recorded speech.

To generate voice output using dynamic voice generation, a computer examines the
letters that make up a word and produces the sequence of sounds that correspond to those
letters in an attempt to vocalize the word. Human speech has been categorized into specific
sound units called phonemes. The phonemes for American English are shown in FIGURE

457

13.7.

Phonemes The set of fundamental sounds made in any given natural language

FIGURE 13.7 Phonemes for American English

After selecting the appropriate phonemes, the computer may modify the pitch of the
phoneme based on the context in which it is used. The duration of each phoneme must
also be determined. Finally, the phonemes are combined to form individual words. The
sounds themselves are produced electronically, designed to mimic the way a human vocal
track produces the sounds.

The challenges to this approach include the fact that the way we pronounce words
varies greatly among humans, and the rules governing how letters contribute to the sound
of a word are not consistent. Dynamic voice-generation systems often sound mechanical
and stilted, though the words are usually recognizable.

The other approach to voice synthesis is to play digital recordings of a human voice
saying specific words. Sentences are constructed by playing the appropriate words in the
appropriate order. Sometimes common phrases or groups of words that are always used
together are recorded as one entity. Telephone voice mail systems often use this approach:
“Press 1 to leave a message for Alex Wakefield.”

Note that each word or phrase needed must be recorded separately. Furthermore,
because words are pronounced differently in different contexts, some words may have to be
recorded multiple times. For example, a word at the end of a question rises in pitch
compared to its use in the middle of a sentence. As the need for flexibility increases,
recorded solutions become problematic.

The dynamic voice-generation technique does not generally produce realistic human

458

speech, but rather attempts to vocalize any words presented to it. Recorded playback is
more realistic; it uses a real human voice but is limited in its vocabulary to the words that
have been prerecorded, and it must have the memory capacity to store all the needed words.
Generally, recorded playback is used when the number of words used is small.

Voice Recognition
When having a conversation, you might need to have something repeated because you
didn’t understand what the person said. It’s not that you didn’t understand the meaning of
the words (you hadn’t gotten that far); you simply didn’t understand which words were
being spoken. This might happen for several reasons.

First, the sounds that each person makes when speaking are unique. Every person has a
unique shape to his or her mouth, tongue, throat, and nasal cavities that affect the pitch
and resonance of the spoken voice. Thus we can say we “recognize” someone’s voice,
identifying him or her from the way the words sound when spoken by that person. But that
also means that each person says any given word somewhat differently, complicating the
task of recognizing the word in the first place. Speech impediments, mumbling, volume,
regional accents, and the health of the speaker further complicate this problem.

Furthermore, humans speak in a continuous, flowing manner. Words are strung
together into sentences. Sometimes we speak so quickly that two words may sound like
one. Humans have great abilities to divide the series of sounds into words, but even we can
become confused if a person speaks too rapidly.

Related to this issue are the sounds of words themselves. Sometimes it’s difficult to
distinguish between phrases like “ice cream” and “I scream.” And homonyms such as “I”
and “eye” or “see” and “sea” sound exactly the same but are unique words. Humans can
often clarify these situations by considering the context of the sentence, but that processing
requires another level of comprehension.

So, if we humans occasionally have trouble understanding the words we say to each
other, imagine how difficult this problem is for a computer. Modern voice-recognition
systems still do not do well with continuous, conversational speech. The best success has
been with systems that assume disjointed speech, in which words are clearly separated.

Further success is obtained when voice-recognition systems are “trained” to recognize a
particular human’s voice and a set of vocabulary words. A spoken voice can be recorded as a
voiceprint, which plots the frequency changes of the sound produced by the voice when
speaking a specific word. A human trains a voice-recognition system by speaking a word
several times so that the computer can record an average voiceprint for that word by that
person. Later, when a word is spoken, the recorded voiceprints can be compared to
determine which word was spoken.

Voiceprint The plot of frequency changes over time representing the sound of human speech

Voice-recognition systems that are not trained for specific voices and words do their
best to recognize words by comparing generic voiceprints. While less accurate, using generic
voiceprints avoids the time-consuming training process and allows anyone to use the
system.

459

Natural Language Comprehension
Even if a computer recognizes the words that are spoken, it is another task entirely to
understand the meaning of those words. This is the most challenging aspect of natural
language processing. Natural language is inherently ambiguous, meaning that the same
syntactic structure could have multiple valid interpretations. These ambiguities can arise for
several reasons.

One problem is that a single word can have multiple definitions and can even represent
multiple parts of speech. The word light, for instance, is both a noun and a verb. This is
referred to as a lexical ambiguity. A computer attempting to apply meaning to a sentence
would have to determine how the word was being used. Consider the following sentence:

Lexical ambiguity The ambiguity created when words have multiple meanings

Time flies like an arrow.

This sentence might mean that time seems to move quickly, just like an arrow moves
quickly. That’s probably how you interpreted it when you read it. But note that the word
time can also be a verb, such as when you time the runner of a race. The word flies can also
be a noun. Therefore, you could interpret this sentence as a directive to time flies in the
same manner in which an arrow times flies. Because an arrow doesn’t time things, you
probably wouldn’t apply that interpretation. But it is no less valid than the other one!
Given the definition of the words, a computer would not know which interpretation was
appropriate. We could even interpret this sentence a third way, indicating the preferences
of that rare species we’ll call a “time fly.” After all, fruit flies like a banana. That
interpretation probably sounds ridiculous to you, but such ambiguities cause huge
problems when it comes to a computer understanding natural language.

A natural language sentence can also have a syntactic ambiguity because phrases can be
put together in various ways. For example:

Syntactic ambiguity The ambiguity created when sentences can be constructed in various ways

I saw the Grand Canyon flying to New York.

Because canyons don’t fly, there is one logical interpretation. But because the sentence can
be constructed that way, there are two valid interpretations. To reach the desired
conclusion, a computer would have to “know” that canyons don’t fly and take that fact into
account.

Referential ambiguity can occur with the use of pronouns. Consider the following:

Referential ambiguity The ambiguity created when pronouns could be applied to multiple objects

The brick fell on the computer but it is not broken.

What is not broken, the brick or the computer? We might assume the pronoun “it” refers

460

to the computer in this case, but that is not necessarily the correct interpretation. In fact, if
a vase had fallen on the computer, even we humans wouldn’t know what “it” referred to
without more information.

Natural language comprehension is a huge area of study and goes well beyond the scope
of this book, but it’s important to understand the reasons why this issue is so challenging.

13.6 Robotics
Robots are familiar to all of us. From television commercials about robotic dogs to the
nightly news about space exploration to assembly lines producing beer, cars, or widgets,
robots are a part of modern society. Robotics—the study of robots—breaks down into two
main categories: fixed robots and mobile robots. Fixed robots are what you see on assembly
lines. The machines stay put and the products move. Because the world of a fixed robot is
circumscribed, its tasks can be built into the hardware. Thus fixed robots belong mostly in
the area of industrial engineering. Mobile robots, by contrast, move about and must
interact with their environment. Modeling the world of the mobile robot requires the
techniques of artificial intelligence.

The Sense–Plan–Act Paradigm
Mobile robotics is the study of robots that move relative to their environment, while
exhibiting a degree of autonomy. The original approach to modeling the world
surrounding a mobile robot made use of plans. Planning systems are large software systems
that, given a goal, a starting position, and an ending situation, can generate a finite set of
actions (a plan) that, if followed (usually by a human), brings about the desired ending
situation. These planning systems solve general problems by incorporating large amounts of
domain knowledge. In the case of a mobile robot, the domain knowledge is the input from
the robot’s sensors. In this approach, the world of the robot is represented in a complex
semantic net in which the sensors on the robot capture the data used to build up the net.
Populating the net is time consuming even for simple sensors; if the sensor is a camera, the
process is very time consuming. This approach is called the sense–plan–act (SPA) paradigm2

and is shown in FIGURE 13.8.

FIGURE 13.8 The sense–plan–act (SPA) paradigm

Early Promise of Machine Translation Not Realized
Both the National Science Foundation and the U.S. military funded large machine-
translation projects in the late 1950s and early 1960s. The vision of using a computer to
translate from one natural language to another seemed immediately realizable. But the
approach of using large bilingual dictionaries and word-by-word translation soon proved

461

inadequate. This inadequacy is demonstrated in the classic story of the translation of the
English expression “The spirit is willing, but the flesh is weak” into Russian. The result
was “The vodka is acceptable, but the meat has spoiled.”

Researchers realized that they needed to do more fundamental research into
language understanding before tackling automatic language translation.

ELIZA
ELIZA was an early natural-language program. In the following script, the program
plays the role of a neutral psychotherapist. The computer’s responses are in all
uppercase.

Men are all alike.

IN WHAT WAY?

They’re always bugging us about something or another.

CAN YOU THINK OF A SPECIFIC EXAMPLE?

Well, my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE?

He says I’m depressed much of the time.

I AM SORRY TO HEAR YOU ARE DEPRESSED.

It’s true. I am unhappy.

DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE
UNHAPPY?

I need some help, that much seems certain.

…

WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR
FATHER?

Bullies.

DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT
YOUR BOYFRIEND MADE YOU COME HERE?3

The sensor data are interpreted by the world model, which in turn generates a plan of

462

action. The robot’s control system (the hardware) executes the steps in the plan. Once the
robot moves, its sensors get new data, and the cycle repeats with the new data being
incorporated into the semantic net. Problems occur when the new sensory data cannot be
processed fast enough to be used. (Perhaps the robot falls into a hole before the world
model recognizes that the change in light is a hole rather than a shadow.) The flaw in this
approach is that the representation of the robot’s world as domain knowledge in a general
system is too general, too broad, and not tailored to the robot’s task.

?
Robotic whiskers

Researchers have developed robots that can sense the environment in 3D by studying whiskers in nature, especially
the whiskers of the rat. Using their whiskers, rats are able to gather three coordinates—similar to latitude,
longitude, and elevation—to discern the 3D contours of an object. Researchers have built robots that successfully
produce 3D images of a human face using data acquired from steel-wire whiskers tied to strain gauges.

Subsumption Architecture
In 1986, a paradigm shift occurred within the robotics community with Brooks’s
introduction of subsumption architecture.3 Rather than trying to model the entire world all
the time, the robot is given a simple set of behaviors, each of which is associated with the
part of the world necessary for that behavior. The behaviors run in parallel unless they
come in conflict, in which case an ordering of the goals of the behaviors determines which
behavior should be executed next. The idea that the goals of behaviors can be ordered, or
that the goal of one behavior can be subsumed by another, led to the name of the
architecture.

In the model shown in FIGURE 13.9, Keep going to the left takes precedence over
Avoid obstacles unless an object gets too close, in which case the Avoid obstacles behavior
takes precedence. As a result of this approach, robots were built that could wander around a
room for hours without running into objects or into moving people.

FIGURE 13.9 The new control paradigm

463

Courtesy of NASA/JPL-Caltech

?
What is the Sojourner rover?

The Sojourner was humanity’s first attempt to operate a remote-control vehicle on another planet. After landing,
Sojourner drove down one of the two ramps mounted to the lander petal. This exit and the subsequent exploration
were watched by hundreds of millions of fascinated earth-bound viewers. The mission was conducted under the
constraint of a once-per-sol (Martian day) opportunity for transmissions between the lander and earth operators.
Sojourner was able to carry out her mission with a form of supervised autonomous control in which goal locations
(called waypoints) or move commands were sent to the rover ahead of time, and Sojourner then navigated and safely
traversed to these locations on her own.4

© Chris Willson/Alamy

?
Fans mourn the passing of AIBO

Sadly, Sony Corporation announced the demise of AIBO, the robot dog that could learn its owner’s name, show
anger (eyes became red), and express happiness (eyes became green). More than 150,000 of these machines, which
were the size of a toy poodle, were sold.

464

Courtesy of NASA/JPL-Caltech

?
NASA launches twin robots

In July 2003, NASA launched twin robots toward Mars. Since their safe arrival, Spirit and Opportunity have worked
overtime to help scientists better understand the red planet’s environment. The robots completed their original
missions on Mars in April 2004 and continued to explore opposite sides of the planet through numerous mission
extensions. Spirit stopped communicating with NASA in March of 2010, but as of September 2014, Opportunity
was still sending data back to scientists on Earth.

FIGURE 13.10 Asimov’s laws of robotics are ordered

The three laws of robotics defined by Isaac Asimov fit neatly into this subsumption
architecture.5 See FIGURE 13.10.

Another shift in robotics moved away from viewing the world as a uniform grid with
each cell representing the same amount of real space and toward viewing the world as a
topological map. Topological maps view space as a graph of places connected by arcs,
giving the notion of proximity and order but not of distance. The robot navigates from
place to place locally, which minimizes errors. Also, topological maps can be represented in

465

memory much more efficiently than can uniform grids.
In the 1990s, a modified approach called hybrid deliberate/reactive, in which plans were

used in conjunction with a set of behaviors with distributed worldviews, became popular.

?
Into the wild red yonder

Think it’s hard to hit a bull’s eye with a dart or an arrow? Try sending a two-ton spacecraft 310 million miles to
orbit around Mars. In March 2006, NASA’s Mars Reconnaissance Orbiter began its orbit around Mars in what was
hailed as a “picture-perfect” arrival just above the Martian atmosphere. The spacecraft sends data back to NASA
from approximately 200 miles above the planet’s surface. Its task is to find new landing sites for future missions.

Physical Components
We have been discussing the various approaches to try to get a robot to exhibit humanlike
behavior and have ignored the physical components of a robot. A robot is made up of
sensors, actuators, and computational elements (a microprocessor). The sensors take in data
about the surroundings, the actuators move the robot, and the computational elements
send instructions to the actuators. Sensors are transducers that convert some physical
phenomena into electrical signals that the microprocessor can read as data. Some sensors
register the presence, absence, or intensity of light. Near-infrared proximity detectors,
motion detectors, and force detectors can all be used as sensors. Cameras and microphones
can be sensors. The three most common systems on which robots move are wheels, tracks,
and legs.

SUMMARY

Artificial intelligence deals with the attempts to model and apply the intelligence of the
human mind. The Turing test is one measure to determine whether a machine can think
like a human by mimicking human conversation.

The discipline of AI has numerous facets. Underlying all of them is the need to
represent knowledge in a form that can be processed efficiently. A semantic network is a
graphical representation that captures the relationships among objects in the real world.
Questions can be answered based on an analysis of the network graph. Search trees are a
valuable way to represent the knowledge of adversarial moves, such as in a competitive
game. For complicated games like chess, search trees are enormous, so we still have to come
up with strategies for efficient analysis of these structures.

An expert system embodies the knowledge of a human expert. It uses a set of rules to
define the conditions under which certain conclusions can be drawn. It is useful in many
types of decision-making processes, such as medical diagnosis.

Artificial neural networks mimic the processing of the neural networks of the human
brain. An artificial neuron produces an output signal based on multiple input signals and

466

the importance we assign to those signals via a weighting system. This mirrors the activity
of the human neuron, in which synapses temper the input signals from one neuron to the
next.

Natural language processing deals with languages that humans use to communicate,
such as English. Synthesizing a spoken voice can be accomplished by mimicking the
phonemes of human speech or by replying with prerecorded words. Voice recognition is
best accomplished when the spoken words are disjointed, and is even more effective when
the system is trained to recognize a particular person’s voiceprint. Comprehending natural
language—that is, applying an interpretation to the conversational discourse—lies at the
heart of natural language processing. It is complicated by various types of ambiguities that
allow one specific sentence to be interpreted in multiple ways.

Robotics, the study of robots, focuses on two categories: fixed robots and mobile
robots. Fixed robots stay put and have whatever they are working on come to them. Mobile
robots are capable of moving and require the techniques of artificial intelligence to model
the environment in which they navigate.

ETHICAL ISSUES
Initial Public Offerings6, 7, 8

What is an IPO? If you ever watch business news on television or read the business
section in the paper, you probably know that IPO stands for initial public offering. An
IPO marks the transition of a company from being privately held to being publicly held.
Every incorporated business can issue stock to a small number of people. In order to
raise a significant amount of money, the stock must be sold to the public.

To make an IPO, a company must register with the U.S. Securities and Exchange
Commission (SEC) and prepare a public offering, which includes a prospectus and
several legal documents. The prospectus includes anything and everything about the
company—the good, the bad, and the bland.

Next, the company must contract with investment banks to underwrite or handle
distribution of the shares to be sold. The company and its underwriters decide on an
opening price based on earnings, potential earnings, and what they think the market will
bear. The underwriters guarantee to the company that they will purchase all the shares
at the opening price on the offering day, minus their firm’s commission.

The underwriter then offers bundles of the stock to major brokerage firms, which in
turn offer purchase rights to their big retail and institutional customers. Everyone takes
a markup in the process. So by the time the individual investor gets a chance at the
stock, it has gone through several hands. If the stock is hot, the price will be above the
initial offering price. If the stock is not hot, the price for investors may be lower than the
initial price.

Prior to the Internet boom, companies needed strong financials and a solid history
to go public. Many Internet companies that have gone public had never made a profit
before their IPO and were not likely to in the near future; they had existed on venture
capital. Two such companies were Facebook and Twitter. Facebook’s IPO was
overpriced, and early investors—those who bought shares at the offering price—saw
their investment drop in value as the price dropped. Twitter’s initial offering was

467

underpriced, and early investors made a fortune as the stock rose immediately. These
early investors were customers of banks involved in the underwriting of the IPO. Of
course, both stocks later soared far above their initial offering value.

KEY TERMS

Artificial intelligence (AI)
Artificial neural network
Breadth-first approach
Chatbot
Depth-first approach
Effective weight
Expert system
Inference engine
Knowledge-based system
Lexical ambiguity
Loebner prize
Natural language
Natural language comprehension
Phonemes
Referential ambiguity
Rule-based system
Search tree
Semantic network
Strong equivalence
Syntactic ambiguity
Training
Turing test
Voice recognition
Voice synthesis
Voiceprint
Weak equivalence

EXERCISES

For Exercises 1–5, match the type of ambiguity with an example.
A. Lexical
B. Referential
C. Syntactic

 1. “Stand up for your flag.”

468

 2. “Go down the street on the left.”
 3. “He drove the car over the lawn mower, but it wasn’t hurt.”
 4. “I saw the movie flying to Houston.”
 5. “Mary and Kay were playing until she came inside.”

For Exercises 6–21, mark the answers true or false as follows:
A. True
B. False

 6. A computer does some tasks much better than a human being.
 7. A human being does some tasks much better than a computer.
 8. A computer system that can pass the Turing test is considered to be intelligent.
 9. Some AI researchers don’t think we can achieve true artificial intelligence until a

computer processes information in the same way the human mind does.
10. A semantic network is used to model relationships.
11. If information is stored in a semantic network, it is easy to answer questions about

it.
12. A computer has never beaten a human at chess in master-level play.
13. An inference engine is part of a rule-based expert system.
14. A biological neuron accepts a single input signal and produces multiple output

signals.
15. Each element in an artificial neural network is affected by a numeric weight.
16. Voice synthesis is the most difficult part of natural language processing.
17. Each human has a unique voiceprint that can be used to train voice recognition

systems.
18. The word light can be interpreted in many ways by a computer.
19. Syntactic ambiguity is no longer a problem for natural language comprehension.
20. A robot may follow the sense–plan–act paradigm to control its movements.
21. Isaac Asimov created three fundamental laws of robotics.

For Exercises 22–30, match the task with who can solve it most easily.
A. Computer
B. Human

22. Identify a dog in a picture
23. Add a column of 100 four-digit numbers
24. Interpret a poem
25. Match a fingerprint
26. Paint a landscape
27. Carry on a conversation
28. Learn to speak
29. Judge guilt or innocence
30. Give affection

Exercises 31–76 are problems or short-answer questions.
31. What is the Turing test?
32. How is the Turing test organized and administered?
33. What is weak equivalence, and how does it apply to the Turing test?
34. What is strong equivalence?

469

35. What is the Loebner prize?
36. Name and briefly describe five issues in the world of AI covered in this chapter.
37. Name and define two knowledge-representation techniques.
38. Which data structure defined in Chapter 8 is used to represent a semantic

network?
39. Create a semantic network for the relationships among your family members. List

five questions that your semantic network could easily be used to answer and five
questions that would be more of a challenge to answer.

40. Create a semantic network that captures the information in a small section of a
newspaper article.

41. Which object-oriented properties do semantic networks borrow?
42. What is a search tree?
43. Why are trees for complex games like chess too large?
44. Distinguish between depth-first searching and breadth-first searching.
45. What does it mean to “prune a tree”?
46. Distinguish between knowledge-based systems and expert systems.
47. Distinguish between rule-based systems and inference engines.
48. What is an example of a human expert system?
49. What do we call a knowledge-based system that models the expertise of

professionals in the field?
50. Why is an expert system called a rule-based system?
51. Which part of the software in an expert system determines how the rules are

followed and what conclusions can be drawn?
52. How are the rules expressed in an expert system?
53. What are the advantages of an expert system?
54. What do we call a single cell that conducts a chemically based electronic signal?
55. What do a series of connected neurons form?
56. Upon what does the signal along a particular pathway depend?
57. What are the multiple input tentacles in a biological neuron?
58. What is the primary output tentacle in a biological neuron?
59. From where do dendrites of one neuron pick up the signals from other neurons to

form a network?
60. What do we call the gap between an axon and a dendrite?
61. What tempers the strength of a synapse?
62. What is the role of a synapse?
63. How is a synapse modeled in an artificial neural network?
64. What is an effective weight in an artificial neuron?
65. How is the output value from an artificial neuron calculated?
66. If the processing element in an artificial neural net accepted five input signals with

values of 0, 0, 1, 1, and 0 and corresponding weights of 5, −2, 3, 3, and 6, what is
the output if the threshold is 5?

67. If the processing element in an artificial neural net accepted five input signals with
values of 0, 0, 1, 1, and 0 and corresponding weights of 5, −2, 3, 3, and 6, what is
the output if the threshold is 7?

68. What is a phoneme?
69. Describe the two distinct ways that voice synthesis can be accomplished.

470

70. Which issues affect the ability to recognize the words spoken by a human voice?
71. How can a voice recognition system be trained?
72. Why are personalized voice-recognition systems so much better than generic

systems?
73. Name and describe two categories of robots.
74. What are planning systems?
75. What defines subsumption architecture?
76. Of what is a robot composed?

THOUGHT QUESTIONS

 1. Think of five questions that you might issue as the interrogator of a Turing test.
Why would a computer have difficulty answering them well?

 2. Do you think that strong equivalence is possible? How could it be proven?
 3. When you think of robots, what comes to mind? Do you see a human-like

machine scampering around the floor? An assembly line producing soft drinks or
beer?

 4. Had you ever heard of an IPO before reading this chapter? Have you ever invested
in one?

 5. Have you read about a new Internet company IPO in the news lately? If so, did
you think its price seemed high, low, or about right?

 6. The IPOs of Facebook and Twitter varied dramatically. What could have caused
one to be overpriced and one underpriced?

471

THE APPLICATIONS LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits
5 Computing Components

The Programming Layer
6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages

The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer
15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion
18 Limitations of Computing

472

14 SIMULATION, GRAPHICS, GAMING,
AND OTHER APPLICATIONS

The technique of using a model to represent phenomena, objects, or situations is called
simulation. Airplane manufacturers build wind tunnels to study airflow around an airfoil on
a new aircraft design. Pilots spend countless hours in a flight simulator, a model that
recreates the responses of an aircraft to actions the pilot might take, thus allowing a pilot to
learn to control the aircraft before he or she ever gets into the cockpit of a real plane. Before
the plans of a new supermarket are finalized, a computer program is run to help determine
how many checkout stations are needed for the expected number of customers.

In this chapter, we look at the theory behind simulations and examine some concrete
examples, including models that predict the weather. Then we cover three other application
types—computer graphics, computational biology, and gaming—to round out the
discussion of the applications layer.

GOALS
After studying this chapter, you should be able to:

■ define simulation.
■ give examples of complex systems.
■ distinguish between continuous and discrete event simulation.
■ explain how object-oriented design principles can be used in building models.
■ name and discuss the four parts of a queuing system.
■ explain the complexity of weather and seismic models.
■ describe the important issues in graphics image generation.
■ explain the additional concerns for animation versus single images.

14.1 What Is Simulation?
A simulation is a powerful tool used to study complex systems. Simulation is the
development of a model of a complex system and the experimental manipulation of that
model to observe the results. Models may be purely physical, such as a wind tunnel; a
combination of physical objects under software control, such as a spaceship or flight
simulator; or logical, as represented in a computer program.

Simulation Developing a model of a complex system and experimenting with the model to observe the results

473

Computer simulations have been used to help in decision making since the mid-1950s.
Building computer models of complex systems has allowed decision makers to develop an
understanding of the performance of the systems over time. How many tellers should a
bank have? Would the materials flow faster through the manufacturing line if there were
more space between stations? What is the weather going to be tomorrow? Where is the
optimal place to put the new fire station? We can gain considerable insight into all of these
questions through simulation.

Complex Systems
System is one of those words that we all intuitively understand but have difficulty defining.
The dictionary gives several definitions with the common theme of groups (collections) of
objects interacting in some way. The objects can be animate or inanimate. A collection of
hardware and software form a computer system. A collection of tracks and railway cars
form a railroad system. A collection of teachers and students form a school system.

Systems that are best suited to being simulated are dynamic, interactive, and
complicated.1 That is, they should be complex. The behaviors of dynamic systems vary over
time. The way that the behavior varies may be understood and captured in mathematical
equations, such as the flight of a missile through nonturbulent atmosphere. Alternatively,
the behavior may be only partially understood but amenable to statistical representation,
such as the arrival of people at a traffic light. Although the definition of systems implies
that the objects interact, the more interactions that exist in the system, the better a
candidate the system is for simulation. Take, for example, the behavior of a plane under air
traffic control. The performance characteristics of the individual plane, the interaction with
the air traffic controller, the weather, and any routing changes due to problems on the
ground all contribute to the plane’s behavior. Finally, the system should be made up of
many objects. If it weren’t, simulating it would be a waste of time.

Models
Model is another of those words that we all understand but might have a difficult time
defining. There are two dictionary definitions that relate to the use of the word in
simulation: an analogy used to help visualize something that cannot be directly observed;
and a set of postulates, data, and inferences presented as a mathematical description of an
entity or state of affairs. Although these two definitions seem very different, they share one
major thread: In both cases, a model is an abstraction of something else. In the first case,
the model represents something that is not completely understood, so we are forced to say
it is like something else. In the second case, the system is understood well enough to be
described by a set of mathematical rules.

For our purposes, a model is an abstraction of a real system. It is a representation of the
objects within the system and the rules that govern the interactions of those objects. The
representation may be concrete, as in the case of the spaceship or flight simulator, or it may
be abstract, as in the case of the computer program that examines the number of checkout
stations needed. In the rest of the discussion of simulation, the models we refer to are
abstract. Their realization comes only within a computer program.

474

Model An abstraction of a real system; a representation of objects within a system and the rules that govern the
behavior of the objects

Constructing Models
The essence of constructing a model is to identify a small subset of characteristics or
features that are sufficient to describe the behavior under investigation. Remember, a model
is an abstraction of a real system; it is not the system itself. Therefore, there is a fine line
between having too few characteristics to accurately describe the behavior of the system and
having more characteristics than you need to accurately describe the system. The goal is to
build the simplest model that describes the relevant behavior.

Models are built for two distinct types of simulation, and the process of choosing the
subset of characteristics or features is different for each. The distinction between the two
types is based on how time is represented: as a continuous variable or as a discrete event.

Continuous Simulation
Continuous simulations treat time as continuous and express changes in terms of a set of
differential equations that reflect the relationships among the set of characteristics. Thus the
characteristics or features chosen to model the system must be those whose behavior is
understood mathematically. For example, meteorological modeling falls into this category.
The characteristics of weather models are wind components, temperature, water vapor,
cloud formation, precipitation, and so on. The interactions of these components over time
can be modeled by a set of partial differential equations, which measure the rate of change
of each component over some three-dimensional region.

Because of the technical nature of the characteristics in continuous simulations,
engineers and economists frequently use this technique. The sets of possible characteristics
and their interactions are well known in these fields. In a later section we look more closely
at meteorological simulation.

Discrete-Event Simulation
Discrete-event models are made up of entities, attributes, and events. An entity represents
some object in the real system that must be explicitly defined. That is, the characteristic or
feature of the system is an object. For example, if we were modeling a manufacturing plant,
the different machines and the product being created would be entities. An attribute is
some characteristic of a particular entity. The identification number, the purchase date, and
the maintenance history would be attributes of a particular machine. An event is an
interaction between entities. For example, sending the output from one machine as input
to the next machine would be an event.

An object that flows through a system is usually represented as an entity. For example,
the output from one machine is an object that is passed on to the next machine. Thus a raw
widget flows from one machine to another (a series of events) and ends up as a lovely

475

doodad. An entity can also represent a resource that other entities need. For example, a
teller is a resource in a model of a bank. If a teller is not available, the customer entity must
enter a waiting line (a queue) until a teller is available.

The keys to constructing a good model are choosing the entities to represent the system
and correctly determining the rules that define the results of the events. Pareto’s law says
that in every set of entities, there exist a vital few and a trivial many. Approximately 80% of
the behavior of an average system can be explained by the action of 20% of the
components.2 The second part of the definition of simulation gives us a clue where to
begin: “experimental manipulation of that model to observe the results.” Which results are
to be observed? The answers to this question give a good starting point to the
determination of the entities in the real system that must be present in the model. The
entities and the rules that define the interactions of the entities must be sufficient to
produce the results to be observed.

Because a computer program implements an abstract model, we can apply object-
oriented design to the problem of building the model. The entities in the model are object
classes. The attributes of the entities are properties of a class. Where do the events fall into
this analogy? The events are the responsibilities of an entity. The rules that define the
interactions of the entities in the system are represented by the collaborations of the classes.

14.2 Specific Models
In this section, we examine three types of simulation models.

Queuing Systems
Let’s look at a very useful type of simulation called a queuing system. A queuing system is a
discrete-event model that uses random numbers to represent the arrival and duration of
events. A queuing system is made up of servers and queues of objects to be served. Recall
from Chapter 8 that a queue is a first-in, first-out (FIFO) structure. We deal with queuing
systems all the time in our daily lives. When you stand in line to check out at the grocery
store or to cash a check at the bank, you are dealing with a queuing system. When you
submit a “batch job” (such as a compilation) on a mainframe computer, your job must wait
in line until the CPU finishes the jobs scheduled ahead of it. When you make a phone call
to reserve an airline ticket and get a recording (“Thank you for calling Air Busters; your call
will be answered by the next available operator”), you are dealing with a queuing system.

Please Wait
Waiting is the critical element. The objective of a queuing system is to utilize the servers
(the tellers, checkers, CPU, operators, and so on) as fully as possible while keeping the wait
time within a reasonable limit. These goals usually require a compromise between cost and
customer satisfaction.

To put this on a personal level, no one likes to stand in line. If there were one checkout
counter for each customer in a supermarket, the customers would be delighted. The

476

supermarket, however, would not be in business very long. So a compromise is made: The
number of cashiers is kept within the limits set by the store’s budget, and the average
customer is not kept waiting too long.

How does a company determine the optimal compromise between the number of
servers and the wait time? One way is by experience—the company tries out different
numbers of servers and sees how things work out. There are two problems with this
approach: It takes too long and it is too expensive. Another way of examining this problem
is to use a computer simulation.

To construct a queuing model, we must know the following four things:

1. The number of events and how they affect the system so we can determine the rules
of entity interaction

2. The number of servers
3. The distribution of arrival times so we can determine if an entity enters the system
4. The expected service time so we can determine the duration of an event

The simulation uses these characteristics to predict the average wait time. The number
of servers, the distribution of arrival times, and the duration of service can be changed. The
average wait times are then examined to determine what a reasonable compromise would
be.

?
SIMULA is designed for simulation

The SIMULA programming language, designed and built by Ole-Johan Dahl and Kristen Nygaard at the
Norwegian Computing Centre (NCC) in Oslo between 1962 and 1967, was intended to be a language for discrete-
event simulation. SIMULA was later expanded and reimplemented as a full-scale, general-purpose programming
language. Although SIMULA was never widely used, the language has greatly influenced modern programming
methodology. SIMULA introduced such important object-oriented language constructs as classes and objects,
inheritance, and polymorphism.3

An Example
Consider the case of a drive-through bank with one teller. How long does the average car
have to wait? If business gets better and cars start to arrive more frequently, what would be
the effect on the average wait time? When would the bank need to open a second drive-
through window?

This problem has the characteristics of a queuing model. The entities are a server (the
teller), the objects being served (the customers in cars), and a queue to hold the objects
waiting to be served (customers in cars). The average wait time is what we are interested in
observing. The events in this system are the arrivals and the departures of customers.

Let’s look at how we can solve this problem as a time-driven simulation. A time-driven
simulation is one in which the model is viewed at uniform time intervals—say, every
minute. To simulate the passing of a unit of time (a minute, for example), we increment a
clock. We run the simulation for a predetermined amount of time—say, 100 minutes. (Of

477

course, simulated time usually passes much more quickly than real time; 100 simulated
minutes passes in a flash on the computer.)

Think of the simulation as a big loop that executes a set of rules for each value of the
clock—from 1 to 100, in our example. Here are the rules that are processed in the loop
body:

Rule 1. If a customer arrives, he or she gets in line.

Rule 2. If the teller is free and if there is anyone waiting, the first customer in line
leaves the line and advances to the teller’s window. The service time is set for that
customer.

Rule 3. If a customer is at the teller’s window, the time remaining for that customer
to be serviced is decremented.

Rule 4. If there are customers in line, the additional minute that they have
remained in the queue (their wait time) is recorded.

The output from the simulation is the average wait time. We calculate this value using
the following formula:

Average wait time = total wait time for all customers ÷ number of customers

Given this output, the bank can see whether its customers have an unreasonable wait in a
one-teller system. If so, the bank can repeat the simulation with two tellers.

Not so fast! There are still two unanswered questions. How do we know if a customer
arrived? How do we know when a customer has finished being serviced? We must provide
the simulation with data about the arrival times and the service times, both of which are
variables (parameters) in the simulation. We can never predict exactly when a customer will
arrive or how long each individual customer will take. We can, however, make educated
guesses, such as a customer arrives about every five minutes and most customers take about
three minutes to service.

How do we know whether a job has arrived in this particular clock unit? The answer is
a function of two factors: the number of minutes between arrivals (five in this case) and
chance. Chance? Queuing models are based on chance? Well, not exactly. Let’s express the
number of minutes between arrivals another way—as the probability that a job arrives in
any given clock unit. Probabilities range from 0.0 (no chance) to 1.0 (a sure thing). If on
average a new job arrives every five minutes, then the chance of a customer arriving in any
given minute is 0.2 (1 chance in 5). Therefore, the probability of a new customer arriving
in a particular minute is 1.0 divided by the number of minutes between arrivals.

Now what about luck? In computer terms, luck can be represented by the use of a
random-number generator. We simulate the arrival of a customer by writing a function that
generates a random number between 0.0 and 1.0 and applies the following rules:

1. If the random number is between 0.0 and the arrival probability, a job has arrived.
2. If the random number is greater than the arrival probability, no job arrived in this

clock unit.

478

By changing the rate of arrival, we simulate what happens with a one-teller system
where each transaction takes about three minutes as more and more cars arrive. We can also
have the duration of service time based on probability. For example, we could simulate a
situation where 60% of the people require three minutes, 30% of the people require five
minutes, and 10% of the people require ten minutes.

Simulation doesn’t give us the answer or even an answer. Simulation is a technique for
trying out “what if” questions. We build the model and run the simulation many times,
trying various combinations of the parameters and observing the average wait time. What
happens if the cars arrive more quickly? What happens if the service time is reduced by
10%? What happens if we add a second teller?

Other Types of Queues
The queue in the previous example was a FIFO queue: The entity that receives service is
the entity that has been in the queue the longest time. Another type of queue is a priority
queue. In a priority queue, each item in the queue is associated with a priority. When an
item is dequeued, the item returned is the one with the highest priority. A priority queue
operates like triage on the television show M*A*S*H. When the wounded arrive, the
doctors put tags on each patient labeling the severity of his or her injuries. Those with the
most severe wounds go into the operating room first.

Another scheme for ordering events is to have two FIFO queues: one for short service
times and one for longer service times. This scheme is similar to the express lane at the
supermarket. If you have fewer than ten items, you can go into the queue for the express
lane; otherwise, you must enter the queue for one of the regular lanes.

Meteorological Models
In the last section we looked at a fairly simple simulation with discrete inputs and outputs.
We now jump to a discussion of a continuous simulation: predicting the weather. The
details of weather prediction are over the heads of all but professional meteorologists. In
general, meteorological models are based on the time-dependent partial differential
equations of fluid mechanics and thermodynamics. Equations exist for two horizontal wind
velocity components, the vertical velocity, temperature, pressure, and water vapor
concentration. A few such equations are shown in FIGURE 14.1. Don’t worry, working
with these equations is beyond the scope of this book—we just want to convey some of the
complex processing that occurs in these types of models.

To predict the weather, initial values for the variables are entered from observation, and
then the equations are solved to identify the values of the variables at some later time.4

These results are then reintegrated using the predicted values as the initial conditions. This
process of reintegrating using the predicted values from that last integration as the observed
values for the current integration continues, giving the predictions over time. Because these
equations describe rates of change of entities in the model, the answers after each solution
give values that can be used to predict the next set of values.

479

FIGURE 14.1 Some of the complex equations used in meteorological models

Ivan Sutherland

480

© Kenichiro Seki/Xinhua Press/Corbis

Ivan Sutherland has credentials in academia, industrial research, and in business. On his
website, Sutherland lists his profession as “engineer, entrepreneur, capitalist, professor.”
He has won the ACM’s prestigious Turing Award, the Smithsonian Computer World
Award, the First Zworykin Award from the National Academy of Engineering, and the
Price Waterhouse Information Technology Leadership Award for Lifetime
Achievement.

Sutherland received a BS from Carnegie Institute of Technology, an MS from the
California Institute of Technology, and a PhD from the Massachusetts Institute of
Technology. His PhD thesis, “Sketchpad: A Man–Machine Graphical Communications
System,” pioneered the use of the light pen to create graphic images directly on a display
screen. The graphic patterns could be stored in memory and later retrieved and
manipulated just like any other data. Sketchpad was the first graphical user interface
(GUI), arriving on the scene long before the term was invented, and opened up the field
of computer-aided design (CAD).

The U.S. Department of Defense and the National Security Agency (NSA)
spearheaded computing research in the early 1960s. When Sutherland graduated, he was
inducted into the Army and assigned to the NSA. In 1964, he was transferred to the
Defense Department’s Advanced Research Projects Agency (ARPA, later DARPA),
where he commissioned and managed computer science research projects as director of
ARPA’s Information Processing Techniques Office. After his stint with the military,
Sutherland went to Harvard as an associate professor. Sketchpad, which allowed people
to interact with the computer in terms of images, was the logical predecessor to
Sutherland’s work in virtual reality. His goal was the “ultimate display,” which would
include a full-color, stereoscopic display that filled the user’s entire field of vision.
Turning the theory into practice was more difficult than first imagined because of the
weight of the head-mounted display (HMD). In fact, the first implementation was
mounted on the wall or ceiling rather than the head, earning it the nickname “Sword of
Damocles.”

In 1968, Sutherland moved to the University of Utah, where he continued his
research into HMD systems. Sutherland and David Evans, another faculty member at
Utah, founded Evans & Sutherland, a company specializing in hardware and software

481

for visual systems for simulation, training, and virtual reality applications. In 1975,
Sutherland returned to the California Institute of Technology as chairman of the
Computer Sciences department, where he helped to introduce circuit design into the
curriculum.

Sutherland left Caltech in 1980 and established Sutherland, Sproull, and Associates,
a consulting and venture capital firm. He later served as vice president and Sun Fellow
at Sun Microsystems. He now holds eight patents in computer graphics and hardware
and continues his research into hardware technology.

Sutherland was awarded the Turing Award in 1988. The citation reads:

For his pioneering and visionary contributions to computer graphics, starting with
Sketchpad, and continuing after. Sketchpad, though written twenty-five years ago,
introduced many techniques still important today. These include a display file for
screen refresh, a recursively traversed hierarchical structure for modeling graphical
objects, recursive methods for geometric transformations, and an object oriented
programming style. Later innovations include a “Lorgnette” for viewing stereo or
colored images, and elegant algorithms for registering digitized views, clipping
polygons, and representing surfaces with hidden lines.

In 2012, Sutherland won the Kyoto Prize in Advanced Technology. Despite all the
honors Sutherland has received, he once cited his proudest accomplishment as his four
grandchildren.

These types of simulation models are computationally expensive. Given the complexity
of the equations and the fact that they must hold true at each point in the atmosphere,
high-speed parallel computers are needed to solve them in a reasonable amount of time.

Weather Forecasting
“Red sky in the morning, sailor take warning” is an often-quoted weather prediction.
Before the advent of computers, weather forecasting was based on folklore and
observations. In the early 1950s, the first computer models were developed for weather
forecasting. These models took the form of very complex sets of partial differential
equations. As computers grew in size, the weather forecasting models grew even more
complex.

If weathercasters use computer models to predict the weather, why are TV or radio
weathercasts in the same city different? Why are they sometimes wrong? Computer models
are designed to aid the weathercaster, not replace him or her. The outputs from the
computer models are predictions of the values of variables in the future. It is up to the
weathercaster to determine what the values mean.

?
Tsunami detection

482

Tsunami experts are developing better ways to let people know when a tsunami is coming. Scientists are now using
sensors laid on cables on the sea floor to detect the very light disturbance of a tsunami passing overhead on the
ocean surface. When the sensors pick up a tsunami, a buoy anchored nearby sends the signal to land via satellite.
The National Oceanic and Atmospheric Administration’s (NOAA) Pacific Marine Environmental Laboratory
(PMEL), based in Seattle, designed the deep ocean assessment and reporting of tsunami (DART) buoys. These
systems are able to detect sea-level changes of less than a millimeter in the ocean.

Note that in the last paragraph we referred to multiple models. Different models exist
because they make different assumptions. However, all computer models approximate the
earth’s surface and the atmosphere above the surface using evenly spaced grid points. The
distance between these points determines the size of the grid boxes, or resolution. The
larger the grid boxes, the poorer the model’s resolution becomes. The Nested Grid model
(NGM) has a horizontal resolution of 80 km and 18 vertical levels, and views the
atmosphere as divided into squares for various levels of the atmosphere. Grids with smaller
squares are nested inside larger ones to focus on particular geographic areas. The NGM
forecasts 0–48 hours into the future every 6 hours.

The Model Output Statistics (MOS) model consists of a set of statistical equations
tailored to various cities in the United States. The ETA model, named after the ETA
coordinate system that takes topographical features such as mountains into account, is a
newer model that closely resembles the NGM but has better resolution (29 km).5 WRF is
an extension of ETA, which uses a variable-size grid of 4 to 12.5, and 25 to 37 levels.

The output from weather models can be in text form or graphical form. The
weathercaster’s job is to interpret all of the output. But any good weathercaster knows that
the output from any of these models is only as good as the input used as a starting point for
the differential equations. This data comes from a variety of sources, including radiosondes
(to measure humidity, temperature, and pressure at high altitudes), rawinsondes (to
measure wind velocity aloft), aircraft observations, surface observations, satellites, and other
remote sensing sources. A small error in any of the input variables can cause an increasing
error in the values as the equations are reintegrated over time. Another problem is that of
scale. The resolution of a model may be too coarse for the weathercaster to accurately
interpret the results within his or her immediate area.

Different weathercasters may believe the predictions or may decide that other factors
indicate that the predictions are in error. In addition, the various models may give
conflicting results. It is up to the weathercaster to make a judgment as to which, if any, is
correct.

Hurricane Tracking
The modules for hurricane tracking are called relocatable models, because they are applied to
a moving target. That is, the geographical location of the model’s forecast varies from run
to run (that is, from hurricane to hurricane). The Geophysical and Fluid Dynamics
Laboratory (GFDL) developed the most recent hurricane model in an effort to improve the
prediction of where a hurricane would make landfall.

The GFDL hurricane model became operational in 1995. The equations were such that
the forecasts couldn’t be made fast enough to be useful until the National Weather Service’s
high-performance supercomputers were used in parallel operation, which increased the

483

running time over the serial implementation by 18%. FIGURE 14.2 shows the
improvement of this model over the previous ones used to track hurricanes.

GFDL is being replaced by a specialized version of WRF, called HWRF. HWRF uses
27- and 9-km grid cells with 42 levels. It also takes information from a second simulation
called the Princeton Ocean Model, which provides data on ocean currents and temperatures.

Some researchers are producing models that combine the outputs of other models.
Such combined models, which have been called “superensembles,” give better results than
individual models. The longer this kind of model runs, the better its results are. In one
study focusing on a forecast of hurricane winds three days into the future, a combined
model had an error of 21.5 mph as compared to the individual model errors that ranged
from 31.3 mph to 32.4 mph.

FIGURE 14.2 Improvements in hurricane models
Reprinted, by permission, from the National Science and Technology Council, High Performance Computing and
Communications: Advancing the Frontiers of Information Technology

?
Saharan dust confuses hurricane predictions

Each year, the United States’ National Oceanic and Atmospheric Administration predicts the number of named
storms and their severity. The prediction for 2013 was 13 storms, with 11 of them reaching hurricane strength. But
2013 turned out to be the fourth-quietest hurricane season in 70 years. What happened instead? More wind shear
and blooms of Saharan dust occurred than expected. Even the best predictive models are only as good as their
input.7

Specialized Models

484

Meteorological models can be adapted and specialized for research purposes. For example,
numeric-model simulations of atmospheric processes are being combined with air-
chemistry models to diagnose atmospheric transport and diffusion for a variety of air-
quality applications. One such study analyzed the part played by the topography of the
Grand Canyon region of Arizona in the movement of air pollution.

Another study showed that by assimilating or ingesting observed data within the model
solution as the model was running forward in time, rather than using observations at only
the initial time, the model’s performance increased significantly. This allows for improved
numerical representations of the atmosphere for input into other specialized models.6

Advanced meteorological modeling systems can be used to provide guidance for other
complex systems in the military or aviation industry. For example, the weather has an
impact on projectile motions and must be taken into consideration in battlefield situations.
In the aviation industry, meteorological data is used in diverse ways, from determining how
much fuel to carry to deciding when to move planes to avoid hail damage.

Computational Biology
Computational biology is an interdisciplinary field that applies techniques of computer
science, applied mathematics, and statistics to problems in biology. These techniques
include model building, computer simulation, and graphics. Much biological research,
including genetic/genomic research, is now conducted via computational techniques and
modeling rather than in traditional “wet” laboratories with chemicals. Computational tools
enabled genomic researchers to map the complete human genome by 2003; using
traditional sequencing methods would have required many more years to accomplish this
objective. Computational techniques have also assisted researchers in locating the genes for
many diseases, which has resulted in pharmaceuticals being developed to treat and cure
those diseases.

Computational biology An interdisciplinary field that applies techniques of computer science, applied
mathematics, and statistics to problems in biology

Computational biology encompasses numerous other fields, including the following:

■ Bioinformatics, the application of information technology to molecular biology. It
involves the acquisition, storage, manipulation, analyses, visualization, and sharing
of biological information on computers and computer networks.

■ Computational biomodeling, the building of computational models of biological
systems.

■ Computational genomics, the deciphering of genome sequences.
■ Molecular modeling, the modeling of molecules.
■ Protein structure prediction, the attempt to produce models of three-dimensional

protein structures that have yet to be found experimentally.

485

Other Models
In a sense, every computer program is a simulation, because a program represents the model
of the solution that was designed in the problem-solving phase. When the program is
executed, the model is simulated. We do not wish to go down this path, however, for this
section would become infinite. There are, however, several disciplines that explicitly make
use of simulation.

Will the stock market go higher? Will consumer prices rise? If we increase the money
spent on advertising, will sales go up? Forecasting models help to answer these questions.
However, these forecasting models are different from those used in weather forecasting.
Weather models are based on factors whose interactions are mostly known and can be
modeled using partial differential equations of fluid mechanics and thermodynamics.
Business and economic forecasting models are based on past history of the variables
involved, so they use regression analysis as the basis for prediction.

Seismic models depict the propagation of seismic waves through the earth’s medium.
These seismic waves can come from natural events, such as earthquakes and volcanic
eruptions, or from human-made events, such as controlled explosions, reservoir-induced
earthquakes, or cultural noise (industry or traffic). For natural events, sensors pick up the
waves. Models, using these observations as input, can then determine the cause and
magnitude of the source causing the waves. For human-made events, given the size of the
event and the sensor data, models can map the earth’s subsurface. Such models may be used
to explore for oil and gas. The seismic data is used to provide geologists with highly detailed
three-dimensional maps of hidden oil and gas reservoirs before drilling begins, thereby
minimizing the possibility of drilling a dry well.

Computing Power Necessary
Many of the equations necessary to construct the continuous models discussed here were
developed many years ago. That is, the partial differential equations that defined the
interactions of the entities in the model were known. However, the models based on them
could not be simulated in time for the answers to be useful. The introduction of parallel
high-performance computing in the mid-1990s changed all that. Newer, bigger, faster
machines allow scientists to solve more complex mathematical systems over larger domains
and ever-finer grids with even shorter wall clock times. The new machines are able to solve
the complex equations fast enough to provide timely answers. Numerical weather
forecasting, unlike some other applications, must beat the clock. After all, yesterday’s
weather prediction is not very useful if it is not received until today.

14.3 Computer Graphics
Computer graphics can be very generally described as the setting of pixel values on the
computer screen. Recall that we talked about computer images in Chapter 3. At that time,
we said that an image is a collection of pixel values specified as the red, green, and blue
values. Although that earlier discussion referred to pictures we could scan and display on a
computer screen, it also applies to everything we display on a computer screen.

486

Computer graphics plays a role in many aspects of computer science. The most
common application is in the graphical user interface (GUI) of modern operating systems.
Files and folders are represented as icons on the screen, with the icon indicating the file
type. Interacting with the computer involves pointing, clicking, and dragging, which
change the appearance of the screen. Computer graphics determines how to set the pixel
colors to display the icons and how to change the pixel values as an icon is dragged across
the screen.

Word processors and desktop publishing software are other applications of computer
graphics. Their ability to show how the document will appear when printed is made
possible by the way pixels are set on the screen. Although you might not think about black-
and-white text on the screen when you think of computer graphics, it is still involved in the
display. Illustrations in user’s manuals are also generated with computer graphics. In this
application, special techniques are used to produce images that highlight the feature or part
being discussed instead of creating fully realistic images.

Companies also use computer graphics in the design and manufacturing of products.
Computer-aided design (CAD) systems let engineers create the specification of new
components using geometric modeling techniques (as in FIGURE 14.3). These parts can
be displayed on the screen and can even be tested for stress points that could potentially
break. These drawings can eventually be used to give instructions to assembly-line machines
that create the parts.

487

FIGURE 14.3 Geometric modeling techniques
© ArtyFree/Shutterstock, Inc.; © Stephen Sweet/Shutterstock, Inc.

Artists use computer graphics in many ways. Some artists use a computer as a high-tech
canvas. Paint programs allow artists to create works using the computer instead of brushes
and canvas. Image manipulation software allows photographers to touch up pictures or to
combine multiple images to create unique effects. Artists also use the computer as an
integral part of the artwork. For example, as far back as 1982, Jane Veeder created the
WARPITOUT computer installation, which allowed users to take their pictures digitally
and then manipulate them before they became part of a rotating gallery of recent images.

Scientific experimentation and simulations inevitably produce large amounts of data. A
scientist who examines data as numbers on a page might miss a trend or pattern in those
data. An alternative means of analysis is scientific visualization with data presented in a
graphical format. Scientific visualization systems allow the user to change the colors
associated with different values and create cross-sections through the data to help discover
patterns or trends. A related application is in medical imaging. Results of tests using
technologies such as computerized tomography (CT), ultrasound, and magnetic resonance
imaging (MRI) are presented in a graphical form, which a doctor or technician can then

488

use to make a diagnosis.
Even though numerous applications of computer graphics exist, it is likely that when

you think about computer graphics, you imagine computer games, animated films, or
special effects on television and movies. These are the most “fun” of the applications—but
also the most complex. The complexity comes from the need to simulate very complex
processes—the interaction of light and objects, modeling of the shapes of simple and
complex objects, the natural movement of characters and objects. The rest of this section
will look at some of these issues in more detail. As you will see, there are a lot of details in
computer graphics, which makes it a complex as well as a fun area of study. Because
computer graphics is broad enough to be the subject of entire textbooks, this section can
merely give you a hint of what’s involved.

?
Communication through touch

Haptics is the field of science and technology dedicated to tactile sensation, meaning touch. Haptic devices simulate
touch-related sensations such as pressure, temperature, and texture. Force-feedback steering wheels and joysticks are
examples of simple haptic devices. Today, haptic devices are used as surgical-simulation tools to train doctors.
Before such systems became available, trainee surgeons practiced on oranges! Advances in haptic technology have
made it possible to explore how humans’ sense of touch works—a great advancement, especially in the field of
robotics.

How Light Works
The human visual system works because light reflects off objects and enters our eyes. The
lens of the eye focuses the light as it strikes the back of the eye. The back of the eye is
composed of cone and rod cells that react to the light that strikes them. The cone cells
come in three varieties—long, middle, and short—based on the wavelength of light they
react to. The long cones react to red shades; the middle cones react to green shades; and the
short cones react to blue shades. The rod cells react only to the intensity of the light, so
they lack color sensitivity. The reactions in the cone and rod cells are interpreted by our
visual system and brain, which ensure that we see objects in front of us.

Light in our world strikes objects, reflecting off of them. Although we might think of
mirrors and polished objects as being the only reflective ones, in reality all objects reflect
light. The amount of light that is reflected depends on the amount of light available. On a
sunny day, many more objects are visible than on a cloudy day or at a time late in the
evening.

In addition to the amount of light, the appearance of an object is influenced by what
the object is made of. For example, plastic, wood, and metal all look different because of
their properties. Plastic objects have color particles embedded in them but they have very
shiny surfaces. Highlights on plastic objects are the same color as the light, no matter what
color the object is. Wood objects are influenced by the grains in the wood, which reflect
light unevenly. Metal objects have microscopically rough surfaces, so they have highlights,
albeit not as sharp as those on plastic.

Consider a flat mirror. The direction in which the mirror points can be specified by its
normal vector (N), which is perpendicular to the mirror surface (FIGURE 14.4). The

489

angle that light reflects off the mirror (θ) will be the same relative to the normal vector as
the angle from which the light arrives. If you are in the direction of a view vector (V), what
you see will be influenced by the directions of all of these vectors. The entire process is
complex because light can strike the mirror from many different directions. When you look
at yourself in a mirror, light reflects off your face and clothes from different directions
before entering your eye.

Shadows are an important component of our world. They give us visual cues about the
locations of objects and light sources. They also give us cues about the relative locations of
two objects. If two objects are touching, for example, the shadow cast by one of the objects
will be very close to that object. As the objects move apart, the shadow will change and,
depending on the lighting conditions, could even disappear. This explains why some early
hand-drawn cartoons seem odd: Some include shadows for the characters and some don’t.
Mickey Mouse casts a shadow but Fred Flintstone doesn’t. The result is that Mickey seems
to be walking on the ground, whereas Fred seems to be floating in air.

FIGURE 14.4 The normal (N), light (L), view (V), and reflection (R) vectors

To produce realistic images, computer programs must do calculations that simulate the
interaction between light and an object, the irregular surface of a textured object, and the
change in light intensity in locations in shadows. These calculations can take a lot of time.
Animated films and movie special effects look better than computer games because
simplifications and shortcuts are needed so that a game can generate images in real time.
Another important component of this process is the representation of the shape of objects
in the image, which is discussed next.

?
Where are Voyager 1 and 2 now?

The Voyager 1 and Voyager 2 space probes were launched in 1977. They encountered Jupiter in 1979 and Saturn
in 1980 and 1981. Voyager 2 flew past Uranus in 1986 and reached Neptune in 1989. The probes are now
exploring the space between the stars, and they will continue to do so until 2025, when their power will run out.
Do you know where they are as you read this?8

490

Object Shape Matters
The shape of an object also influences the appearance of the object. When an object is flat,
like a mirror, there is one normal vector direction for every location on the object. If an
object is not flat, the normal vector direction can be different at various locations. This
change in normal vector direction alters the highlight shape, which gives us visual cues as to
the shape of the object.

Recall from your math classes that we use equations to describe lines, planes, spheres,
cylinders, and other objects. These equations are used in computer graphics to specify the
shapes of objects. If you look around, you will see that objects have a wide variety of shapes.
Many are much more complex than these simple mathematical objects. Computer graphics
also offers ways to mathematically describe the shapes of curved surfaces. Complex objects
are then defined by a collection of individual curves.

Even though objects in our world are solid, computer graphics deals only with the
surface of objects, because that is all we see. Additionally, these mathematical equations
define smooth surfaces, even though real objects may have irregular surfaces. For example,
bricks and concrete have a rough surface that will scatter light differently than a smooth
surface does. Graphics software uses texture mapping techniques to simulate these rough
surfaces.

Simulating Light
A number of techniques are used to simulate the interaction of light and objects in
graphics. Some techniques are simple; others are very computationally complex. In general,
the simulation of light interacting at one point on an object is called an illumination model,
while the process of using an illumination model to determine the appearance of an entire
object is called a shading model or just shading. The process of creating an entire image is
called rendering.

One of the earliest illumination models from 1971 uses three different components:
ambient light, diffuse reflections, and specular reflections. Ambient light is a general light
that doesn’t have a direction. This sort of light makes it possible for us to see objects that
don’t have light directed at them. Diffuse reflections occur because light strikes an object
directly. These reflections occur in every direction and are based on the angle between the
light direction and the surface normal (θ in Figure 14.4). The closer the light direction and
the surface normal, the larger the diffuse reflection contribution will be. Specular highlights
are the bright spots that appear on objects because of the mirror reflection direction. The
specular reflection is based on the angle between the reflection direction and the viewer
direction (α in Figure 14.4). The closer they are, the larger the specular reflection
contribution will be. An object’s appearance is determined by adding the ambient light,
diffuse reflection, and specular reflection together. Although it was developed a long time
ago, this illumination model is still commonly used in today’s graphics software.

This illumination model does have a notable problem: It makes everything look like it
is made of plastic. For this reason, adjustments have to be made to the results it produces to
handle metal objects and objects with textures. The illumination model also cannot handle

491

transparent objects or objects with mirror-like surfaces.
A second shading method is called ray tracing. In this method, a point in space is

identified where the viewer is located. Then the location of the screen (where the image is
to be drawn) is determined. Now a line can be drawn from the viewer location through
each pixel location of the image. That line or ray is followed into the scene. If it doesn’t hit
any of the objects, that pixel is colored to match the background color. If it does hit an
object, the illumination calculation is performed for that point and the result becomes the
pixel color. If the object that is hit is reflective, like a mirror, the direction the ray reflects
off the object is calculated and this new direction is followed to determine the pixel color. If
the object that is hit is transparent, the direction the ray refracts into the object is calculated
and this new direction is followed. Highly complex objects could be both reflective and
transparent, so both of these calculations might be done and their results combined.
Because the rays are followed as they bounce around a scene, ray tracing can handle both
transparent and reflective objects.

You may have noticed that sometimes the color of your shirt reflects onto your face or
arms. This phenomenon is called color bleeding. Another example occurs when someone
wearing a bright red shirt stands near a white wall. The wall near the person can look pink
because light reflects off the red shirt before striking the wall. None of the shading methods
discussed so far can simulate this type of light interaction, but a technique called radiosity
can handle color bleeding. In radiosity, light is treated as energy. Complex calculations look
at how much energy is transferred from every object to every other object in a scene.
Because the amount of energy received by a large object such as a wall will be different for
different parts of the wall, large objects are subdivided into much smaller pieces before the
energy interaction is calculated.

The amount of energy transferred between two patches in the scene depends on how far
apart the two patches are and in which direction the patches are pointing. The farther apart
two patches are, the less energy they will transfer. The closer the patches are to facing each
other, the more energy they will transfer. This process is further complicated by the fact
that Patch A can transfer energy to Patch B and, conversely, Patch B can transfer energy to
Patch A. Additionally, the amount of energy Patch A has available to transfer to Patch B
depends in part on how much energy Patch A gets from Patch B. Likewise, the amount of
energy Patch B transfers to Patch A depends on the amount of energy Patch A transfers to
it.

Radiosity is highly complex not only because of all of the potential combinations of
energy transfer, but also because a scene can have more than 100,000 patches for which this
energy transfer must be determined.

Modeling Complex Objects
Earlier we said that the shapes of simple objects could be modeled with simple
mathematical objects and curved surfaces. Many objects in our world are much more
complex in terms of their shapes and the ways that they interact with light. This is one area
where graphics researchers are working to produce realistic simulations of natural
phenomena that can be rendered in a reasonable amount of time. This section looks at
some of these issues in a general way.

Natural landscapes provide a mixture of graphics challenges: realistic-looking terrain,

492

reasonable-looking streams, and natural-looking plants. FIGURE 14.5 shows a natural-
looking computer-generated landscape. Terrain can be modeled with fractal or erosion
models. One fractal model uses a technique called midpoint subdivision. With this
technique, you begin with a triangular patch. Each side of the triangle is subdivided at the
midpoint, and extra edges are added between these points to give 4 triangular patches. The
process is repeated again for each of the 4 patches, which produces 16 triangular patches.
This result isn’t all that interesting by itself. However, if each of the midpoints is randomly
moved up or down when subdivided, it generates an irregular terrain shape (FIGURE
14.6). Erosion models can be used to place streams and form the terrain around them. In an
erosion model, the starting or ending point of the stream is chosen and then the stream is
randomly moved through the terrain. The stream location sets the terrain height at those
locations, and the areas around the stream can then be raised to irregular levels.

FIGURE 14.5 A natural computer-generated landscape
Reproduced from Oliver Deussen, et. al., “Realistic Modeling and Rendering of Plant Ecosystems.” SIGGRAPH
(1998): 275-286. © 1998 AMC, Inc. Reprinted by permission. [http://doi.acm.org/10.1145/280814.280898]

Plant growth has been modeled through both grammar and probabilistic methods. In
grammar-based tree models, rules much like those in English grammar specify how
components of a plant change. For example, one rule might specify that a bud becomes a
flower, while another rule specifies that a bud becomes a branch section with a new bud at
its end. Different sets of rules will create different types of plants. Making choices among
one set of rules will produce different examples of one plant type. Plant growth can be
specified with as few as five to ten rules depending on the complexity of the plant. In
probabilistic models, actual plants are studied to see how they grow. The probabilities of
events—for example, that a bud on a plant will stay dormant, become a flower and die,
become a new branch or set of branches, or just die—are measured. The lengths of
branches and their relative positioning are also measured. The computer then uses all of

493

http://doi.acm.org/10.1145/280814.280898

these probabilities to generate plant shapes for rendering.

FIGURE 14.6 Midpoint sub-division for creating fractal terrains

Liquids, clouds, smoke, and fire pose special challenges for graphics applications.
Scientific researchers have developed equations that approximate the behavior of liquids,
gases, and fire. Graphics researchers have, in turn, used these equations to create images of
those phenomena. When modeling liquids and gases for computer graphics, the space the
liquid or gas will occupy is subdivided into cubic cells. Data on atmospheric pressure,
density, gravity, and external forces are used with these equations to determine how the
material moves between cells. FIGURE 14.7 shows an example of water produced by this
method. A cell-based model of clouds looks at the humidity and the presence of clouds in
the current and adjacent cells to determine whether a cloud should appear in the current
cell. Random numbers are also used to influence cloud formation and movement. These
techniques can produce realistic clouds, as seen in FIGURE 14.8. Because smoke and fire
are the results of the combustion of a material, heat contributes to the turbulence of the

494

flame and smoke. Equations are also used to model the velocity of fire and smoke particles
for the production of images such as those shown in FIGURES 14.9 and 14.10.

FIGURE 14.7 Water pouring into a glass
Reproduced from Douglas Enright, et. al., “Animation and Rendering of complex Water Surfaces.” SIGGRAPH 21
(2002): 275-286. © 2002 AMC, Inc. Reprinted by permission. [http://doi.acm.org/10.1145/566654.566645]

FIGURE 14.8 Cellular automata-based clouds
Reproduced from Yoshinori Dobashi, et. al., “A Simple, Efficient Method for Realistic Animation of Clouds.”
SIGGRAPH (2000): 19-28. © 2000 AMC, Inc. Reprinted by permission.
[http://doi.acm.org/10.1145/344779.344795]

495

http://doi.acm.org/10.1145/566654.566645
http://doi.acm.org/10.1145/344779.344795

FIGURE 14.9 A campfire
Reproduced Duc Quang Nguye, et. al., “Physically Based Modeling and Animation of Fire.” SIGGRAPH (2002): 721-
728. © 2002 AMC, Inc. Reprinted by permission. [http://doi.acm.org/10.1145/566570.566643]

FIGURE 14.10 Blowing smoke
Reproduced Ronald Fedkiw, et. al., “Visual Simulation of Smoke.” SIGGRAPH (2001): 15-22. © 2001 AMC, Inc.
Reprinted by permission. [http://doi.acm.org/10.1145/383259.383260]

496

http://doi.acm.org/10.1145/566570.566643
http://doi.acm.org/10.1145/383259.383260

Cloth comes in two main types—woven and knit. Woven cloth has two sets of threads
that are perpendicular. When cloth is woven, some of the vertical threads are up and some
are down when a horizontal thread is passed between them. The set of threads that are up
and down are changed before the next horizontal thread is added. The colors of the threads
and the identities of which are up and down combine to create a pattern in the resulting
fabric. Woven cloth can stretch, but only a little, depending on the threads and weaving
pattern used. In contrast, knit cloth is created with one long thread or yarn that is
interlocked using a series of loops. A pattern is created in knit cloth by the way that the
yarn twists and turns within the loops. Knit cloth is very stretchy and easily deforms around
objects.

Cloth that is laying flat isn’t very interesting, but the way that cloth moves and drapes is
interesting from a graphics standpoint. Modeling the drape of woven cloth can be done
simply by looking at the shapes of the threads that make up the cloth. Because of gravity, a
rope hanging between two posts takes on a shape known as a catenary curve. Modeling a
cloth lying over two posts can be done by having the underlying threads form a catenary
curve. The challenge is to make sure the cloth doesn’t intersect with itself or with other
objects—a challenge handled by using constraint techniques to make sure that in the
calculations the cloth doesn’t intersect something. Other techniques are used to untangle
the cloth in situations where the first set of calculations can’t prevent the intersection.
FIGURE 14.11 shows an example of cloth that is draping and folded.

Knit cloth poses an entirely different set of problems because as it drapes, the cloth will
stretch. This stretch deforms the loops that form the cloth. Furthermore, because knit cloth
uses larger yarns, shadows will form in the fabric as the yarn blocks light from another part
of the cloth. The thickness and fuzziness of the yarn also influence the cloth’s appearance.
One graphics technique for depicting knit cloth treats the path of the yarn in the cloth as a
long curve. Points on the curve are associated with points on a plane to model the knit
fabric at rest. To place the fabric on an object, the plane is deformed to the shape of the
object. The deformation of the plane changes the locations of the points on the curve. The
new locations of these points reflect where the knit fabric stretches and bends. Rendering
the fabric then becomes a matter of rendering the yarn as it travels along the now deformed
curve.

497

FIGURE 14.11 A simulation of cloth showing bending and draping
Courtesy of Robert Bridson. © 2004 Robert Bridson

Skin requires special graphics techniques to handle both its shape and its appearance.
Skin is soft and has a shape that depends on the underlying muscles and bone. As muscles
contract and relax, our body shape changes and thus our skin will deform. Skin also
stretches, wrinkles, and creases as our joints move. In graphics, an advanced technique
called implicit surfaces can be used to model the shape of skin. For example, the equation
for a sphere (x2 + y2 + z2 = r2) does not explicitly give the x, y, and z values that are on the
surface of the sphere. Rather, we can try different values for x, y, and z until we find the
ones that satisfy this equation for a given radius. Thus we implicitly find the points on the
surface of the sphere. For skin, an even more complex set of equations is used to specify the
implicit surface.

Once the shape of the skin is determined, skin must be rendered differently than most
other objects. When light strikes the skin, some of the light reflects off the oils on the skin
and the rest of the light actually penetrates the top layers of skin. The light that penetrates
the skin will reflect off lower layers, pigment particles, and blood before emerging from the
skin. If you look at your hand, you will probably notice that you clearly see the outer
surface but that you also see underlying blood vessels and maybe even freckles. To
accurately render skin, the graphics application must account for this subsurface scattering
of light. Subsurface scattering must also be handled to accurately render marble and food
products such as milk.

Getting Things to Move

498

So far, we have been talking about graphics from the perspective of a single image, but
games and animated films require many images. A film uses 24 images per second and
video uses 30 images per second. These images are shown rapidly, so that we perceive the
changes between images as continuous motion. A 60-minute animated film requires 86,400
images and a 60-minute video requires 108,000 images. The work done for each individual
image is the same even though that image is now part of a sequence of images.

Animation does pose a new challenge, however, if we want to create believable
movement of objects. Deciding how to change the positions of objects between the images
must be done carefully if the movement is to look realistic. In some cases, realistic
movement can be generated based on physical properties. For example, if a ball is thrown
into the air, we can predict how it will slow down and stop before falling to the ground
based on the laws of gravity.

Having an object move from point A to point B in 10 seconds is not as simple as
dividing the distance into 299 equal changes for the 300 images needed for the 10-second
video. That result will not look realistic because when objects move there is a period during
which their speed is increasing, called the ease-in in animation. During the ease-in, the
object will move in smaller but increasing amounts between each frame. Also, the object
will not come to a sudden stop, but rather will slow down until stopped, which is called the
ease-out in animation. As a consequence, the change in distance for the ending images will
get smaller with each additional image.

Animating figures is even more complex. We are very familiar with the movements of
humans and animals, so even small problems in motion will obviously look unnatural. We
are so good at recognizing motion of figures that we can recognize that someone in the
distance is a friend by the way the person walks, even if he or she is not close enough for us
to recognize the face. We can also sometimes identify someone approaching us, even if we
merely hear the sounds of their footsteps.

Consider the process of having a character reach for an object. When we reach for
something, the entire arm moves. If the object is just out of reach, the shoulder will move
and the upper body will either bend at the waist or twist around the waist. To do this, the
positioning of all of the arm segments and joints changes. Animating a character to reach
could be done by determining where the hand needs to be and then determining what
angles the joints should be for the hand to get to its destination. Over the length of the
animation, we can change the joint angles from their starting values to the final values.
Although this approach would deliver the motion needed, the result might not look
realistic. This process becomes even more complex if we have to calculate a path of motion
to avoid other objects in the scene.

Graphics researchers are using information gleaned through the study of human and
animal motion to develop systems that can automatically generate more natural motion.
There is, however, a way to cheat—motion capture. In motion capture, sensors are placed
at significant locations on a person’s body. The human then moves the way that the
character is supposed to move. The location of the sensors is tracked during the entire
motion. The sensor locations indicate where the equivalent part of the character should be
during the movement. In this way, the sensor locations tell the graphics application where
the character should be positioned for each of the images of the animation. This technique
works well for film animation because the character movement is known. It doesn’t work
for computer games where the movement of the character depends on what is occurring in

499

the game.
In our day-to-day lives, we do many things without thinking about them. We see

objects without thinking about the way they are illuminated by light. We move ourselves
and objects without thinking about the locations of our joints or how to avoid hitting other
objects. But when it comes to computer graphics, we have to think about all of these
concerns because we have to write computer programs to create images showing just these
sorts of things.

14.4 Gaming
Computer gaming is a computer simulation of a virtual world that draws players into the
world as participants. Although computer games can be used as teaching tools, their
primary function is to entertain.

Computer gaming A computer simulation of a virtual world

A virtual world, which is also known as a digital or simulated world, is an interactive,
computer-generated environment. Such worlds are often designed to resemble reality,
where real-world rules and laws would still be applicable (to the character you are playing,
of course), but they can also be built as deep fantasy worlds where such rules do not apply.
Although there are many different types of virtual worlds, persistent online virtual worlds
all tend to share the same basic features. They are usually active all day, every day, barring
any downtime for maintenance; the game continues to be played, whether individual
players are logged in or not. Multiple players can participate in the games at the same time,
with the entire interaction taking place in real time.

Virtual worlds are highly social places, encouraging players to form teams, guilds,
neighborhoods, and clubs within the game. Unlike flat, one-dimensional games such as
Solitaire, many of today’s virtual worlds encompass 3D environments that are designed to
immerse the player in the world in which he or she is playing.

Creativity and technological savvy are both required to create the virtual world of a
computer game. Designers must be cognizant of aspects of computer science such as
computer graphics, artificial intelligence, human–computer interaction, simulation,
software engineering, and computer security, in addition to the fundamentals of
mathematics. To make people, objects, and environments behave realistically in a virtual
environment, programmers and designers also need to be aware of the laws of physics
relating to gravity, elasticity, light, and sound. Games may use fake physics, but the rules of
the fake physics must be consistent and believable within the context of the game.

History of Gaming
The general meaning of gaming has evolved over the past few decades. The first electronic
games were developed in the 1940s, using a device that allowed a user to control a vector-
drawn dot on the screen to simulate a missile being fired at targets. In 1971, the first coin-
operated video game was sold on the commercial market. Gaming didn’t really start to take

500

off until the invention of the Atari 2600 and Pong, its wildly popular game, in 1977. The
success of Atari’s game console opened the doors for companies such as Nintendo and
Sony, which have since released many popular game consoles, such as Nintendo 64,
Nintendo Wii, and Sony Playstation.

One way of classifying games is by the type of platform they use: handheld games such
as Nintendo’s Game Boy, consoles such as Nintendo 64 and Microsoft’s Xbox that plug
into a television, or computer games that are either self-contained or offered over the
Internet. Regardless of the platform, there is always a computer in the background running
the simulation.

Another way of classifying games is by genres, based on the gameplay. Gameplay is the
type of interactions and experiences a player has during the interaction within the game.
Action games require a player to use quick reflexes and timing to overcome obstacles. There
are many subgenres of action games, such as beat ’em up and hack-and-slash games, which
include one-on-many close combat situations. In contrast, fighting games emphasize one-
on-one combat. Another subgenre of action games places the virtual world entirely within a
maze.

Gameplay The type of interactions and experiences a player has during the game

Shooter games focus on using projectile weapons in combat. Action-adventure games
present both short-term and long-term obstacles that must be overcome to succeed. Life-
simulation games allow the player to control one or more artificial lives. Role-playing games
allow the player to become a character in the story line of the game. Strategy games require
careful problem solving and planning to achieve victory within the confines of the game.

Creating the Virtual World
A game engine is a software system within which games can be created. A game engine
provides tools with the following functionality:

Game engine A software system within which computer games are created

■ A rendering engine for graphics
■ A physics engine to provide a collision detection system and dynamics simulation to

solve the problems related to forces affecting the simulated objects
■ A sound-generating component
■ A scripting language apart from the code driving the game
■ Animation
■ Artificial intelligence algorithms (e.g., path-finding algorithms)
■ A scene graph, which is a general data structure to hold the spatial representation in

a graphical scene

501

Collectively, these tools enable the game developer to create the virtual world of a game.
All game engines need to include a renderer, which uses a large chunk of the CPU’s
processing. The renderer actually visualizes the scene, putting the environment up on the
screen for the user to view. In addition, 3D objects are kept as vertices in a 3D world,
showing the computer where to fill in images on the screen. This is all part of the renderer’s
functions.

A physics engine simulates models based on Newtonian physics, using mass, velocity,
friction, and wind resistance calculations to determine which effects would occur in the real
world, so that those effects can then be duplicated in the game engine. The accuracy of the
simulation depends on the processing power of the system being used to create the content.
High-precision physics engines use more processing power to determine exact calculations,
so they are usually applied to animated movies. The physics engine used for computer
gaming simplifies the calculations in the game to make sure that a real-time response to an
action is achieved.

Collision detection algorithms check the accuracy of collision points or the intersection
of two solids. For example, in a game of bowling, a collision detection algorithm would be
used to determine the accuracy of the collision that occurs when the bowling ball intersects
with the pins. These calculations can apply to solid objects, liquids, and even “human”
characters. Rag-doll physics is a type of simulation used to accurately animate a “dying”
character’s movements or the movements of characters who are fighting. Rather than
having characters drop limply to the ground, rag-doll physics essentially connects a
character’s “bones” through a series of joints (just as an actual human has) to simulate
realistic movement.

Artificial intelligence provides the illusion of intelligence in the behavior and actions of
nonplayer characters. Essentially, it gives nonhuman entities algorithmic and mathematical
solutions for problem solving, simulation of human thought, and decision making. While
that might not sound terribly complicated, each idea must be expressed through
mathematical expression or a script that calculates the odds and anticipates possible actions
of the other human players. These nonplayer characters also need to have “knowledge” of
language, planning, recognition, and the ability to learn from the actions of those human
players around them.

?
Siri helps Autistic child

Siri, Apple’s iPhone assistant, has become the best friend of an autistic 13-year-old boy. She answers insistent and
repetitive questions patiently, never getting irritated. She even chided him when he uttered a few expletives.9

Game Design and Development
The game design process begins with a concept, preferably one that nobody has seen
before. After much brainstorming, the designer completes a game design document,
outlining the many different aspects of the game, including its story line, art, characters,
and environment. After the initial team is assigned to the project, the technical ideas for the

502

game really start to flow, as designers, programmers, and artists seek to ensure that the most
cutting-edge technology that they have at their fingertips is included in the game.

Once the game technology is at the point where actual gameplay can be developed, the
game design is often broken down into fundamental tasks, such as construction of a small
game segment, with subsequently developed segments then building on that part. For
example, when working on character movement, designers would first develop each
movement individually. They might start by making the characters move backward and
forward and turn in multiple directions, thereby ensuring that basic navigation through the
game is functioning. They would then build on that movement by adding options such as
running, jumping, or crouching. After each new section of the game is introduced, the
team must verify that the parts of the game developed previously still function with the new
aspects of the game.

The development of a new virtual environment requires decisions about how advanced
the graphics and simulations in the game should be. Developers may need to decide
between a 2D and a 3D game, or even whether artificial intelligence technology will be
included in the game. 3D images are created through the process of rendering—that is,
using computer programs to generate an image from a model. Much like an artist’s
rendering of a scene, the computer model would contain geometry, viewpoint, texture,
lighting, and shading information, all of which would allow the 3D image to be created
with as much detail as possible.

Designers need to develop their ideas beyond the storyline, character descriptions, and
environmental specifications. Put simply, they have to think about how the characters and
the environment will interact. These very visual aspects of the game may need a great deal
of fine-tuning before designers, programmers, and artists are satisfied with the results.
Inevitably, some elements will be missing from the design and will need to be added in
later. For example, do the characters walk or stroll when they move? Does the clothing
move with the characters’ movements? If the game is set outside, are all the true elements of
nature included? Does the wind blow? Are there birds and clouds in the sky? Do players
design their characters’ history themselves, or is that information written into the script? If
the game is a fantasy, which powers will the characters have? The list of elements that
designers need to think about is endless.

Although the first level of development sets the basic parameters for the design of the
game, the design constantly evolves and changes throughout the development and
production process. It is nearly impossible to stick to the original design, as the
development of a game involves too many different aspects, such as mechanics, art,
programming, audio, video, and scripting. All of these aspects depend on one another, and
all of them need to remain flexible as other features of the game advance. A big part of the
game design process is being willing to abandon much of the work that has been completed
when it becomes evident that the game needs to go in a new direction. The game’s content
may need to change as the game evolves, features and levels may be removed or added, art
may advance, and the entire backstory of the game may change.

Game Programming
When all the design decisions have been made, programmers produce the code to create the
virtual world of the game. The coding process is the single biggest endeavor in game

503

production, as it essentially runs all aspects of the game. Java is typically used for Android
games. Apple developers often use Objective C for mobile game development. C# is also
popular for game development, along with JavaScript and Lua. Some prominent engine
developers have created custom languages for games based on their engines, such as Epic
Game’s UnrealScript for the Unreal engine and Unity 3D.

A variety of application programming interfaces (APIs) and libraries are available to
assist developers with key programming tasks in the game. The choice of API determines
which vocabulary and calling conventions the programmer should employ to use the
services. The target game platform determines which service the programmer will use.
Some libraries allow for cross-platform development, which streamlines the development
pipeline and allows the programmer to program a game in a single language that will run
on several platforms (such as Microsoft Windows [for PCs], Nintendo Wii, and
Playstation). Also, because graphics are such an important feature in today’s gaming
industry, graphic APIs (such as Direct3D) are available to render 3D graphics in advanced
applications.

The coding begins with creation of the game loop. The game loop is responsible for
managing the game world, regardless of whether the user has provided any input. For
example, the game loop might update the enemy movement in the game, check for
victory/loss conditions, update the game elements throughout the game world, and process
input if provided. In short, the game loop manages the simulation.

Often, large design teams will have different programmers who focus on different
aspects of the game. For example, the senior engine programmer may write and maintain
the code for the game loop, design in-game engine editors, and make sure that the file
formats are acceptable for importing and exporting 2D and 3D art packages and
audio/video files. The 3D software programmer may design and implement the 3D
graphics component, while the user interface programmer works on the APIs in the game
engine. The programmers work together to create a streamlined, working game.

Despite beta testing and demoing, new computer games often have bugs. The beauty of
online games is that any “fixes,” maintenance, or addition of new features and upgrades can
be performed without interrupting the ongoing action.

SUMMARY

Simulation is a major area of computing that involves building computer models of
complex systems and experimenting with those models to observe their results. A model is
an abstraction of the real system in which the system is represented by a set of objects or
characteristics and the rules that govern their behavior.

There are two major types of simulation: continuous and discrete event. In continuous
simulation, changes are expressed in terms of partial differential equations that reflect the
relationships among the set of objects or characteristics. In discrete-event simulation,
behavior is expressed in terms of entities, attributes, and events, where entities are objects,
attributes are characteristics of an entity, and events are interactions among the entities.

Queuing systems are discrete-event simulations in which waiting time is the factor

504

being examined. Random numbers are used to simulate the arrival and duration of events,
such as cars at a drive-through bank or customers in a supermarket. Meteorological and
seismic models are examples of continuous simulation.

Computer graphics is a fascinating area that combines computers, science, and art.
Much of graphics depends on mathematical equations that simulate the natural phenomena
presented in the image. Computer graphics combines light interactions, object properties
such as transparency and surface texture, object shape, and physical properties to produce
images that approach the realism of an actual photograph.

Computer gaming is the simulation of a virtual world within which the players can
interact with the system and with each other. A game engine is a software system within
which game developers, designers, and programmers create a game’s virtual world.

ETHICAL ISSUES
Gaming as an Addiction

The term addiction refers to an obsession, compulsion, or excessive psychological
dependence on things such as drugs, alcohol, pornography, gambling, and food. Experts
have been exploring a new addiction: video gaming. Gaming addiction exhibits the
same symptoms as other impulse-control disorders. These symptoms include problems
at work or school, lying to family and friends, decreased attention to personal health,
carpal tunnel syndrome, dry eyes, failure to stop playing games, and sleep disturbances.

Studies conducted at the Stanford University School of Medicine have found
evidence that video gaming does, indeed, have addictive characteristics. Dr. Maressa
Hecht Orzack, a clinical psychologist at McLean Hospital in Massachusetts and founder
of Computer Addiction Service, claims that as many as 40% of World of Warcraft (a
wildly popular MMORPG—massively multiplayer online role-playing game) players are
addicted, and states that these games should come with warning labels, much like
cigarette packages do. Experts believe that these addictions are caused by individuals’
needs to form human connections, which they may be unable to achieve in the real
world but can easily achieve in a virtual fantasy world.

A 2007 Harris Interactive poll of 8- to 18-year-olds in the United States showed
that the average time spent playing video games varies by age and gender, with teenage
males averaging about five hours more per week than females. The Harris poll claimed
that 8.5% of the teens surveyed could be “classified as pathological or clinically
‘addicted’ to playing video games.” An MRI study conducted as part of the research at
Stanford University showed that the region of the brain that produces satisfying feelings
is more active in males than females during video game play.

Some countries have issued restrictions on the length of time that users can play
online games. China, for example, issued a rule in 2005 that limited online game play to
three hours per day. However, in 2007 the rule was changed, allowing players younger
than age 18 to play for an unlimited length of time but cutting off any experience their
characters might gain after five hours of play.

Many countries, including China, the Netherlands, the United States, and Canada,
have opened treatment centers, allowing people who are addicted to video games to go
through a form of detoxification (detox). However, treatment for video game users is

505

quite different from detoxing from an alcohol or drug addiction. Because computers are
such an important part of a person’s everyday routine at school or work, video game
addicts must learn to use computers responsibly rather than avoiding them altogether.

In May 2013, video game addiction was added to the American Psychiatric
Association’s Diagnostic and Statistical Manual of Mental Disorders (DSM) in the
“Conditions for Further Study” section as Internet gaming disorder. In January 2014,
Internet gaming disorder was included in the DSM as a formal diagnosis.

KEY TERMS

Computational biology
Computer gaming
Game engine
Game play
Model
Simulation

EXERCISES

For Exercises 1–8, match the kind of simulation with the example.
A. Continuous simulation
B. Discrete-event simulation

 1. Weather forecasting
 2. Stock portfolio modeling
 3. Seismic exploration
 4. Hurricane tracking
 5. Predicting the number of tellers a new bank needs
 6. Determining the number of waiting rooms necessary for a doctor’s office
 7. Gas exploration
 8. Air pollution movement

For Exercises 9–24, mark the answers true or false as follows:
A. True
B. False

 9. Simple systems are best suited to being simulated.
10. Complex systems are dynamic, interactive, and complicated.
11. A model is an abstraction of a real system.
12. The representation of a model may be concrete or abstract.
13. In computer simulations, the models are concrete.
14. The more characteristics or features represented in a model, the better.
15. Continuous simulations are represented by entities, attributes, and events.
16. Discrete-event simulations are represented by partial differential equations.

506

17. CAD stands for computer-aided drafting.
18. A time-driven simulation can be thought of as a big loop that executes a set of

rules for each value of the clock.
19. A model whose realization is within a computer program is an abstract model.
20. A concrete model can be realized within a computer program.
21. Red is the specular highlight on a green plastic ball if the light source is red.
22. A commonly used illumination model in computer graphics was developed in the

1970s.
23. Ambient light, diffuse reflection, and specular reflection are three components of a

common shading model for computer graphics.
24. Computer graphics relies on research from other scientific fields for equations used

in image creation.

Exercises 25–52 are problems or short-answer questions.
25. Define simulation and give five examples from everyday life.
26. What is the essence of constructing a model?
27. Name two types of simulations and distinguish between them.
28. What are the keys to constructing a good model?
29. What defines the interactions among entities in a discrete-event simulation?
30. What is the relationship between object-oriented design and model building?
31. Define the goal of a queuing system.
32. What are the four pieces of information needed to build a queuing system?
33. What part does a random number generator play in queuing simulations?
34. Write the rules for a queuing simulation of a one-pump gas station, where a car

arrives every three minutes and the service time is four minutes.
35. Do you think the gas station in

Exercise 34 will be in business very long? Explain.
36. Rewrite the simulation in Exercise 34 such that a car arrives every two minutes and

the service time is two minutes.
37. Write the rules for a queuing system for an airline reservation counter. There are

one queue and two reservation clerks. People arrive every three minutes and take
three minutes to be processed.

38. Distinguish between a FIFO queue and a priority queue.
39. What did SIMULA contribute to object-oriented programming methodology?
40. In general, meteorological models are based on the time-dependent equations of

what fields?
41. How much mathematics is necessary to be a meteorologist?
42. Why is there more than one weather prediction model?
43. Why do different meteorologists give different forecasts if they are using the same

models?
44. What are specialized meteorological models, and how are they used?
45. What are seismic models used for?
46. A random-number generator can be used to vary service times as well as determine

arrivals. For example, assume that 20% of customers take eight minutes and 80%
of customers take three minutes. How might you use a random-number generator
to reflect this distribution?

507

47. Why do we say that simulation doesn’t give an answer?
48. What do simulations and spreadsheet programs have in common?
49. Explain why shadows are important in graphics applications.
50. What type of mathematical objects would you need to use to create a model of a

table?
51. Explain why it is so difficult to get objects to move in computer animation.
52. Name five areas encompassed by computational biology.

THOUGHT QUESTIONS

 1. Priority queues (PQs) are very interesting structures. They can be used to simulate
a stack. How might you use a PQ as a stack?

 2. Priority queues can also be used to simulate a FIFO queue. How might you use a
PQ as a FIFO queue?

 3. In Chapter 8, we described the graph data structure. A depth-first traversal of a
graph uses a stack, and a breadth-first traversal of a graph uses a FIFO queue. Can
you explain why?

 4. In this chapter we described queuing systems where there is a queue for each
server. Other types of queuing systems exist as well. For example, in the airport
there is usually one queue for many servers. When a server is free, the person at the
front of the queue goes to that server. Could you represent this type of system in a
simulation?

 5. What other real-life situations can be modeled using a priority queue?
 6. CAD systems are now available for everyday use. Go to your local computer store

and see how many programs are available to help you design anything from a
kitchen to a guitar.

 7. Do you see video gaming as a problem for you or your friends? Has it affected
your own or a friend’s schoolwork?

 8. Do you know anyone whom you might consider to be addicted to video gaming?

508

THE COMMUNICATIONS LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits
5 Computing Components

The Programming Layer
6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages

The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer
15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion
18 Limitations of Computing

509

15 NETWORKS

For many years, computers have played as important a role in communication as they do in
computation. This communication is accomplished using computer networks. Like
complex highway systems that connect roads in various ways to allow cars to travel from
their origin to their destination, computer networks form an infrastructure that allows data
to travel from some source computer to a destination. The computer receiving the data may
be around the corner or around the world. This chapter explores some of the details of
computer networks.

GOALS
After studying this chapter, you should be able to:

■ describe the core issues related to computer networks.
■ list various types of networks and their characteristics.
■ explain various topologies of local-area networks.
■ explain why network technologies are best implemented as open systems.
■ compare and contrast various technologies for home Internet connections.
■ explain packet switching.
■ describe the basic roles of network protocols.
■ explain the role of a firewall.
■ compare and contrast network hostnames and IP addresses.
■ explain the domain name system.
■ describe cloud computing and its benefits.

15.1 Networking
A computer network is a collection of computing devices that are connected in various
ways to communicate and share resources. Email, instant messaging, and web pages all rely
on communication that occurs across an underlying computer network. We use networks
to share both intangible resources, such as files, and tangible resources, such as printers.

Computer network A collection of computing devices connected so that they can communicate and share
resources

Usually, the connections between computers in a network are made using physical
wires or cables. However, some connections are wireless, using radio waves or infrared

510

signals to convey data. Networks are not defined only by physical connections; they are
defined by the ability to communicate.

Wireless A network connection made without physical wires

Computer networks contain devices other than computers. Printers, for instance, can
be connected directly to a network so that anyone on the network can print to them.
Networks also contain a variety of devices for handling network traffic. We use the generic
terms node or host to refer to any device on a network.

Node (host) Any addressable device attached to a network

A key issue related to computer networks is the data transfer rate, the speed with which
data is moved from one place on a network to another. We are constantly increasing our
demand on networks as we rely on them to transfer more data in general, as well as data
that is inherently more complex (and therefore larger). Multimedia components such as
audio and video are large contributors to this increased traffic. Sometimes the data transfer
rate is referred to as the bandwidth of a network. (Recall that we discussed bandwidth in
Chapter 3 in the discussion of data compression.)

Data transfer rate (bandwidth) The speed with which data is moved from one place to another on a network

Another key issue in computer networks is the protocols they use. As we’ve mentioned
at other points in this book, a protocol is a set of rules describing how two things interact.
In networking, we use well-defined protocols to describe how transferred data is formatted
and processed.

Protocol A set of rules that defines how data is formatted and processed on a network

Computer networks have opened up an entire frontier in the world of computing called
the client/server model. No longer do you have to think of computers solely in terms of
the capabilities of the machine sitting in front of you. Instead, software systems are often
distributed across a network, in which a client sends a request to a server for information or
action, and the server responds, as shown in FIGURE 15.1.

Client/server model A distributed approach in which a client makes requests of a server and the server responds

511

FIGURE 15.1 Client/server interaction

For example, a file server is a computer that stores and manages files for multiple users
on a network. That way every user doesn’t need to have his or her own copy of the files. A
web server is a computer dedicated to responding to requests (from the browser client) for
web pages. Client/server relationships have become more complex as we rely heavily on
networks in our everyday lives. Therefore, the client/server model has become increasingly
important in the world of computing.

File server A computer dedicated to storing and managing files for network users

Web server A computer dedicated to responding to requests for web pages

The client/server model has also grown beyond the basic request/response approach.
Increasingly, it is being used to support parallel processing, in which multiple computers
are used to solve a problem by breaking it into pieces, as discussed in Chapter 5. Using
networks and the client/server model, parallel processing can be accomplished by the client
requesting that multiple machines perform specific, separate parts of the same problem.
The client then gathers their responses to form a complete solution to the problem.

Another approach for computer interaction across networks is the P2P model, or peer-
to-peer model. Instead of having a central server from which clients obtain information, a
peer-to-peer network is decentralized, with nodes that share both resources and the
responsibility for making these resources available to other peers. Depending on the
request, a peer may act as a client or a server.

P2P model A decentralized approach that shares resources and responsibilities among many “peer” computers

In a P2P network, a request for a file may go to several other peers in the network. If a
peer does not have the file, it forwards the request to other peers, and so on, until the file is
found. Then (usually) a connection is made directly between the requesting peer and the
peer that has the resource to transfer the file.

The P2P model eliminates the need for a single server to hold all resources because it
distributes the communication among many computers. However, these advantages also
bring drawbacks: A P2P network is more difficult to administer and prone to security
problems.

Types of Networks
Computer networks can be classified in various ways. A local-area network (LAN)
connects a relatively small number of machines in a relatively close geographical area. LANs
are usually confined to a single room or building. They may sometimes span a few close
buildings.

Local-area network (LAN) A network connecting a small number of nodes in a close geographic area

512

Various configurations, called topologies, have been used to administer LANs. A ring
topology connects all nodes in a closed loop on which messages travel in one direction. The
nodes of a ring network pass along messages until they reach their destination. A star
topology centers on one node to which all others are connected and through which all
messages are sent. A star network puts a huge burden on the central node; if it is not
working, communication on the network is not possible. In a bus topology, all nodes are
connected to a single communication line that carries messages in both directions. The
nodes on the bus check any message sent on the bus but ignore any that are not addressed
to them. These topologies are pictured in FIGURE 15.2. A bus technology called Ethernet
has become the industry standard for local-area networks.

Ring topology A LAN configuration in which all nodes are connected in a closed loop

Star topology A LAN configuration in which a central node controls all message traffic

Bus topology A LAN configuration in which all nodes share a common line

Ethernet The industry standard for local-area networks, based on a bus topology

A wide-area network (WAN) connects two or more local-area networks over a
potentially large geographic distance. A WAN permits communication among smaller
networks. Often one particular node on a LAN is set up to serve as a gateway to handle all
communication going between that LAN and other networks. See FIGURE 15.3.

Wide-area network (WAN) A network connecting two or more local-area networks

Gateway A node that handles communication between its LAN and other networks

Communication between networks is called internetworking. The Internet, as we know
it today, is essentially the ultimate wide-area network, spanning the entire globe. The
Internet is a vast collection of smaller networks that have all agreed to communicate using
the same protocols and to pass along messages so that they can reach their final destination.

Internet A wide-area network that spans the planet

The term metropolitan-area network (MAN) is sometimes used to refer to a large
network that covers a campus or a city. Compared to a general wide-area network, a MAN
is more narrowly focused on a particular organization or geographic area. A MAN that
services a college or business campus typically interconnects the local-area networks used by
various buildings and departments. Some cities have formed a MAN in their geographical
area to service the general populace. Metropolitan-area networks are often implemented
using wireless or optical fiber connections.

Metropolitan-area network (MAN) A network infrastructure developed for a large city

513

FIGURE 15.2 Network topologies

FIGURE 15.3 Local-area networks connected across a distance to create a wide-area
network

Internet Connections

Wireless and Mobile Computing
Today we are often computing on the go, using wireless devices such as smartphones,
tablets, and laptops. A wireless network is one in which at least one node serves as a wireless
access point, allowing appropriate devices to interact with other network resources without
being physically connected. That access point is usually wired to other network nodes in
conventional ways.

514

Wireless network A network in which devices communicate with other nodes through a wireless access point

You may, for instance, have a wireless access point set up in your home or business that
allows your tablet to connect to the Internet. Using radio waves, your tablet exchanges
information with the wireless access point, which in turn communicates with other
network resources, including the node that is connected to the Internet.

Wireless networks give the user tremendous freedom and flexibility. They greatly
reduce installation costs by eliminating the need to run wires. However, they are more
prone to electromagnetic interference than wired networks, and they must cope with access
control challenges that a wired connection does not.

On a smaller scale, Bluetooth technology allows wireless communication between
devices over a short distance. A Bluetooth device uses radio waves in a particular bandwidth
and is significantly limited in range compared to other wireless technology. However, it
solves many short-range problems, such as communication between your cell phone and a
hands-free headset, between your media device and a car stereo system, and between a
computer and a wireless keyboard, mouse, or trackpad.

Bluetooth A technology used for wireless communication over short distances

So who owns the Internet? Well, no one. No single person or company owns the
Internet or even controls it entirely. As a wide-area network, the Internet is made up of
many smaller networks. These smaller networks are often owned and managed by a person
or organization. The Internet, then, is defined by how connections can be made among
these networks.

The Internet backbone refers to a set of high-capacity data routes that carry Internet
traffic. These routes are provided by various companies such as AT&T, Verizon, and
British Telecom, as well as by several government and academic sources. The backbone
networks all operate using connections that have high data transfer rates, ranging from 1.5
megabits per second to more than 600 megabits per second (using special optical cables).
Keep in mind, though, that Internet routes, including the backbone networks, employ a
large amount of redundancy, so there is really no central network.

Internet backbone A set of high-speed networks carrying Internet traffic

Organizations that provide companies or individuals with access to the Internet are
called Internet service providers (ISPs). TV cable and satellite companies often provide
ISP services as well, which makes sense given the communication infrastructure they
already have in place. An ISP is not always a commercial organization, though—some are
set up as community or nonprofit organizations. An ISP connects directly to the Internet
backbone or to a larger ISP that has a connection to the backbone.

Internet service provider (ISP) An organization providing access to the Internet

515

You can use any of several technologies to connect a home computer to the Internet.
The three most popular techniques for home connections are phone modems, digital
subscriber lines, and cable modems. Let’s examine each in turn.

The telephone system had already connected homes throughout the world long before
the desire for Internet connections came along. Therefore, it makes sense that the first
technique for home-based network communication was a phone modem. The word modem
stands for modulator/demodulator. A phone modem converts computer data into an analog
audio signal for transfer over a telephone line, and then a modem at the destination
converts it back into data again. One audio frequency is used to represent binary 0 and
another to represent binary 1.

Phone modem A device that converts computer data into an analog audio signal and back again

?
SETI at home

SETI@Home (SETI at home) is a distributed computing experiment that uses Internet-connected computers in the
search for extraterrestrial intelligence (SETI). It is hosted by the Space Sciences Laboratory at the University of
California, Berkeley. SETI@home uses spare computing capacity on users’ computers to analyze data collected by
the Arecibo radio telescope, which is searching for possible evidence of radio transmissions from extraterrestrial
intelligence. The project has millions of participants worldwide, and it is acknowledged by the Guinness Book of
World Records as the largest computation in history. BOINC (Berkeley Open Infrastructure for Network
Computing) is a middleware system for volunteer and grid computing originally developed to support
SETI@home. BOINC lets users donate their idle computer time to projects such as SETI@home. It is now being
used for other applications as well, such as mathematics, medicine, molecular biology, climatology, and
astrophysics. BOINC has 847,470 active computers worldwide.

To use a phone modem, you must first establish a telephone connection between your
home computer and a computer that is permanently connected to the Internet. That’s
where your Internet service provider comes in. You pay your ISP a monthly fee for the
right to call one of several (preferably local) computers that it has set up for this purpose.
Once that connection is made, you can transfer data via your phone lines to your ISP,
which then sends it on its way through the Internet backbone. Incoming traffic is routed
through your ISP to your home computer.

This approach was fairly simple to implement because it does not require any special
effort on the part of the telephone company. Because the data is treated as if it were a voice
conversation, no special translation is needed except at either end. But that convenience
comes at a price. The data transfer rate available with this approach is limited to that of
analog voice communication, usually 64 kilobits per second at most.

A phone line can provide a much higher transfer rate if the data is treated as digital
rather than analog. A digital subscriber line (DSL) uses regular copper phone lines to
transfer digital data to and from the phone company’s central office. Because DSL and
voice communication use different frequencies, it is even possible to use the same phone
line for both purposes.

Digital subscriber line (DSL) An Internet connection made using a digital signal on regular phone lines

516

To set up a DSL connection, your phone company may become your Internet service
provider, or it may sell the use of its lines to a third-party ISP. To offer DSL service, the
phone company must set up special computers to handle the data traffic. Although not all
phone companies support DSL yet, it is becoming an increasingly popular approach.

With DSL, there is no need to “dial in” to create the network connection, unlike with a
phone modem. The DSL line maintains an active connection between your home and a
computer at the ISP. However, to take advantage of DSL technology, your home must be
within a certain distance from the central office; otherwise, the digital signal degrades too
much while traveling between those two points.

A third option for home connections is a cable modem. In this approach, data is
transferred on the same line that your cable TV signals come in on. Several leading cable
TV companies in North America have pooled their resources to create Internet service
providers for cable modem service.

Cable modem A device that allows computer network communication using the cable TV hookup in a home

Both DSL connections and cable modems fall into the category of broadband
connections. Depending on the location and whether access is by satellite, phone wire,
video cable, or fiber optics, it is possible to obtain broadband transfer speeds that range
from 384 kilobits per second to 50 megabits per second or more. Households have moved
away from the use of phone modems to a broadband solution for their computing network
needs. Debate between the DSL and cable modem communities continues to rage to see
who can claim the dominant market share. Both generally provide data transfer speeds in
the range of 1.5 to 3 megabits per second.

Broadband Network technologies that generally provide data transfer speeds greater than 256 Kbps

For both DSL and cable modems, the speed for downloads (getting data from the
Internet to a local computer) may not be the same as the speed for uploads (sending data
from a local computer to the Internet). Most traffic for home Internet users consists of
downloads: receiving web pages to view and retrieving data (such as programs and audio
and video clips) stored somewhere else on the network. You perform an upload when you
send an email message, submit a web-based form, or request a new web page. Because
download traffic dominates upload traffic, many DSL and cable modem suppliers use
technology that devotes more speed to downloads.

Download Receiving data on a local computer from the Internet

Upload Sending data from a local computer to a destination on the Internet

Packet Switching

517

To improve the efficiency of transferring data over a shared communication line, messages
are divided into fixed-size, numbered packets. These packets are sent over the network
individually to their destination, where they are collected and reassembled into the original
message. This approach is referred to as packet switching.

Packet A unit of data sent across a network

Packet switching The approach to network communication in which packets are individually routed to their
destination, then reassembled

The packets of a message may take different routes on their way to the final destination.
Therefore, they may arrive in a different order than the way they were sent. The packets
must be put into the proper order once again and then combined to form the original
message. FIGURE 15.4 illustrates this process.

FIGURE 15.4 Messages sent by packet switching

Doug Engelbart

Courtesy of Doug Engelbart Institute

“Build a better mousetrap, and the world will beat a path to your door. Invent the
computer mouse, and the world will all but forget your name.” This was the lead
paragraph in an article celebrating the twentieth birthday of the computer mouse.1

Designed by Doug Engelbart—the name that was forgotten—and a group of young

518

scientists and engineers at Stanford Research Institute, the computer mouse debuted in
1968 at the Fall Joint Computer conference as part of a demonstration later called “the
mother of all demos” by Andy van Dam. The historic demonstration foreshadowed
human–computer interaction and net working. It wasn’t until 1981 that the first
commercial computer with a mouse was introduced, however. In 1984, the Apple
Macintosh brought the mouse into the mainstream. To this day, no one seems to know
where the term “mouse” came from.

Engelbart grew up on a farm near Portland, Oregon, during the Depression. He
served in the Navy in the Philippines during World War II as an electronics technician.
Engelbart completed his electrical engineering degree in 1948 from Oregon State
University and moved to the San Francisco Bay Area. In 1955 he received a PhD from
the University of California at Berkeley and joined the Stanford Research Institute.

Engelbart’s vision of the computer as an extension of human communication
capabilities and a resource for the augmentation of human intellect was outlined in the
seminal paper “Augmenting Human Intellect: A Conceptual Framework,” published in
1962. He never lost this vision. For the remainder of his life, he developed models to
improve the co-evolution of computers with human organizations to boost collaboration
and to create what he called “high-performance organizations.”2

During the 1970s and 1980s, Engelbart was Senior Scientist at Tymshare, which
was bought by McDonnell-Douglas. He founded the Bootstrap Institute in 1988, of
which his daughter, Christina Engelbart, is now executive director. In 2005 he received
a National Science Foundation grant to fund the open-source HyperScope project.
Since its inception in 2006, he has been on the board of advisors of the Hyperwords
Company in the United Kingdom.

Engelbart felt encouraged by the open-source movement, in which programmers
collaborate to create advanced and complicated software. He worked on a system of
open software that can be distributed for free over the Internet.

Recognition may have been long in coming, but Englebart received 32 awards
between 1987 and 2001, including the Turing Award in 1997 and the National Medal
of Technology in 2000. The citations for these two prestigious awards read as follows:

(Turing Award) For an inspiring vision of the future of interactive computing
and the invention of key technologies to help realize this vision.

(National Medal of Technology) For creating the foundations of personal
computing including continuous real-time interaction based on cathode-ray
tube displays and the mouse, hypertext linking, text editing, online journals,
shared-screen teleconferencing, and remote collaborative work.

Engelbart died in July 2013 at his home in Atherton, California. He was 88.

A packet may make several intermediate hops between computers on various networks
before it reaches its final destination. Network devices called routers direct the packets as
they move between networks. Intermediate routers don’t plan out the packet’s entire
course; each router merely knows the best next step to get it closer to its destination.
Eventually a message reaches a router that knows where the destination machine is. If a

519

path is blocked due to a down machine, or if a path currently has a lot of network traffic, a
router might send a packet along an alternative route.

Router A network device that directs a packet between networks toward its final destination

If a communication line spans a long distance, such as across an ocean, devices called
repeaters are installed periodically along the line to strengthen and propagate the signal.
Recall from Chapter 3 that a digital signal loses information only if it is allowed to degrade
too much. A repeater keeps that from happening.

Repeater A network device that strengthens and propagates a signal along a long communication line

?
What is a protocol?

Protocol is defined as a code prescribing strict adherence to correct etiquette and procedure (as in a diplomatic
exchange). Computing terminology has borrowed the word to describe the correct etiquette for computers to use
when communicating with one another.

15.2 Open Systems and Protocols
Many protocols have been defined to assist in network communication. Some have gained
a stronger foothold than others because of many reasons, often historical in nature. This
section focuses on the protocols used for general Internet traffic. Before we discuss the
details of particular protocols, however, it is important to put them in context by discussing
the concept of an open system.

Open Systems
Early in the development of computer networks, commercial vendors came out with a
variety of technologies that they hoped businesses would adopt. The trouble was that these
proprietary systems were developed with their own particular nuances and did not permit
communication between networks of differing types. As network technologies grew, the
need for interoperability became clear; we needed a way for computing systems made by
different vendors to communicate.

Proprietary system A system that uses technologies kept private by a particular commercial vendor

Interoperability The ability of software and hardware on multiple machines and from multiple commercial
vendors to communicate

An open system is one based on a common model of network architecture and a suite

520

of protocols used in its implementation. Open-system architectures maximize the
opportunity for interoperability.

Open system A system that is based on a common model of network architecture and an accompanying suite of
protocols

The International Organization for Standardization (ISO) established the Open
Systems Interconnection (OSI) Reference Model to facilitate the development of network
technologies. It defines a series of layers of network interaction. FIGURE 15.5 shows the
seven layers of the OSI Reference Model.

Open Systems Interconnection (OSI) Reference Model A seven-layer logical breakdown of network interaction
to facilitate communication standards

Each layer deals with a particular aspect of network communication. The highest level
deals with issues that relate most specifically to the application program in question. The
lowest layer deals with the most basic electrical and mechanical issues of the physical
transmission medium (such as types of wiring). The other layers fill in all other aspects. The
network layer, for example, deals with the routing and addressing of packets.

The details of these layers are beyond the scope of this book, but it is important to
know that networking technology as we know it today is possible only through the use of
open-system technology and approaches such as the OSI Reference Model.

FIGURE 15.5 The layers of the OSI Reference Model

Network Protocols
Following the general concepts of the OSI Reference Model, network protocols are layered
such that each one relies on the protocols that underlie it, as shown in FIGURE 15.6. This
layering is sometimes referred to as a protocol stack. The layered approach allows new
protocols to be developed without abandoning fundamental aspects of lower levels. It also
provides more opportunity for their use, in that the impact of new protocols on other

521

aspects of network processing is minimized. Sometimes protocols at the same level provide
the same service as another protocol at that level, but do so in a different way.

Protocol stack Layers of protocols that build and rely on each other

A protocol is, in one sense, nothing more than an agreement that a particular type of
data will be formatted in a particular manner. The details of file formats and the sizes of
data fields are important to software developers who are creating networking programs, but
we do not explore those details here. The importance of these protocols is simple to
understand: They provide a standard way to interact among networked computers.

The lower two layers in Figure 15.6 form the foundation of Internet communication.
Other protocols, sometimes referred to as high-level protocols, deal with specific types of
network communication. These layers are essentially one particular implementation of the
OSI Reference Model and correspond in various ways to the levels described in that model.
Let’s explore these levels in more detail.

TCP/IP
TCP stands for Transmission Control Protocol and IP stands for Internet Protocol. The
name TCP/IP (pronounced by saying the letters T-C-P-I-P) refers to a suite of protocols
and utility programs that support low-level network communication. The name TCP/IP is
written to reflect the nature of the protocols’ relationship: TCP rests on top of the IP
foundation.

Transmission Control Protocol (TCP) The network protocol that breaks messages into packets, reassembles them
at the destination, and takes care of errors

Internet Protocol (IP) The network protocol that deals with the routing of packets through interconnected
networks to the final destination

TCP/IP A suite of protocols and programs that support low-level network communication

IP software deals with the routing of packets through the maze of interconnected
networks to their final destination. TCP software breaks messages into packets, hands them
off to the IP software for delivery, and then orders and reassembles the packets at their
destination. TCP software also deals with any errors that occur, such as if a packet never
arrives at the destination.

FIGURE 15.6 Layering of key network protocols

UDP stands for User Datagram Protocol. It is an alternative to TCP. That is, UDP

522

software plays the same role as TCP software. The main difference is that TCP is highly
reliable, at the cost of decreased performance, whereas UDP is less reliable, but generally
faster. UDP is part of the TCP/IP suite of protocols. Because of the heavy reliance on TCP,
and for historical reasons, the entire suite is referred to as TCP/IP.

User Datagram Protocol (UDP) An alternative to TCP that achieves higher transmission speeds at the cost of
reliability

An IP program called ping can be used to test the reachability of network designations.
Every computer running IP software “echoes” ping requests, which makes ping a
convenient way to test whether a particular computer is running and can be reached across
the network. The name ping was chosen to match the term used when submarines send out
a sonar pulse and listen for the returned echo. Because ping works at the IP level, it often
responds even when higher-level protocols might not. The term ping is often used as a verb
among network administrators: “Ping computer X to see if it is alive.”

Ping A program used to test whether a particular network computer is active and reachable

Another TCP/IP utility program called traceroute shows the route that a packet takes
to arrive at a particular destination node. The output of traceroute is a list of the computers
that serve as the intermediate stopping points along the way.

Traceroute A program that shows the route a packet takes across the Internet

The screenshot in FIGURE 15.7 shows the traceroute utility in action. It illustrates the
hops used for communication between a computer in Florida and a server used by
google.com.

523

http://google.com

FIGURE 15.7 The traceroute utility
Used with permission from Microsoft

?
Sir Bill?

Bill Gates, co-founder of the Microsoft® Corporation with Paul Allen, is one of the best-known innovators of the
PC revolution. He is consistently ranked as one of the world’s wealthiest people. After his last full-time day at
Microsoft in June 2008, he turned his attention to the Bill and Melinda Gates Foundation—the philanthropic
institution he co-founded with his wife—which is currently the largest transparently operated charitable foundation
in the world. In 2005, Gates received an honorary knighthood from Queen Elizabeth II in a private ceremony. He
was honored for his charitable activities around the world and his contribution to the high-tech enterprise in Great
Britain.

High-Level Protocols
Other protocols build on the foundation established by the TCP/IP protocol suite. Here
are some of the key high-level protocols:

■ Simple Mail Transfer Protocol (SMTP)—A protocol used to specify the transfer of
electronic mail.

■ File Transfer Protocol (FTP)—A protocol that allows a user on one computer to
transfer files to and from another computer.

■ Telnet—A protocol used to log into a computer system from a remote computer. If
you have an account on a particular computer that allows telnet connections, you
can run a program that uses the telnet protocol to connect and log in to that
computer as if you were seated in front of it.

■ Hypertext Transfer Protocol (HTTP)—A protocol defining the exchange of World
Wide Web documents, which are typically written using the Hypertext Markup
Language (HTML). HTML is discussed further in Chapter 16.

These protocols all build on TCP. Some high-level protocols have also been defined
that build on top of UDP to capitalize on the speed it provides. However, because UDP
does not provide the reliability that TCP does, UDP protocols are less popular.

Several high-level protocols have been assigned a particular port number. A port is a
numeric designation that corresponds to a particular high-level protocol. Servers and
routers use the port number to help control and process network traffic. FIGURE 15.8
lists common protocols and their ports. Some protocols, such as HTTP, have default ports
but can use other ports as well.

Port A numeric designation corresponding to a particular high-level protocol

524

FIGURE 15.8 Some protocols and the ports they use

MIME Types
Related to the idea of network protocols and standardization is the concept of a file’s
MIME type. MIME stands for Multipurpose Internet Mail Extension. Although MIME
types do not define a network protocol, they define a standard for attaching or including
multimedia or otherwise specially formatted data with other documents, such as email.

MIME type A standard for defining the format of files that are included as email attachments or on websites

Based on a document’s MIME type, an application program can decide how to deal
with the data it is given. For example, the program you use to read email may examine the
MIME type of an email attachment to determine how to display it (if it can).

MIME types have been defined for the documents created by many common
application programs, as well as for data from particular content areas. Chemists and
chemical engineers, for example, have defined a large set of MIME types for various types
of chemical-related data.

Firewalls
A firewall is a machine and its software that serve as a special gateway to a network,
protecting it from inappropriate access. A firewall filters the network traffic that comes in,
checking the validity of the messages as much as possible and perhaps denying some
messages altogether. The main goal of a firewall is to protect (and, to some extent, hide) a
set of more loosely administered machines that reside “behind” it. This process is pictured
in FIGURE 15.9.

525

Firewall A gateway machine and software that protects a network by filtering the traffic it allows

A firewall enforces an organization’s access control policy. For example, a particular
organization may allow network communication only between its users and the “outside
world” via email, but deny other types of communication, such as accessing websites.
Another organization may allow its users to freely access the resources of the Internet, but
may not want general Internet users to be able to infiltrate its systems or gain access to its
data.

Access control policy A set of rules established by an organization that specify which types of network
communication are permitted and denied

The system administrators of an organization set up a firewall for their LAN that
permits “acceptable” types of communication and denies other types. This policy can be
implemented in a variety of ways, although the most straightforward approach is to deny
traffic on particular ports. For example, a firewall could be set up to deny a user outside the
LAN the ability to create a telnet connection to any machine inside the LAN by denying all
traffic that comes in on port 23.

FIGURE 15.9 A firewall protecting a LAN.

More sophisticated firewall systems may maintain internal information about the state
of the traffic passing through them and/or the content of the data itself. The more a firewall

526

can determine about the traffic, the more able it is to protect its users. Of course, this
security comes at a price. Some sophisticated firewall approaches might create a noticeable
delay in network traffic.

A firewall is a low-level network communication mechanism. There are many other
issues related to the security of information that every user should know as well. These
issues are discussed in Chapter 17.

15.3 Network Addresses
When you communicate across a computer network, you ultimately communicate with one
particular computer out of all possible computers in the world. There is a fairly
sophisticated mechanism for identifying specific machines to establish that communication.

A hostname is a unique identification that specifies a particular computer on the
Internet. Hostnames are generally readable words separated by dots. For example:

Hostname A name made up of words separated by dots that uniquely identifies a computer on the Internet; each
hostname corresponds to a particular IP address

matisse.csc.villanova.edu
condor.develocorp.com

We humans prefer to use hostnames when dealing with email addresses and websites
because they are easy to use and remember. Behind the scenes, however, network software
translates a hostname into its corresponding IP address, which is easier for a computer to
use. An IP address can be represented as a series of four decimal numbers separated by dots.
For example:

IP address An address made up of numeric values separated by dots that uniquely identifies a computer on the
Internet

205.39.155.18
193.133.20.4

One form of IP address is stored in 32 bits and referred to as IP4. Each number in an
IP address corresponds to one byte in the IP address. Because one byte (8 bits) can
represent 256 things, each number in an IP address is in the range 0 to 255. See FIGURE
15.10.

A major problem with the IPv4 strategy is that it is limited in the number of unique
computers (around four billion) it could identify. As Internet use increased, especially with
the popularity of mobile computing devices such as smartphones and tablets, the supply of
unique 4-byte IP addresses dwindled. In early 2011, the last block of IPv4 addresses was
assigned.

IPv6 is the successor to IPv4. Instead of using 32 bits, organized in four groups of
eight, IPv6 addresses use 128 bits, organized in eight groups of 16. An IPv6 address is
usually written using hexadecimal digits to keep the length manageable. For example:

527

http://matisse.csc.villanova.edu
http://condor.develocorp.com

FE80:0000:0000:0000:0202:B3FF:FE1E:8329

In addition to providing many more addresses, the IPv6 protocol provides several
additional features that improve the management of network traffic. IPv6 operates in
parallel with IPv4 addressing, creating essentially two parallel networks.

FIGURE 15.10 An IP address stored in four bytes

Domain Name System
A hostname consists of the computer name followed by the domain name. For example, in
the hostname

Domain name The part of a hostname that specifies a specific organization or group

matisse.csc.villanova.edu

matisse is the name of a particular computer, and csc.villanova.edu is the
domain name. A domain name is separated into two or more sections that specify the
organization, and possibly a subset of an organization, of which the computer is a part. In
this example, matisse is a computer in the Department of Computing Sciences at
Villanova University.

The domain names narrow in on a particular set of networks controlled by a particular
organization. Note that two organizations (or even suborganizations) can have a computer
named the same thing because the domain name makes it clear which one is being referred
to.

The very last section of the domain is called its top-level domain (TLD) name.
FIGURE 15.11 lists some of the primary top-level domains. Some TLDs (noted by
asterisks in Figure 15.11) have been around since the Internet was first established; others
are relatively recent additions.

Top-level domain (TLD) The last section of a domain name, specifying the type of organization or its country of
origin

528

http://matisse.csc.villanova.edu
http://csc.villanova.edu

FIGURE 15.11 Some top-level domains and their general purpose (* indicates an original
TLD)

ICANN, which stands for Internet Corporation for Assigned Names and Numbers, is the
international authority that manages TLD names.

ICANN The international organization that approves top-level domain names

A TLD generally indicates a particular type of organization, such as .com for
commercial businesses and .edu for colleges and universities. Some TLDs (such as .edu)
are carefully controlled, with registration restricted to only bona fide organizations of a
particular type. Other TLDs are unrestricted in that sense. Organizations based in countries
other than the United States often use a top-level domain that corresponds to their two-
letter country codes. Some of these codes (there are hundreds of them) are listed in
FIGURE 15.12.

The unrestricted nature of the .com, .org, and .net TLDs initially allowed anyone
or any organization to register a domain name for its own use as long as that name hadn’t
already been taken. As the Internet expanded, this naming system became a problem.
Newcomers to the Internet lamented that the best domain names had already been taken.
Sometimes a name had already been claimed by another similar organization. In other cases
people tried to claim as many popular names as possible, hoping to sell (some would say

529

ransom) them to large corporations.
This practice is called domain squatting, and is generally considered unethical. To

alleviate this problem, additional top-level domains have been approved and made available
over time. The ability to register a domain name using one of the newer TLDs has been
somewhat controlled, giving preference to organizations that hold trademarks on particular
names.

Domain squatting Purchasing a domain name with the sole intent of selling it at a high price to a person or
organization that actually wants to use it

In 2011, the pressure for more domain options led ICANN to approve a program to
greatly expand the number of generic TLDs. Companies and organizations were allowed to
submit applications for potential new TLDs.

FIGURE 15.12 Some of the top-level domain names based on country codes.

Some of the new TLDs will be controlled by particular corporate brands, but many will
be available for general use. Hundreds of the new TLDs are already available as of this
printing (early 2015), and it is expected that more than 1,300 total will become available
over the next few years.

Here is a very small, random selection of TLDs that are already available:

530

A full list of the names and their availability can be found at:

newgtlds.icann.org.

Although the new TLDs don’t change how the Internet domain name system works,
they are expected to have a significant impact on the way people find information and how
businesses create their online presence.

The domain name system (DNS) is chiefly used to translate hostnames into numeric
IP addresses. Before the DNS system was established, a Stanford research group maintained
a single file known as the host table. As new hostnames were established, the Stanford group
would add them to the table (usually twice a week). System administrators would retrieve
the revised host table occasionally to update their domain name servers, which are
computers that translate (resolve) a hostname into its IP address.

Domain name system A distributed system for managing hostname resolution

Domain name server A computer that attempts to translate a hostname into an IP address

As the number of hostnames grew, the single-table approach became unreasonable. It
simply wasn’t a practical way to update and distribute the information. In 1984, network
engineers designed the more sophisticated domain name system that is in use today. DNS
is an example of a distributed database; no one organization is responsible for updating the
hostname/IP mappings.

When you specify a hostname in a browser window or email address, the browser or
email software sends a request to a nearby domain name server. If that server can resolve the
hostname, it does so. If not, that server asks another domain name server for help. If the
second server can’t resolve it, the request continues to propagate. Ultimately, either the
request reaches a server that can resolve the name or the request expires because it took too
much time to resolve.

?
In 1976, an engineering intern working for Hewlett-Packard built a prototype for a personal computer. He offered
it to HP, but they turned it down and gave him rights to the product. The intern was Stephen Wozniak. The
machine was the first Apple Computer he and Steve Jobs manufactured in their garage.4

531

http://newgtlds.icann.org

Who Controls the Internet?
These are interesting times for the Internet. Two recent developments, in particular, may
have significant impacts on its use.

The Internet began as the ARPANET, a project of the U.S. Department of Defense.
Initially, the United States explicitly controlled the assignment and management of IP
addresses and domain names. In 1998, those responsibilities were subcontracted to
ICANN, an international nonprofit organization, but the United States remained the
dominant player.

In March 2014, the U.S. government announced that it will reduce its role in this
process. A new international organization, whose structure and administration is now being
determined, will take control as early as 2015.

It was widely expected that the United States would eventually decrease its role, but
that effort was spurred forward by revelations that U.S. intelligence agencies such as the
NSA have been intercepting Internet traffic.

As you can imagine, there is great concern across the globe about how exactly this new
governing organization will work. Many voices from around the world will vie to be heard
as these important decisions are made.

Another Internet-related issue comes from a recent plan suggested by the Federal
Communications Commission (FCC) to allow ISPs to provide “premium” access to certain
customers. Currently, no distinction is made between customers. Information is
transmitted to everyone as fast as the technology allows. The new plan would allow ISPs to
transfer data at higher speeds to those who pay for the privilege, perhaps by deliberately
slowing down data transfer to those who don’t.

At the heart of this argument is the concept of network neutrality, which prohibits
playing favorites among Internet consumers. This topic has become highly politicized, and
how it plays out will have a significant impact on the use of the Internet.

Network neutrality The principle that ISPs should deliver data to everyone equally, as fast as the technology allows

15.4 Cloud Computing
You may have heard the term cloud computing in various contexts—it has become a popular
phrase in regard to the use of the Internet, though it isn’t always clearly defined. Cloud
computing is a service through which you can obtain storage space, automatic
synchronization of devices, and access to other resources on the Internet.

Cloud computing A service that provides storage space and other resources on the Internet

532

FIGURE 15.13 Internet communication depicted using a cloud

The name cloud computing comes from diagrams, like FIGURE 15.13, that show
network communication going through an amorphous cloud to get to a resource. The
point is that we don’t necessarily know or care where the resource is or how the
communication gets routed; we just want the resource.

You may already use the concept of cloud computing on a small scale with an email
account. For example, an email service such as Google’s Gmail stores and manages your
email on its network servers. When you use a browser or other email client to access your
email, it’s downloaded onto your computer or mobile device. That way, you don’t have to
worry about what computer you’re using or where you are when you access it.

Cloud computing takes that concept to a larger scale. You can store not just email but
also documents, images, videos, etc. on network servers instead of a local machine. Again,
that way you’ll have access to these files wherever you are.

Cloud services usually provide other benefits as well. A cloud service typically makes
backups of your data, relieving you of that responsibility. Some provide web hosting
capabilities as part of their service. Some support synchronization services that keep things
like browser bookmarks in sync on multiple devices automatically.

?
Gaming can be dangerous

In 2005, a South Korean man died after reportedly playing video games for 50 hours straight. In 2012, a Taiwanese
man was discovered dead in his gaming chair, killed by a heart attack, arms still outstretched toward his computer.3

While cloud computing is a good approach for many individuals, it is also becoming a
popular way for businesses to manage resources. It relieves the business of potentially
expensive hardware and software resources, as well as the personnel needed to manage the
data in house.

There are different types of cloud services available:

■ Public cloud—accessible by any subscriber
■ Private cloud—established for a specific group or organization, limiting access to

that group
■ Community cloud—shared among two or more organizations with similar needs
■ Hybrid cloud—some combination of the above cloud types

533

Some cloud services are free, and services that charge a fee vary in cost significantly. If
you’re interested in cloud computing, research your options carefully.

SUMMARY

A network is a collection of computers connected to share resources and data. Network
technologies must concern themselves with underlying protocols and data transfer speeds.
The client/server model has emerged as an important software technology given our ever-
increasing reliance on networks.

Networks are often classified by their scope. A local-area network (LAN) covers a small
geographic area and a relatively small number of connected devices. A wide-area network
(WAN) embraces the concept of internetworking, connecting one network to another, and
covers a large geographic area. A metropolitan-area network (MAN) is specially designed
for large cities. LAN topologies include ring, star, and bus networks. Ethernet has become a
standard topology for local-area networks.

Open systems are based on a common model of network architecture and protocols,
allowing for interoperability. The OSI Reference Model is a seven-layer description of
network processing based on open-system principles.

The Internet backbone is a set of high-speed networks provided by various companies.
Internet service providers (ISPs) connect to the backbone or to other ISPs and provide
connections for both home and business computing. Home connection technologies
include phone modems, digital subscriber lines (DSL), and cable modems. Phone modems
transfer data as audio signals and, therefore, are quite slow. DSL uses the same phone lines
but transfers data digitally. Cable modems are also digital but use cable TV wiring to
transfer data.

Messages are transferred over the Internet by breaking them up into packets and
sending those packets separately to their destination, where they are reassembled into the
original message. Packets may make several intermediate hops between networks before
arriving at their destination. Routers are network devices that guide a packet between
networks. Repeaters strengthen digital signals before they degrade too much.

Network protocols are layered so that a high-level protocol relies on lower-level
protocols that support it. The key lower-level protocol suite for Internet traffic is TCP/IP.
IP protocols and software deal with the routing of packets. TCP protocols and software
divide messages into packets, reassemble them at the destination, and handle any errors that
occur. High-level protocols include SMTP for email traffic, FTP for file transfers, telnet for
remote login sessions, and HTTP for web traffic. Several high-level protocols have been
assigned port numbers, which are used to help control and process network traffic. MIME
types have been defined for many types of documents and special data formats.

A firewall protects a network from inappropriate access and enforces an organization’s
access control policy. Some firewalls simply block traffic on specific ports; other, more
sophisticated firewalls analyze the content of network traffic.

An Internet network address must pinpoint a particular machine among all possible
ones in the world. A hostname uses readable words separated by dots. A hostname is

534

translated into an IP address, which is a numeric address separated into four sections. One
part of the IP address identifies the network, and another part identifies the specific host on
that network. How the IP address is broken down depends on the network class (A, B, or
C) that the address references.

The domain name system (DNS) translates hostnames into IP addresses. DNS has
evolved from using a single file containing all of the information into a distributed system
dividing the responsibility among millions of domain name servers. Top-level domains,
such as .com and .edu, have become crowded, so some new top-level domains, such as
.info and .biz, have been approved.

Cloud computing is a service that provides storage space and other resources on the
Internet, largely freeing you from the responsibility of managing data and making it
available wherever you are. There are various types of cloud services available at varying
costs.

ETHICAL ISSUES
The Effects of Social Networking5, 6

Social networking sites such as Facebook, MySpace, LinkedIn, Twitter, and Instagram
have become wildly popular over the past few years. Students, parents, businesses,
celebrities—and yes, even presidential candidates—are using these sites. People use
social networking to stay in touch with family, friends, and colleagues and to update
others on events in their lives.

By September 2013, 73% of online adults were using social networking sites: 78%
of women and 69% of men. In 2011, 95% of U.S. teenagers between the ages of 12 and
17 were using the Internet, and 81% of them were using social networks.

Celebrities often use Twitter as a way of reaching out to the general public. Oprah,
Emeril Lagasse, and Martha Stewart all tweet information about their television shows’
upcoming guests, new projects, or their favorite books or recipes. During the 2012
Presidential race, President Barack Obama and Governor Mitt Romney used social
networking sites, including Facebook and Twitter, as major campaign tools, advertising
debates and public appearances and campaigning to get out the vote.

The popularity of social networking sites has helped many, especially teenagers, to
bridge social gaps. Teens who might normally be quite introverted can communicate
through social networking and reach out to more peers. Social networking has made a
huge difference for college students as well, who can connect with more than just the
students whom they happen to meet in class. These sites are also a popular way to
advertise parties, meetings, concerts, and other events that are taking place, so more
students are aware of campus events and social gatherings.

There are, of course, downsides to any social media, and networking sites are no
exception. For example, the information put on the sites may not be accurate. Social
networking sites can be prime avenues for online humiliation and bullying, or cyber-
bullying. One in four teenagers has admitted to being cyberbullied. A new survey
indicates that teenagers who spend more time on social networks are more likely to also
develop addictions to alcohol or smoking. This finding does not confirm cause and
effect, but it is worrisome.

535

A deeper question is this: Do the benefits of social networking outweigh the
potential costs? These sites give people a much easier way to communicate, keep in
touch with friends, and get important messages out to large groups of people. But users
must be aware of the personal risks they are taking by participating in these forums.

KEY TERMS

Access control policy
Broadband
Bus topology
Cable modem
Client/server model
Cloud computing
Computer network
Data transfer rate (bandwidth)
Digital subscriber line (DSL)
Domain name
Domain name server
Domain name system
Domain squatting
Download
Ethernet
File server
Firewall
Gateway
Host number
Hostname
ICANN
Internet
Internet backbone
Internet Protocol (IP)
Internet service provider (ISP)
Interoperability
IP address
Local-area network (LAN)
Metropolitan-area network (MAN)
MIME type
Network address
Node (host)
Open system
Open Systems Interconnection (OSI) Reference Model

536

Packet
Packet switching
Phone modem
Ping
Port
Proprietary system
Protocol
Protocol stack
Repeater
Ring topology
Router
Star topology
TCP/IP
Top-level domain (TLD)
Traceroute
Transmission Control Protocol (TCP)
Upload
User Datagram Protocol (UDP)
Web server
Wide-area network (WAN)
Wireless

EXERCISES

For Exercises 1–6, match the word or acronym with the definition or the appropriate
blank.

A. LAN
B. WAN
C. Gateway
D. Bus topology
E. Ethernet
F. Internet

 1. The Internet is a _________.
 2. The industry standard for LANs.
 3. A node that handles communication between its LAN and other networks.
 4. A network that connects other networks.
 5. Star topology is a ______ configuration.
 6. Ethernet uses __________.

For Exercises 7–15, match the word or acronym with the definition or the appropriate
blank.

A. DSL
B. TCP/IP

537

C. UDP
D. IP
E. TCP
F. Broadband

 7. _________ and voice communication can use the same phone line.
 8. DSL and cable modems are _________ connections.
 9. An Internet connection made using a digital signal on regular phone lines.
10. Network technologies that generally provide data transfer speeds greater than 128

Kbps.
11. The network protocol that breaks messages into packets, reassembles the packets at

the destination, and takes care of errors.
12. The suite of protocols and programs that supports low-level network

communication.
13. An alternative to TCP that achieves higher transmission speeds.
14. Software that deals with the routing of packets.
15. _________ has more reliability than UDP.

For Exercises 16–20, match the protocol or standard with what it specifies or defines.
A. SMTP
B. FTP
C. Telnet
D. HTTP
E. MIME type

16. Transfer of electronic mail.
17. Log in to a remote computer system.
18. Transfer files to and from another computer.
19. Format of email attachments.
20. Exchange of World Wide Web documents.

For Exercises 21–28, mark the answers true or false as follows:
A. True
B. False

21. A P2P network establishes a single portal through which communication is
managed.

22. A port is a numeric designation that corresponds to a particular high-level
protocol.

23. A firewall protects a local-area network from physical damage.
24. Each company can establish its own access control policy.
25. A TV cable company cannot also be an Internet service provider.
26. Some top-level domains are based on the country in which the registering

organization is based.
27. Hundreds of new top-level domains have recently been added to the domain name

system.
28. Two organizations cannot have the same name for a computer.

Exercises 29–67 are problems or short-answer questions.
29. What is a computer network?

538

30. How are computers connected together?
31. To what does the word node (host) refer?
32. Name and describe two key issues related to computer networks.
33. What is a synonym for data transfer rate?
34. Describe the client/server model and discuss how it has changed how we think

about computing.
35. What is a P2P network?
36. Just how local is a local-area network?
37. Distinguish between the following LAN topologies: ring, star, and bus.
38. How does the shape of the topology influence message flow through a LAN?
39. What is a MAN, and what makes it different from a LAN and a WAN?
40. Distinguish between the Internet backbone and an Internet service provider (ISP).
41. Name and describe three technologies for connecting a home computer to the

Internet.
42. What role do ISPs play with the three technologies in Exercise 38?
43. What are the advantages and disadvantages of each of the technologies in Exercise

38?
44. Phone modems and digital subscriber lines (DSL) use the same kind of phone line

to transfer data. Why is DSL so much faster than phone modems?
45. Why do DSL and cable modem suppliers use technology that devotes more speed

to downloads than to uploads?
46. Messages sent across the Internet are divided into packets. What is a packet, and

why are messages divided into them?
47. Explain the term packet switching.
48. What is a router?
49. What is a repeater?
50. What problems arise due to packet switching?
51. What are proprietary systems, and why do they cause a problem?
52. What do we call the ability of software and hardware on multiple platforms from

multiple commercial vendors to communicate?
53. What is an open system, and how does it foster interoperability?
54. Compare and contrast proprietary and open systems.
55. What is the seven-layer logical breakdown of network interaction called?
56. What is a protocol stack, and why is it layered?
57. What is a firewall, what does it accomplish, and how does it accomplish it?
58. What is a hostname, and how is it composed?
59. Why was the IPv6 protocol created for IP addresses?
60. What is the primary difference between the IPv4 and IPv6 protocols?
61. What is a domain name?
62. What is a top-level domain name?
63. What is network neutrality?
64. How does the current domain name system try to resolve a hostname?
65. What is cloud computing?
66. Compare cloud computing to an email service such as Gmail.
67. What are the four types of cloud computing services?

539

THOUGHT QUESTIONS

 1. What is the computer system in your school like? Are all the computers
networked? Is there more than one network? Are the dormitories networked?

 2. If you wanted to register a domain name, how would you go about it? .biz,
.info, .pro, .museum, .aero, and .coop are new top-level domain
names. Are there any current restrictions on the use of these new top-level domain
names?

 3. Do you think that the name Internet is appropriate? Would Intranet be a better
name?

 4. How many social networking sites have you visited? How many do you use
regularly?

 5. In your opinion, does the good side of social networking sites outweigh the bad?

540

THE COMMUNICATIONS LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits
5 Computing Components

The Programming Layer
6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages

The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer
15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion
18 Limitations of Computing

541

16 THE WORLD WIDE WEB

The evolution of the World Wide Web has made network communication a convenient
reality for many users who would otherwise avoid computers completely. As the name
implies, the Web has created spider-like connections across the entire planet, forming an
infrastructure of information and resources, and making them available at the click of a
mouse button. Several different underlying technologies make the Web the productive tool
it is today. This chapter explores a few of them and establishes a foundation of web-based
principles on which all future technologies likely will rely.

GOALS
After studying this chapter, you should be able to:

■ compare and contrast the Internet and the World Wide Web.
■ describe general web processing.
■ write basic HTML documents.
■ describe several specific HTML tags and their purposes.
■ describe the processing of Java applets and Java server pages.
■ compare and contrast HTML and XML.
■ define basic XML documents and their corresponding DTDs.
■ explain how XML documents are viewed.

16.1 Spinning the Web
Many people use the words Internet and Web interchangeably, but in reality they are
fundamentally different. The details of computer networks were discussed in Chapter 15.
Networks have been used to connect computers since the 1950s. Communication via the
Internet has been possible for many years, but in the early days that communication was
almost exclusively accomplished via text-based email and basic file exchanges.

Compared to the Internet, the World Wide Web (or simply the Web) is a relatively
new idea. The Web is an infrastructure of distributed information combined with software
that uses networks as a vehicle to exchange that information. A web page is a document
that contains or references various kinds of data, such as text, images, graphics, and
programs. Web pages also contain links to other web pages so that the user can “move
around” as desired using the point-and-click interface provided by a computer mouse. A
website is a collection of related web pages, usually designed and controlled by the same
person or company.

542

World Wide Web (Web) An infrastructure of information and the network software used to access it

Web page A document that contains or references various kinds of data

Link A connection between one web page and another

Website A collection of related web pages, usually designed and controlled by the same person or company

The Internet makes the communication possible, but the Web makes that
communication easy, more productive, and more enjoyable. Although universities and
some high-tech companies had been using the Internet for years, it wasn’t until the mid-
1990s, when the World Wide Web was developed, that the Internet became a household
name. Suddenly, Internet service providers (ISPs) began springing up everywhere, allowing
people to connect to the Internet from their homes. The Internet, largely because of the
World Wide Web, is now a primary vehicle for business. Electronic shopping, financial
transactions, and group management are all common online activities. The Web has
literally changed the way we conduct our personal and business lives.

When we use the Web, we often talk about “visiting” a website, as if we were going
there. In truth, we actually specify the resource we want, and it is brought to us. The
concept of visiting a site is understandable in that we often don’t know what’s at a
particular site until we “go to it” and see.

We communicate on the Web using a web browser, such as Firefox or Microsoft’s
Internet Explorer. A web browser is a software tool that issues the request for the web page
we want and displays it when it arrives. FIGURE 16.1 depicts this process.

Web browser A software tool that retrieves and displays web pages

The requested web page is usually stored on another computer, which may be down the
hall or halfway around the world. The computer that is set up to respond to web requests is
called a web server.

Web server A computer set up to respond to requests for web pages

FIGURE 16.1 A browser retrieving a web page

In a browser, we specify the web page we want by using a web address such as

543

www.villanova.edu/academics.html

A web address is the core part of a Uniform Resource Locator (URL), which uniquely
identifies the page you want out of all of the pages stored anywhere in the world. Note that
part of a URL is the hostname of the computer on which the information is stored.
Chapter 15 discussed hostnames and network addresses in detail.

Uniform Resource Locator (URL) A standard way of specifying the location of a web page

In addition to text, a web page often consists of separate elements such as images. All
elements associated with a particular web page are brought over when a request for that web
page is made.

Various technologies contribute to the design and implementation of a website. Our
goal in this chapter is to introduce you to a few of these technologies. More detail about
these topics can be found on this book’s own website.

Search Engines
A web search engine is a site that helps you find other websites. You probably use a search
engine, such as Google or Yahoo!, every day. When you enter keywords that indicate the
type of information you’re looking for, the search engine provides a list of links to potential
sites.

A search engine produces its list of candidate sites by searching a database containing
information about millions of websites. A good search engine keeps its database up to date
and has effective techniques for matching the keywords to the content of a web page.

Most search engines compare the keywords entered by the search engine user to a set of
keywords that have been indexed about each website. Some search engines index almost
every word on every web page in their databases, usually eliminating common words such
as “a,” “an,” and “the.” Other search engines index only part of a page, such as the
document’s title and headings. Some indexing techniques are case sensitive; others are not.

Keyword searching is challenging to do effectively because natural languages such as
English are inherently ambiguous (this issue was discussed in Chapter 13 as well). For
example, the terms hard cider, hard brick, hard exam, and hard drive all use the word “hard”
in different ways. If enough keywords are provided, the search engines will ideally prioritize
the matches appropriately. Without context, however, the utility of basic keyword
matching is limited.

Some search engines perform concept-based searches, which attempt to figure out the
context of your search. When they work well, they return candidate pages that contain
content that relates to your search topic, whether or not the words in the page match the
keywords in the query exactly.

Several techniques are employed for performing concept-based searches. They generally
rely on complex linguistic theories that are beyond the scope of this book. The basic
premise is called clustering, which compares words to other words found in close proximity.
For example, the word heart, used in a medical sense, may be near words like artery,
cholesterol, and blood.

544

http://www.villanova.edu/academics.html

Concept-based searches are far more complicated than keyword searches, and concept-
based techniques have not been perfected. Nevertheless, they have far more potential to be
effective once these techniques improve.

?
The dancing spiders of Google

A high search ranking on Google is essential for online businesses. Google updates its ranking two or three times
per year using spider “bots”—search programs that “crawl” through more than 1 trillion unique URLs in sweeps
known as “Google dances.” Firms that specialize in search-engine optimization (SEO) help online businesses
maintain high search rankings by making adjustments to their clients’ websites that are valued by Google’s spider
bots. The best SEOs can improve their clients’ search rankings dramatically. In contrast, SEO companies that
employ overly aggressive techniques, such as keyword stuffing, can get labeled as spamdexers or “black hat” SEOs
(as opposed to “white hat”) and get their clients’ websites banned from the search results.

Instant Messaging
Instant messaging (IM) technology allows users to send short messages in real time. If both
the sender and receiver(s) have an active messaging application running, the messages pop
up immediately, allowing two or more people to have an ongoing conversation.

Instant messsaging A technique for sending short messages in real time

IM differs from texting in a couple of ways. Texting is done exclusively with phones
and sent to a recipient based on a telephone number. Instant messages are sent to a
recipient based on a username registered with the IM application. IM applications can be
run on laptop and desktop computers as well as smartphones. Some IM applications allow
multiple users to participate in the same conversation using a chat room.

Many IM applications allow the user to set up contact lists and default replies (when
not logged on), as well as send custom graphics. Most use a proprietary protocol that
dictates the precise format and structure of the messages sent across the network.

Instant messaging, though convenient, is not secure. The messages sent through the
various IM protocols are not encrypted and could be intercepted at any intermediate point
along the network communication path. Unencrypted email is similarly unsecure.

?
Save the trees

Environmentalists point out that to produce one week’s Sunday newspapers, 500,000 trees must be cut down.
Recycling a single run of the Sunday New York Times would save 75,000 trees. Each ton of recycled paper can save
17 trees; those 17 trees can absorb a total of 250 pounds of carbon dioxide from the air each year. Burning that
same ton of paper would create 1500 pounds of carbon dioxide. Also driving the current “go green” trends are the
changing habits of consumers who increasingly get their daily news from online news and weblogs. Today, sales of
papers and advertising have dropped so low that most newspapers are in financial trouble and will need to reinvent
themselves quickly if they are to survive. Two bailout tactics are online video marketing (video SEO) and
subscription charges for viewing online newspapers.

545

Weblogs
A weblog, or blog for short, is a mechanism for publishing periodic articles on a website.
Depending on the author, the topic, and the nature of the blog, these articles could range
from one paragraph to extensive articles comparable to those you might find in a newspaper
or magazine.

A website might be organized entirely as a blog, or a blog might be just one aspect of a
site that contains many other elements. The tools and online services available for creating
and publishing blogs have made it easy for many novices to get a website up and running.

Weblogs have evolved significantly since they first came on the scene in the late 1990s.
Although you can still find many blogs that discuss the inconsequential thoughts and
activities of their authors, many blogs serve as outlets for serious thought leaders on a
variety of topics. Some blogs are a great source of information regarding particular issues,
and as such have a devoted following. In 2004, the Merriam-Webster Dictionary declared
“blog” the word of the year.

Some bloggers refer to themselves as “citizen journalists,” promoting the idea that their
blogs are as much a source of valid and valuable information as other media. One particular
event is given credit for this change in status. In 2004, during the U.S. presidential
campaign, CBS’s Dan Rather reported on documents that criticized the military service of
George W. Bush, supposedly written by Bush’s former commander. Many bloggers
challenged the authenticity of the documents based on numerous problems with the
document’s typography. CBS and Rather defended the authenticity of the documents for
more than two weeks before finally admitting the documents were probably forgeries. This
event is one of the clearest examples of the Web providing a voice for the “average person”
loud enough to challenge the traditional information brokers.

Because blogs are online publications, they can respond to events much more quickly
than conventional print media. For that reason, many established journalists have
developed their own blogs to supplement their work available through other, more
traditional outlets.

Cookies
Cookies are another web-based technology that has advanced the abilities and usefulness of
the Web to its users. A cookie is a small text file that a web server stores on your local
computer’s hard disk. A website may store a cookie on a user’s machine to capture key
information about previous interactions that occurred between that machine and that
website.

The pieces of information stored in a cookie are name–value pairs, plus the name of the
site that stores the information. For example:

As in this example, a website might generate a unique ID number for each visiting
computer and store it on the local machine. More sophisticated cookies may store timing
information about how long a site was visited and what information was viewed.

Websites use cookies in many different ways. Some websites use cookies to accurately

546

determine how many unique visitors come to their site. Others store user preferences so
that the website interaction is customized for that user. Cookies are also used to implement
shopping carts that can be maintained from visit to visit.

One problem with using cookies is that people often share computers to use the Web.
Because cookies are based on the machine that’s making the connection (not the person),
using cookies for personalizing the visit does not always work.

There are many misconceptions about cookies in general. A cookie is not a program,
and it does not execute anything on your computer. It cannot collect personal information
about you or your machine. Even so, cookies have not been embraced with open arms.

Web Analytics
The word analytics refers to the discovery of patterns within data, which can be used to
identify trends and help businesses make decisions. Web analytics is the collection and
analysis of data regarding website usage. A person or organization running a website will
often use a web analytics application to track the number and behavior of users coming to
their site.

Web analytics The collection and analysis of data related to website usage

Google Analytics, for example, is a web analytics application that anyone can use to
analyze the web traffic to a site. It lets you determine who visits your site—that is, where
the visitors are geographically located and which site referred them (which site they were on
when they clicked to enter yours). It tracks which pages users visit within your site, how
long they stay on each page, and which page they were on when they decided to leave your
site.

547

FIGURE 16.2 A Google Analytics dashboard
Google and the Google logo are registered trademarks of Google Inc., used with permission

FIGURE 16.2 shows one of many versions of the Google Analytics dashboard, which
presents information in graphical and numeric form. You can drill down into the analysis
in various ways to gain further insight and customize the dashboard to present the data that
is most important to you.

16.2 HTML and CSS
A webpage is created using a language called Hypertext Markup Language (HTML). The
term hypertext refers to the fact that the information is not organized linearly like a book.
Instead, you can embed links to other information and jump from one page to another as
needed. A more accurate term would be hypermedia, because HTML handles many types of
information in addition to text, including images, audio, and video.

Hypertext Markup Language (HTML) The language used to create or build a web page

The term markup language refers to the fact that the primary elements of the language
take the form of tags that you insert into a document to annotate the information stored
there. It’s as if you took a printed document and marked it up with extra notation to
specify other details, as shown in FIGURE 16.3.

Markup language A language that uses tags to annotate the information in a document

548

Tag The syntactic element in a markup language that indicates how information should be displayed

HTML documents are regular text and can be created in any general-purpose editor or
word processor. Special software tools are also available to help designers create web pages,
but these tools ultimately generate HTML documents. When a web page is requested,
HTML documents are transported over the Web.

The current version of the HTML standard, HTML5, was released in 2011. The
discussion in this section applies to HTML5. All of the major browsers support the
HTML5 standard. If you’re doing web development, be sure you’re focusing on HTML5.

HTML5 The newest HTML standard, with a streamlined tag system and support for dynamic content

HTML works in conjunction with another technology: Cascading Style Sheets (CSS).
In general, HTML tags indicate what the information is (such as a paragraph, an image, or
a list), and the style information defined by CSS indicates how you want that information
to be displayed (such as centered text, a border around an image, or a background color).
Since it’s of little use to discuss HTML without CSS, or vice versa, we’ll explore both
technologies at the same time.

FIGURE 16.3 A marked-up document

Let’s look at an example web page displayed by a browser and then examine the
underlying HTML document that defines it. FIGURE 16.4 shows a web page displayed in
the Firefox browser. The page contains information about a fictional student organization

549

called Student Dynamics.
This web page contains an image at the top showing the name of the group. Below the

image, offset by a pair of horizontal lines, is a single phrase. Below that is some information
about the organization, including a bulleted list of upcoming events followed by some short
paragraphs. The small image at the end of one bulleted item indicates that this information
has been recently updated. The text in blue represents a link that, when clicked, opens a
new web page.

FIGURE 16.4 The Student Dynamics web page as displayed in Firefox
Courtesy of John Lewis

FIGURE 16.5 shows the underlying HTML document for this web page. The tags
embedded among the document contents are highlighted in blue.

550

FIGURE 16.5 The HTML document defining the Student Dynamics web page

Tags are enclosed in angle brackets (<… >). Words such as head, title, and body
are called elements and specify the type of tag. Elements often consist of a start tag such as
<body> and a corresponding end tag with a / before the element name, such as
</body>.

Every HTML file contains two main sections: the head of the document and the body
of the document. The head contains information about the document itself, such as its
title. The body of the document contains the information to be displayed.

The entire HTML document is enclosed between <html> and </html> tags. The
head and body sections of the document are similarly indicated. The text between the
<title> and </title> tags appears in the title bar of the web browser when the page
is displayed.

The browser uses the tags, in conjunction with the styles specified by CSS, to

551

determine how the page should be displayed. It ignores the way we format the HTML
document using carriage returns, extra spaces, and blank lines. Indenting some lines of the
document makes it easier for a human to read, but such formatting is irrelevant to the way
it is finally displayed. A browser takes into account the width and height of the browser
window. When you resize the browser window, the contents of the web page are
reformatted to fit the new size.

A browser does its best to make sense of the way a document is marked up with tags
and displays the page accordingly. If HTML tags conflict, or if they are not properly
ordered or nested, the results may be surprising—and unattractive.

Basic HTML Elements
Let’s explore some of the core elements of HTML. This discussion will merely scratch the
surface of HTML’s capabilities, but even so it will give you the ability to create fairly
versatile and useful web pages.

Paragraph tags (<p> … </p>) enclose text that should be treated as a separate
paragraph. A browser usually begins each paragraph on a new line, with some space
separating it from preceding and following paragraphs.

The <hr /> tag inserts a horizontal rule (that is, a line) across the page. Horizontal
rules are helpful in breaking a webpage into sections. The horizontal rule element doesn’t
enclose content, so the start and end tag is combined into one, which is why the / is
included at the end.

It is often useful to display a list of items. The ul element defines an unordered list,
while the li element represents a single list item. In the Student Dynamics example, three
list items are enclosed in the … tags. By default, the major browsers display
an unordered list using bullets. If the ordered list element (ol) is used, the list items are
numbered sequentially. Both unordered lists and ordered lists can be nested, creating a
hierarchy of lists. Unordered nested lists use different bullet types for each level, and the
numbering for each ordered list begins over again at each level.

Several elements are used to define headings in a document. HTML includes six
predefined heading elements: h1, h2, h3, h4, h5, and h6. Text enclosed in <h3> …
</h3> tags, for instance, is treated as a level 3 heading, which by default is displayed in a
larger font than level 4 and a smaller font than level 2. Headings are also displayed in bold
by default. Heading tags don’t have to specify text that introduces a section; they can be
used anywhere you want to change the look.

The em element specifies text that should be emphasized. By default, browsers display
emphasized text in italics. The strong element is similar, and by default is displayed in
bold type.

Note that the manner in which browsers display a particular element by default may
vary slightly from browser to browser. Therefore, the same web page may look different
depending on which browser you use to view it. But the default styling of any element can
be modified using CSS styles.

Tag Attributes

552

Many tags can contain attributes that indicate additional details about the information or
describe how the enclosed information should be displayed. Attributes take the following
form:

Attribute Part of a tag that provides additional information about the element

attribute-name = value

For example, the paragraph element just below the title image on the Student
Dynamics page contains the attribute

style=”text-align:center”

which is a CSS style specification indicating that the text of the paragraph should be
centered horizontally on the page.

An image can be incorporated into a web page using the img element, which takes an
attribute that identifies the image file to display. The attribute name is src, meaning the
source of the image. There is no separate closing tag for the img element, so the / is used
at the end. For example,

inserts the image stored in the file myPicture.gif into the HTML document.
In the Student Dynamics example, an image is used as a banner at the top of the page.

In another location, a small image indicates which information on the website has been
recently updated.

Finally, links are specified using the element a, which stands for anchor. An anchor tag
contains an attribute called href that specifies the destination URL. For example,

Google It!

shows the text “Google It!” on the screen as a link. When the user clicks the link, the
Google Home page is retrieved and displayed in the browser, replacing the current page.

By default, most browsers display a link in blue, underlined text. As with other
elements, this default styling can be overridden with CSS style specifications. Let’s explore
CSS in more detail.

More About CSS
We’ve seen how CSS styles can be specified as an attribute of an HTML element:

<p style=”text-align:center”>This text is centered!<p>

In this case, the style attribute indicates that the text of this paragraph should be
centered instead of the default left alignment. But this style applies only to this single
paragraph. What if we want to establish a style for all paragraphs on the page?

CSS styles can also be expressed in the head section of the HTML document. For
example, we could put the following style tag (not an attribute this time, but a tag)
between the <head> and </head> tags:

553

Tim Berners-Lee

© Hank Morgan/Science Source

Tim Berners-Lee is the first holder of the 3COM (Computer Communication
Compatibility) Chair at the Computer Science and Artificial Intelligence Laboratory
(CSAIL) at Massachusetts Institute of Technology. He is the 3COM Founders Professor
of Engineering in the School of Engineering with a joint appointment in the
Department of Electrical Engineering and CSAIL at MIT. Berners-Lee is a researcher,
evangelist, and visionary rather than an academician. He is Director of the World Wide
Web Consortium, which coordinates web development worldwide. The Consortium,
with teams at MIT, ERCIM in France, and Keio University in Japan, aims to help the
Web achieve its full potential, ensuring its stability through rapid evolution and
revolutionary transformations of its usage.

How did Tim Berners-Lee arrive at this very important position? He built his first
computer while a student at Queen’s College, Oxford, in the United Kingdom. After
graduation, he worked for two years with Plessey Telecommunications Ltd., a major
telecom equipment manufacturer in the United Kingdom; he then worked as an
independent consultant for a year and a half, followed by three years at Image
Computer Systems Ltd. His various projects during this time included real-time control
firmware, graphics and communications software, and a generic macro language.

In 1984, Berners-Lee took up a fellowship at CERN, the European Organization for
Nuclear Research in Geneva, Switzerland, where he worked on a heterogeneous remote
procedure call system and a distributed real-time system for scientific data acquisition
and system control. In 1989, he proposed a global hypertext project to be known as the
World Wide Web. It was designed to allow people to work together by combining their
knowledge in a web of hypertext documents. Berners-Lee wrote the first World Wide
Web server, “httpd,” and the first client, “World Wide Web,” a what-you-see-is-what-
you-get hypertext browser/editor. The work began in October 1990, and the program
“World Wide Web” was made available within CERN in December 1990 and on the

554

Internet at large in the summer of 1991.
Between 1991 and 1993, Berners-Lee continued working on the design of the Web,

coordinating feedback from users across the Internet. His initial specifications of URLs,
HTTP, and HTML were refined and discussed in larger circles as the web technology
spread. Eventually, it became apparent that the physics lab in Geneva was not the
appropriate place for the task of developing and monitoring the Web. In October 1994,
the World Wide Web Consortium was founded by Berners-Lee at the MIT Laboratory
for Computer Science.

In a New York Times article in 1995, Berners-Lee was asked about private
corporations trying to dominate web standards for profit. He responded, “There’s
always the threat that a particular company would dominate the market and control the
standards of the Web.” But he feels strongly that this should not happen. “The essence
of the Web is that it’s a universe of information,” he said. “And it wouldn’t be universal
if it was tied, in any way, to one company.”

Michael Dertouzos, the director of the Computer Science Laboratory at MIT, has
said that Berners-Lee seems to embody the “libertarian idealism” of the Internet culture.
“He has a real commitment to keeping the Web open as a public good, in economic
terms,” Dertouzos said. “That’s his mission.” Berners-Lee concludes: “Reasonable
competition speeds the pace of innovation. Companies will promote the proprietary
aspects of their browsers and applications, and they should. But the navigation of the
Web has to be open. If the day comes when you need six browsers on your machine, the
World Wide Web will no longer be the World Wide Web.”

Berners-Lee was one of Time magazine’s 100 most important people of the
twentieth century. In recognition of his work on the World Wide Web, Queen
Elizabeth II made Berners-Lee a Knight Commander, Order of the British Empire
(KBE).

In June 2007, he received the Order of Merit from Queen Elizabeth II, which
entitles him to use “OM” after his name and gives him membership in this dynastic
order recognizing distinguished service. In September 2008, he was awarded the
IEEE/RSE Wolfson James Clerk Maxwell Award for conceiving and further developing
the World Wide Web, and in 2009 he was elected as a foreign associate of the National
Academy of Sciences.

At the opening ceremony of the 2012 Summer Olympics in London, Berners-Lee
was honored as the “Inventor of the World Wide Web.” He tweeted the words “This is
for everyone,” which appeared in LCD lights attached to the chairs of the 80,000 people
in the stadium. His philosophy: Everyone everywhere should have affordable access to
the Internet. He is president of the Alliance for Affordable Internet, an organization
launched in October 2013 that seeks to make the Internet more accessible and
affordable worldwide.1

If we put this tag in the head of the document, it will apply to all paragraph tags in the
document (unless it is overridden by a style attribute on a particular paragraph). In this
case, the tag will cause all paragraph text to be colored green.

In the Student Dynamics example, the following style tag is used in the head section of
the document:

555

The first style rule in this example applies to all img tags that have been designated
with the class banner (using the class attribute). Element classes are used to specify a
subset of elements. In the Student Dynamics example, the banner class is applied only to
the image at the top of the page. By setting the margins to auto, we center the image
horizontally on the page.

The other three style rules affect the various states of an anchor link. Recall that by
default, a link is shown in blue underlined text. If we set text-decoration to none,
the underline is removed. So, these rules establish that an unvisited link is shown in blue
text with no underline, a visited link is shown in green with no underline, and when the
mouse hovers over a link, the link text turns purple with an underline.

In addition to being able to specify styles at the element level and the document level,
you can also put CSS style rules in a separate external file. That way, multiple pages, or
even an entire website, can easily share a consistent set of style rules. And that’s where the
word cascading comes from in Cascading Style Sheets: Styles can be specified at multiple
levels and overridden at lower levels as needed.

More HTML5 Elements
The HTML5 standard streamlines many of the issues that were problematic in previous
versions. It features many new tags to represent content, including:

■ <section> - to define sections of pages
■ <header> - to define the header of a page
■ <footer> - to define the footer of a page
■ <nav> - to define the navigation elements on a page
■ <article> - to define an article or primary content of a page
■ <aside> - to define secondary content that might appear in a sidebar
■ <figure> - to define images that annotate an article

Another exciting aspect of HTML5 is its support of dynamic content—content that
changes even if the user is not interacting with the page. Some dynamic techniques are
discussed later in this chapter, though HTML5 may make some of them unnecessary over
time.

One example of the support of dynamic content in HTML5 is the idea of a context
menu for presenting drop-down menus as appropriate. There is also an additional attribute
(async) that can be included in a tag to indicate content that should be loaded
asynchronously, which helps increase page loading speed.

556

HTML5 also includes several new tags that support accepting input from a form, such
as tags for time and dates, as well as fields for ranges, email addresses, and URLs.

Of course, this book can only provide a glimpse into the world of web page
development using HTML and CSS. You are encouraged to use this as a starting point to
explore this area of computing in more detail.

16.3 Interactive Web Pages
When HTML was first developed, it was amazing in its ability to format network-based
text and images in interesting ways. However, that information was static—there was no
way to interact with the information and pictures presented in a web page.

As users have clamored for a more dynamic Web, new technologies have been
developed to accommodate these requests. These technologies take different approaches to
solving the problem. Many of the new ideas are offshoots of the Java programming
language, which is able to exploit the Web because of its platform independence. Let’s look
briefly at two of these technologies: Java applets and Java Server Pages.

Java Applets
A Java applet is a program that is designed to be embedded into an HTML document and
transferred over the Web to someone who wants to run the program. An applet is actually
executed in the browser used to view the web page.

Java applet A Java program designed to be embedded into an HTML document, transferred over the Web, and
executed in a browser

An applet is embedded into an HTML document using the APPLET tag. For example:

When a web user references the page containing this tag, the applet program
MyApplet.class is sent along with any text, images, and other data that the page
contains. The browser knows how to handle each type of data—it formats text
appropriately and displays images as needed. In the case of an applet, the browser has a
built-in interpreter that executes the applet, allowing the user to interact with it. Thousands
of Java applets are available on the Web, and most browsers are set up to execute them.

Consider the difficulties inherent in this situation. A program is written on one
computer, but then may be transferred to any other computer on the Web to be executed.
How can we execute a program that was written for one type of computer on possibly
many other types of computers? The key, as briefly explained in Chapter 9, is that Java
programs are compiled into Bytecode, a low-level representation of a program that is not
the machine code for any particular type of CPU. This Bytecode can be executed by any
valid Bytecode interpreter, no matter which type of machine it is running on.

557

The applet model puts the burden on the client’s machine. That is, a web user brings
the program to his or her computer and executes it there. It may be frightening to think
that, while you are casually surfing the Web, suddenly someone’s program may begin
executing on your computer. That would be a problem, except that Java applets are
restricted as to what they can do. The Java language has a carefully constructed security
model. An applet, for instance, cannot access any local files or change any system settings.

Depending on the nature of the applet, the client’s computer may or may not be up to
the job of executing the applet. For this reason, and because applets are transferred over a
network, they tend to be relatively small. Although appropriate for some situations, applets
do not resolve all of the interactive needs of web users.

Java Server Pages
A Java Server Page (JSP) is a web page that has JSP scriptlets embedded in it. A scriptlet is
a small piece of executable code intertwined among regular HTML content. While not
exactly the same as Java, JSP code resembles the general Java programming language.

JSP scriptlet A portion of code embedded in an HTML document designed to dynamically contribute to the
content of the web page

A JSP scriptlet is encased in special tags beginning with <% and ending with %>.
Special objects have been predefined to facilitate some processing. For example, the object
called out can be used to produce output, which is integrated into the web page wherever
the scriptlet occurs. The following scriptlet produces the phrase “hello there” between the
opening and closing tag of an h3 header:

In this particular case, the result is equivalent to

<h3>hello there</h3>

But imagine JSP scriptlets as having the expressive power of a full programming
language (which they do). We can make use of almost all aspects of a regular Java program,
such as variables, conditionals, loops, and objects. With that kind of processing power, a
JSP page can make significant decisions resulting in truly dynamic results.

JSPs are executed on the server side, where the web page resides. They help dynamically
define the content of a web page before it is shipped to the user. By the time it arrives at
your computer, all active processing has taken place, producing a static (though
dynamically created) web page.

JSPs are particularly good for coordinating the interaction between a web page and an
underlying database. The details of this type of processing are beyond the scope of this
book, but you’ve probably encountered this type of processing while surfing the Web.

558

Electronic storefronts (sites that exist primarily to sell products), in particular, make
extensive use of this type of processing. The data about available products is not stored in
static HTML pages. Instead, this data is stored in a database. When you make a request for
information about a particular product, a JSP may actually respond to you. The scriptlets
in the page interact with the database and extract the needed information. Scriptlets and
regular HTML format the data appropriately and then ship the page to your computer for
viewing.

?
The importance of standards: Wi-Fi

Wi-Fi is the wireless networking technology that is now common in laptop computers. In an effort to improve the
wireless transfer of large files (such as movies), computer manufacturers are using components that use a faster
version of Wi-Fi called 802.11n. Version 802.11n increases the top speed of a Wi-Fi network to 270 megabits per
second (Mbps), a substantial increase from the 54 Mbps of the current 802.11g standard. Other versions of Wi-Fi
include 802.15, which is used for wireless personal-area networks (WPANs). It covers a very short range and is used
for Bluetooth technology. The 802.16 standard (WiMax) is supposed to combine the benefits of broadband and
wireless.

The final version of 802.11n was approved by IEEE-SA RevCom in September 2009, but extensions were later
proposed. Check the Internet for the most current information on these standards.

16.4 XML
HTML is fixed; that is, HTML has a predefined set of tags and each tag has its own
semantics (meaning). HTML specifies how the information in a web page should be
formatted, but it doesn’t really indicate what the information represents. For example,
HTML may indicate that a piece of text should be formatted as a heading, but it doesn’t
specify what that heading describes. In fact, nothing about HTML tags describes the true
content of a document. The Extensible Markup Language (XML) allows the creator of a
document to describe its contents by defining his or her own set of tags.

Extensible Markup Language (XML) A language that allows the user to describe the content of a document

XML is a metalanguage. Metalanguage is the word language plus the prefix meta, which
means “beyond” or “more comprehensive.” A metalanguage goes beyond a normal
language by allowing us to speak precisely about that language. It is a language for talking
about, or defining, other languages. It is like an English grammar book describing the rules
of English.

Metalanguage A language that is used to define other languages

A metalanguage called the Standard Generalized Markup Language (SGML) was used by
Tim Berners-Lee to define HTML. XML is a simplified version of SGML and is used to
define other markup languages. XML has taken the Web in a new direction. It does not

559

replace HTML—it enriches it.
Like HTML, an XML document is made up of tagged data. But when you write an

XML document, you are not restricted to a predefined set of tags, because there are none.
You can create any set of tags necessary to describe the data in your document. The focus is
not on how the data should be formatted, but rather on what the data is.

For example, the XML document in FIGURE 16.6 describes a set of books. The tags
in the document annotate data that represents a book’s title, author(s), number of pages,
publisher, ISBN number, and price.

The first line of the document indicates the version of XML that is used. The second
line indicates the file that contains the Document Type Definition (DTD) for the
document. The DTD is a specification of the organization of the document. The rest of the
document contains the data about two particular books.

Document Type Definition (DTD) A specification of the organization of an XML document

The structure of a particular XML document is described by its corresponding DTD
document. The contents of a DTD document not only define the tags, but also show how
they can be nested. FIGURE 16.7 shows the DTD document that corresponds to the
XML books example.

The ELEMENT tags in the DTD document describe the tags that make up the
corresponding XML document. The first line of this DTD file indicates that the books
tag is made up of zero or more book tags. The asterisk (*) beside the word book in
parentheses stands for zero or more. The next line specifies that the book tag is made up of
several other tags in a particular order: title, authors, publisher, pages, isbn,
and price. The next line indicates that the authors tag is made up of one or more
author tags. The plus sign (+) beside the word author indicates one or more authors
are permitted. The other tags are specified to contain PC-DATA (Parsed Character Data),
which indicates that the tags are not further broken down into other tags.

560

FIGURE 16.6 An XML document containing data about books

FIGURE 16.7 The DTD document corresponding to the XML books document

The only tag in this set that has an attribute is the price tag. The last line of the
DTD document indicates that the price tag has an attribute called currency and that
it is required.

XML provides a standard format for organizing data without tying it to any particular
type of output. A related technology called Extensible Stylesheet Language (XSL) can be
used to transform an XML document into another format suitable for a particular user. For
example, an XSL document can be defined that specifies the transformation of an XML
document into an HTML document so that it can be viewed on the Web. Another XSL
document might be defined to transform the same XML document into a Microsoft Word

561

document, into a format suitable for a mobile phone, or even into a format that can be
used by a voice synthesizer. This process is depicted in FIGURE 16.8. We do not explore
the details of XSL transformations in this book.

Extensible Stylesheet Language (XSL) A language for defining transformations from XML documents to other
output formats

Another convenient characteristic of languages specified using XML is that documents
in the language can be generated automatically with relative ease. A software system, usually
with an underlying database, can be used to generate huge amounts of specific data
formatted in a way that is easily conveyed and analyzed online. Once generated, the data
can be transformed and viewed in whatever manner best serves individual users.

Several organizations have already developed XML languages for their particular topic
areas. For example, chemists and chemical engineers have defined the Chemistry Markup
Language (CML) to standardize the format of molecular data. CML includes a huge
number of tags covering specific aspects of chemistry. It provides a common format by
which chemistry professionals can share and analyze data.

FIGURE 16.8 An XML document can be transformed into many output formats

Keep in mind that XML is a markup specification language, whereas XML files are data.
The files just sit there until you run a program that displays them (like a browser), does
some work with them (like a converter that writes the data in another format or a database
that reads the data), or modifies them (like an editor). XML and its related technologies
provide a powerful mechanism for information management and for communicating that
information over the Web in a versatile and efficient manner. As these technologies evolve,
new opportunities to capitalize on them will surely emerge.

?
Privacy of photo sharing/tagging

Most social networking sites allow members to upload their own photos. Once uploaded, these photos can be
labeled with the date and the location and “tagged” with the name of everyone in the photo—sometimes even if
that person is not a member of the social networking site. Facebook later changed its policy. Now you can adjust
your settings so that if someone tags you in a photo, you must approve of that tag before it takes effect.

562

16.5 Social Networks
For many people, life on the Web involves heavy use of social networks to stay in touch with
friends, family members, colleagues, and people they don’t know personally but want to
“follow.” A social network is an online service or website designed to allow people with
shared interests to interact. The functionality provided by a social network facilitates
communication in order to share ideas, events, and interests.

Social network An online service that allows people with shared interests to communicate and interact

Today, some of the most popular social networks include Facebook, Twitter, LinkedIn,
Pinterest, Google+, Tumblr, and Instagram, though there are many others. Facebook
currently has more than 1.2 billion members. Twitter, the second most popular site, has
255 million members.

Social networking online has a rich history. The first online community was formed in
1985 and began as a dial-up bulletin board system. Classmates.com began in 1995 to
connect former schoolmates. In 1997, SixDegrees.com was formed as a website that
focused on indirect relationships. Users were allowed to list family, friends, and
acquaintances and post bulletin-board items and send messages to people in their first,
second, and third degrees. This website was sold in 2000 for $125 million. A bevy of
networking websites appeared in the early 2000s, with MySpace emerging as the biggest
one by 2005.

Facebook was created by Mark Zuckerberg at Harvard University in 2004. It quickly
gained traction through Zuckerberg’s clever strategies for getting college students
committed to using it. LinkedIn was created in 2002 to facilitate networking among
professionals with similar interests. Twitter launched in 2006, focusing on short posts
called tweets.

Online social networks often allow users to be classified into two general categories:
internal, in which the participants are within a closed or private community such as a
company, association, or organization; and external, in which there is no restriction on the
participants. In general, both categories allow users to describe themselves, to set privacy
settings, to block unwanted members, to have personal pages for pictures and/or blogging,
and to form or be a member of a community within the network.

?
Think before you tweet

Before boarding a flight to Africa, a public relations executive tweeted, “Going to Africa. Hope I don’t get AIDS.
Just kidding. I’m white!” Her tweet was widely considered to be racist and went viral. She was fired before her plane
landed.2

The concept of a social network has been around much longer than the online version

563

http://Classmates.com
http://SixDegrees.com

we know on the Web, and is the backbone of serious sociological research. In broader
terms, a social network is a model of how objects—individuals or organizations—interact.
In this type of network, objects are represented as nodes that are tied together by some sort
of interdependency such as friendship, kinship, religion, or socioeconomic background.
Social network analysis views social relationships in terms of network theory about nodes
and the ties between the nodes. Within a specific social network, nodes may be related by
multiple ties. A network can be thought of as a map of all relevant interconnections among
the objects being modeled.

Research into social networks began in the 1800s. Networks have been used to model
such diverse areas as the spread of new ideas and practices, the spread of diseases, and the
formation of emotional clusters. One study showed that happiness tends to be correlated
within social networks. When a person is happy, nearby friends have a 25% higher chance
of being happy. Clusters of unhappy people were also found.

Have you ever heard the expression “six degrees of separation”?3 The small world
phenomenon is the hypothesis that the chain of social acquaintances necessary to connect
any two arbitrary people is generally short. Stanley Milgram’s social network study in 1967
showed the chain to be about six steps, leading to the famous phrase. Although his methods
were later questioned, a recent study found that five to seven steps were sufficient to
connect any two people through email.

The impact of social networks online cannot be understated, and follow from a long
history of similar interactions before we had the technological support we do today.

SUMMARY

Although the terms Internet and Web are often used interchangeably, they are not the same.
The World Wide Web is an infrastructure of information distributed among thousands of
computers across the world and the software by which that information is accessed. The
Web relies on underlying networks, especially the Internet, as the vehicle to exchange the
information among users.

A web page contains information as well as references to other resources such as images.
A collection of web pages managed by a single person or company is called a website. Links
are established among various web pages across the globe, giving credence to the name
World Wide Web.

Visiting a website is really the act of requesting that a web page stored on a remote web
server be brought to the local computer for viewing. A Uniform Resource Locator (URL) is
used to specify the web document the user wishes to view.

Some websites, such as that run by Google, serve as search engines, allowing the user to
enter a word or phrase on which to base a search for information. The search engine
responds with a list of candidate websites that the user hopes will match his or her needs.
Some search engines are based solely on the keywords entered in the search; others try to
interpret the concept underlying the search.

Instant messaging (IM) applications have given the Web another level of interaction,
allowing users to conduct ongoing conversations online. IM programs are evolving to

564

include graphics and even video.
Weblogs, or blogs, are web-based publications that feature regularly updated articles.

The more serious blogs serve as significant resources on particular topics. Others have given
rise to “citizen journalists,” whose work supplements that of the mainstream media.

Cookies are small text files that a website deposits on your hard drive, so that when you
return to the site, information about you and your prior visit can be incorporated into your
current visit. Cookies are often used to track the activities of users, and they are generally
considered helpful for both the user and the sites using them. A cookie is not a program, so
it cannot execute code on your computer.

Hypertext Markup Language (HTML) is the primary method of defining web pages.
An HTML document consists of information that is annotated by tags that specify how a
particular element should be treated and formatted. A web browser displays an HTML
page without regard to extra spacing, blank lines, or indentation. The tags alone guide the
browser, and a given web page may look slightly different when viewed in different
browsers.

HTML tags include those that specify the overall document structure as well as tags
that perform basic formatting, such as for headings, paragraphs, and centered text. Font
styles, such as bold and italics, are specified using tags as well. Unordered and ordered lists
have their own sets of tags.

Some HTML tags include attributes that specify additional information. The source
attribute of an image tag specifies the file in which the image is stored, for instance. Anchor
tags define links and use an attribute to specify the location of the target web page.

There are additional opportunities to interact with and dynamically create the content
of web pages. Two technologies that support web-based interaction are Java applets and
Java Server Pages (JSPs). Java applets are Java programs designed to be embedded in
HTML pages and executed in a web browser. Their cross-platform nature is possible
because applets are compiled into Java Bytecode, which is architecture neutral.

Java Server Pages embed scriptlets into HTML code that is executed by the web server
to help dynamically define the content of a web page. Scriptlets have all the expressive
power of a full language. JSPs are particularly good at coordinating the interaction between
a web page and its underlying database.

Extensible Markup Language (XML) is a metalanguage, which means it is used to
define other languages. Unlike HTML, whose tags focus on the format of displayed data,
XML tags specify the nature of the data. The user is not constrained to use particular tags;
he or she can define any tags that make sense for the data being described.

The format and relationships among XML tags are defined in a Document Type
Definition (DTD) document. A set of Extensible Stylesheet Language (XSL)
transformations define the way the content of an XML document is turned into another
format suitable for the current needs of the user.

Social networks are an important part of the way many people interact on the Web.
Services like Facebook and LinkedIn facilitate communication among people with similar
interests, and they largely eliminate the issue of distance. In general, social networks have a
long history, providing a sociological mechanism for studying many kinds of interactions,
including the spread of diseases as well as ideas.

565

ETHICAL ISSUES
Gambling and the Internet4, 5

Most people think of gambling as sitting in front of a blackjack table or a slot machine
in a Las Vegas casino, but more and more people are turning to the Internet to gamble.
Online gambling exploded onto the Internet in August 1995, when Internet Casinos,
Inc., became the first online casino to accept real wagers. Since then, online gambling
has grown into a multibillion-dollar-per-year business, with most of the businesses being
run offshore. In 2008, Internet gambling sites earned revenues of $5.9 billion from
players in the United States alone and $21 billion worldwide.

Internet sites offer online poker, roulette, blackjack, pachinko, baccarat, sports
betting, bingo, and lotteries. With the advent of smartphones, mobile gambling has
become popular. As of March 2011, more than a dozen mobile casinos were operating.

With the growth of the online gambling industry, the issue of fraud has become a
serious problem. The potential for fraud over an Internet gambling site is quite high.
Gamblers provide credit card information and Social Security numbers to start an
account, trusting that the games will be run fairly. In the United States, all traditional
casinos are regulated by the American Gaming Association to be sure that the games are
run honestly. With the design of the Internet sites, however, it is impossible for the user
to know whether the games are operated fairly; instead, gamblers must rely solely on the
honesty of those operating the site—about whom they know nothing.

Another problem with Internet gambling is that it reduces state tax revenues. State
governments earn profits from staterun gambling organizations, but they lose revenue
from gamblers who use Internet gambling sites because these are run offshore and are
not subject to state taxation. Some states have been relying on state gambling laws to
curb online gambling: Illinois, Indiana, Louisiana, Massachusetts, Nevada, Oregon,
South Dakota, and Utah have all passed laws banning Internet gambling. State
regulation is for the most part ineffective, however, because the Internet goes beyond
state and national restrictions.

The U.S. Congress has worked over the years to pass legislation that would ban all
Internet gambling, but because such a ban would be so broad in scope, lawmakers have
been largely unsuccessful. In 2011, the U.S. Justice Department changed its position on
Internet gambling by stating that the Interstate Wire Act of 1961 applies only to sports
betting. The position that this bill applies to Internet gambling in general was the basis
of the argument that online poker violates U.S. law. Since this reinterpretation, Nevada,
Delaware, and New Jersey have legalized forms of online gambling. In March 2014, a
high-profile, bipartisan group of senators introduced legislation to ban most forms of
online gambling.

KEY TERMS

Attribute
Document Type Definition (DTD)

566

Extensible Markup Language (XML)
Extensible Stylesheet Language (XSL)
HTML5
Hypertext Markup Language (HTML)
Java applet
JSP scriptlet
Link
Markup language
Metalanguage
Social network
Tag
Uniform Resource Locator (URL)
Web browser
Web page
Web server
Website
World Wide Web (the Web)

EXERCISES

For Exercises 1–14, mark the answers true or false as follows:
A. True
B. False

 1. The Internet and the Web are essentially two names for the same thing.
 2. The computer that is set up to respond to web requests is a web browser.
 3. When we visit a website, we actually bring the site to us.
 4. Most search engines use a context-based approach for finding candidate pages.
 5. A weblog is the same thing as a blog.
 6. A weblog can serve as an online publication for “citizen journalists.”
 7. A cookie is a program that is executed on your computer.
 8. All elements associated with a particular web page are brought over when a request

for that web page is made.
 9. HTML and CSS are often used together.
10. CSS is used to specify the content of a web page.
11. Networks have been used to connect computers since the 1950s.
12. Network communication was not possible until the advent of the Web.
13. The Web was developed in the mid-1990s.
14. You must have a web browser to access the Web.

For Exercises 15–24, match the word or acronym with the definition or blank.
A. JSP scriptlet
B. URL
C. HTML

567

D. Tag
E. Java applet
F. XML

15. A program designed to be embedded into an HTML document.
16. Uniquely identifies every web page.
17. ________ runs on the web server.
18. _________ runs on the web browser.
19. Tags in _________ are fixed.
20. Tags in _________ are not predefined.
21. _________ is a metalanguage.
22. The structure of an ________ document is described by its corresponding

Document Type Definition (DTD).
23. The syntactic element in a markup language that indicates how information

should be displayed.
24. Part of a _________ is the hostname of the computer on which the information is

stored.

Exercises 25–76 are problems or short-answer questions.
25. What is the Internet?
26. What is the Web?
27. What is a web page?
28. What is a website?
29. What is a link?
30. Why is a spiderweb a good analogy for the World Wide Web?
31. What is the relationship between a web page and a website?
32. What is the difference between the Internet and the Web?
33. Describe how a web page is retrieved and viewed by a web user.
34. What is a Uniform Resource Locator?
35. What is a markup language? Where does the name come from?
36. Compare and contrast hypertext and hypermedia.
37. Describe the syntax of an HTML tag.
38. What is a horizontal rule? What are these rules useful for?
39. What is a tag attribute? Give an example.
40. Write the HTML statement that inputs the image on file mine.gif into the web

page.
41. Write the HTML statement that sets up a link to

http://www.cs.utexas.edu/users/ndale/ and shows the text “Dale Home Page” on
the screen.

42. What happens when a user clicks on “Dale Home Page” as set up in Exercise 40?
43. Which CSS style rule would you use to horizontally center a line of text?
44. What are the three ways in which CSS style rules can be expressed for a web page?
45. Design and implement an HTML document for an organization at your school.
46. Design and implement an HTML document describing one or more of your

personal hobbies.
47. What is a Java applet?
48. How do you embed a Java applet in an HTML document?

568

http://www.cs.utexas.edu/users/ndale/

49. Where does a Java applet get executed?
50. What kinds of restrictions are put on Java applets? Why?
51. What is a Java Server Page?
52. What is a scriptlet?
53. How do you embed a scriptlet in an HTML document?
54. How does JSP processing differ from applet processing?
55. What is a metalanguage?
56. What is XML?
57. How are HTML and XML alike, and how are they different?
58. How does an XML document relate to a Document Type Definition?
59. a. In a DTD, how do you indicate that an element is to be repeated zero or more

times?
b. In a DTD, how do you indicate that an element is to be repeated one or more

times?
c. In a DTD, how do you indicate that an element cannot be broken down into

other tags?
60. What is XSL?
61. What is the relationship between XML and XSL?
62. How does an XML document get viewed?
63. Define an XML language (the DTD) for your school courses and produce a

sample XML document.
64. Define an XML language (the DTD) for political offices and produce a sample

XML document.
65. Define an XML language (the DTD) for zoo animals and produce a sample XML

document.
66. This chapter is full of acronyms. Define each of the following ones:

a. HTML
b. XML
c. DTD
d. XSL
e. SGML
f. URL
g. ISP

67. Create an HTML document for a web page that has each of the following features:
a. Centered title
b. Unordered list
c. Ordered list
d. Link to another web page
e. A picture

68. Distinguish between an HTML tag and an attribute.
69. Why might the same web page look different in different browsers?
70. What are the two sections of every HTML document?
71. What are the contents of the two parts of an HTML document?
72. What does the “A” stand for in the tag that specifies a URL for a page?
73. Create an HTML document for a web page that has each of the following features:

a. A right-justified title in large type font

569

b. An applet class named Exercise.
class
c. Two different links
d. Two different pictures

74. Which social networking site currently has the most users?
75. What is the small world phenomenon?
76. What did the term “social network” mean before the online version we know

today became popular?

THOUGHT QUESTIONS

 1. How has the Web affected you personally?
 2. Did you have a website before you started this class? How sophisticated was it?

Did you use HTML or some other web design language? If you used some other
language, go to your website and view your pages as source pages. Look at the
HTML tags that actually format your website. Are there any there that we have not
discussed in this chapter? If so, look them up to see what they mean. (Where? On
the Web, of course.)

 3. Have you ever taken a web-based course? Did you enjoy the experience? Did you
feel that you learned less or more than you would have in a regular classroom-based
course?

 4. Give your vision of the future as it relates to the Web.
 5. What is the current state of online gambling?

570

THE COMMUNICATIONS LAYER

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits
5 Computing Components

The Programming Layer
6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages

The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer
15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion
18 Limitations of Computing

571

17 COMPUTER SECURITY

Various issues related to computer security have been discussed in chapters throughout this
book as appropriate, often dealing with level-specific topics such as memory management
or network access. In this chapter, we explore security as a general concept and zero in on
the most prevalent issues faced by typical users in today’s online world. The topics
discussed in this chapter include techniques for preventing unauthorized access to
information, the types of malicious code used to circumvent security measures, and the
security issues related to social media.

GOALS
After studying this chapter, you should be able to:

■ explain the three cornerstones of information security.
■ describe the three types of authentication credentials.
■ create secure passwords and assess the security levels of others.
■ define the categories of malware.
■ list the types of security attacks.
■ define cryptography.
■ encode and decode messages using various ciphers.
■ discuss the challenges of keeping online data secure.
■ discuss the security issues related to social media and mobile devices.

17.1 Security at All Levels
The organizational structure of this book follows our big-picture view of a computing
system, using the analogy of an onion with multiple layers. Issues related to computer
security must be dealt with at all levels in various ways.

Some aspects of security have been discussed in earlier chapters. For example, in
Chapter 10 we established that one of the many responsibilities of an operating system is to
ensure that one program does not access another program’s area in memory. Chapter 11
discussed protection rights established in a file system, giving a user particular authority to
read, modify, and/or delete individual files. Chapter 15 explored firewalls, which are used
to protect the resources of a network by filtering the traffic allowed.

Those examples focus on issues that relate to particular aspects of a computing system,
specific to a particular layer. This chapter focuses on security issues that span some of the
high levels of a computing system. These issues largely deal with application software that
runs on a computer, but are intertwined with issues related to programming, web access,

572

and mobile computing. In this chapter, we address a variety of security issues that weren’t
covered in previous chapters.

In many instances this chapter examines security issues that you must deal with or be
responsible for. Although you don’t have control over some computer security issues, such
as the access policy of your network, you are responsible for many aspects of your day-to-
day life that relate to how your information is managed and accessed.

Information Security
Many of the high-level issues discussed in this chapter involve information security, the set
of techniques and policies enforced by an organization or individual to ensure proper access
to protected data. Information security makes certain that data cannot be read or modified
by anyone without the proper authorization, and that the data will be available when
needed to those who do.

Information security The techniques and policies used to ensure proper access to data

Information security can be described as the synthesis of confidentiality, integrity, and
availability—the so-called CIA triad, depicted in FIGURE 17.1. Although these aspects of
information security overlap and interact, they define three specific ways to look at the
problem. Any good solution to the information security problem must adequately address
each of these issues.

Confidentiality is ensuring that key data remains protected from unauthorized access.
For example, you don’t want just anyone to be able to learn how much money you have in
your savings account.

Confidentiality Ensuring that data is protected from unauthorized access

FIGURE 17.1 The CIA triad of information security

Integrity is ensuring that data can be modified only by appropriate mechanisms. It
defines the level of trust you can have in the information. You don’t want a hacker to be

573

able to modify your bank balance, of course, but you also don’t want a teller (who has
authorized access) to modify your balance in inappropriate ways and without your
approval. Furthermore, you wouldn’t want your balance changed by a power surge or
compromised during an electronic transmission of the data.

Integrity Ensuring that data can be modified only by appropriate mechanisms

Availability is the degree to which authorized users can access appropriate information
for legitimate purposes when needed. Even if data is protected, it isn’t useful if you can’t
get to it. A hardware problem such as a disk crash can cause an availability problem if
precautions aren’t taken to back up data and maintain redundant access mechanisms. Also,
a hacker could launch an attack that “floods” a network with useless transmissions, and
thereby keep legitimate users from connecting to remote systems.

Availability The degree to which authorized users can access information for legitimate purposes

From a business point of view, planning for information security requires risk analysis,
which is the process of determining which data needs protecting, identifying the risks to
that data, and calculating the likelihood that a risk may become reality. Once a risk analysis
is complete, plans can be implemented to manage the risks accordingly. A risk is the pairing
of a threat to a vulnerability. We want to minimize our vulnerability to threats that put us
at the most risk. These threats can be either malicious, such as those posed by a hacker, or
accidental, such as a system crash.

Risk analysis Determining the nature and likelihood of the risks to key data

Another principle embraced by information security experts is the concept of separating
the available data management privileges so that no single individual has the authority to
have a significant impact on the system. This principle is often implemented by having
redundant checks and/or approvals needed for key activities. For instance, large financial
transactions often require a separate authorization process. Administrators should assign to
an individual only those privileges needed to carry out his or her job functions.

?
New Life for the Old Barcode

The barcode is more than 60 years old, but new uses are still being invented for it. Barcodes now appear in places
like advertisements and even buildings. Cell phone users photograph the codes and use them to connect to new
services using the mobile Internet. One service, Scanbuy Shopper, scans a product’s Universal Product Code (UPC)
and downloads shopping.com prices and reviews of the product. A barcode on a grocery item can direct a cell
phone to a website with recipes and health tips; one on a business card can direct it to a company’s website; and a
barcode on a building (like the Chrysler Building) will send visitors to that building’s Wikipedia entry.

574

http://shopping.com

Central to the confidentiality and integrity of your data is making sure unauthorized
users cannot gain access to your account. That’s where we’ll continue our discussion of
security issues.

17.2 Preventing Unauthorized Access
One of the most obvious security issues from the user’s perspective is keeping other people
from accessing your accounts and information. When you log into a website, for example,
providing a username and password, you are performing user authentication. That is, you
are convincing the software system that you are who you say you are.

User authentication The process of verifying the credentials of a particular user of a computer or software system

In the website example, the username and password make up the authentication
credentials, the information provided by the user to identify themselves. There are three
general types of authentication credentials. The first, and most common, is based on
something that the user knows, such as a username and password, a personal identification
number (PIN), or a combination of these items.

Authentication credentials Information users provide to identify themselves

The second type is based on something that the user has, such as an identification card
with a magnetic strip or a smart card that contains an embedded memory chip. This
approach is more complex to administer, and often requires special hardware, but is
generally considered more secure than the first.

Smart card A card with an embedded memory chip used to identify users and control access

The third type of authentication credentials is based on biometrics, which are related to
what a person is physiologically. Examples of biometrics include the analysis of fingerprints,
retina pattern, or voice pattern. This approach is the most expensive to implement,
although the process of fingerprint analysis has dropped significantly in cost in recent years.
Biometric analysis must deal with the problems of false rejection (rejecting an authorized
individual) and false acceptance (accepting an unauthorized individual).

Biometrics Using physiological characteristics, such as fingerprints, to identify users and control access

No matter which mechanism is used, if the process of user authentication is
compromised, and someone who is not you gets access to your account as if they are you,
then they might shut you out of your own account by changing the password. They might
send messages and post information in your name. They might access information about
you that you recorded, thinking you would be the only person to see it. Obviously,

575

preventing unauthorized access is high on the list of security issues that you must take
seriously.

In many cases, such as logging in to a particular website, the use of a
username/password combination is the only practical approach to user authentication,
which makes password security paramount. Let’s look at some issues related to passwords.

Passwords
The username associated with an account is often not kept secret. Some systems allow you
to make up your own username, whereas others make you use a specific identifier such as
an email address. The idea is that an email address is generally specific to a particular
person, and therefore can be associated uniquely with a particular account on their system.
If a software system allows you to make up your own username, it checks the username
against all currently used usernames in the system and, if someone has already claimed the
one you want, forces you to pick another.

So while each username in a system is unique, the username itself does not provide any
assurance of security. It’s the combination of the username with a particular password that
results in some confidence that you are who you say you are.

A password, of course, is a string of characters that supposedly only you, as the user of a
particular account, know. Once the system verifies that the username you provide is valid
and that the password you provide is associated with that username, then you are given the
rights that only you should have as the “owner” of that account.

Password-based security mostly comes down to keeping your password out of other
people’s hands. You want to make sure no one can discover your password, such as finding
it written down somewhere. You don’t want to ever give a password to anyone, even
someone you trust. And you want to make sure that no one can guess what your password
is.

Here is a list of guidelines regarding password management:

■ Create a password that is easy for you to remember but difficult for other people to
guess.

■ Don’t use a simple password, especially one that relates to you personally, like your
dog’s name.

■ Don’t write down a password anywhere that other people can access.
■ Use a combination of characters in the password, including both upper- and

lowercase letters, digits, and special characters.
■ Don’t stay logged into an account and then walk away from your computer.
■ Don’t ever tell anyone your password. There should never be a valid reason for you

to do so.
■ Don’t send your password in an email. Most email is sent “in the clear” with no

encryption and could be easily intercepted.
■ Don’t use the same password for all of your online accounts. If one is compromised,

then they all could be.

576

?
RFID tags

RFID tags contain electronically stored tracking and identification information. They are powered by and read at
short ranges by magnetic fields. Unlike bar codes, the tags do not need to be within the reader’s line of sight. RFID
tags are used in a wide variety of applications, from tracking the progress of a car through an assembly plant to
returning lost pets to their owners.1

The first guideline in that list is key, and somewhat confounding. For convenience, you
want to be able to remember your password easily, but if it is easy for you to remember, it
might be easy for someone else (or a computer program) to guess unless you put some
thought into it.

Simple words, or a simple combination of words, don’t make a good password,
especially if they have a direct connection to you. The password yahtzee might be easy
for you to remember because it’s your favorite game, but someone who knows you might
try it. It would be nice to believe someone you know and trust would not try to access your
account, but such assumptions are completely contrary to the concept of security and don’t
always match up with reality.

Even if you pick a word that doesn’t relate to you personally, some computer programs
are designed to break into your system by repeatedly trying different passwords using
dictionaries with thousands of words. Your password should not resemble anything that
looks like a word or phrase in English, or any other language that humans speak.

With that in mind, many software systems will insist that you create a password that
has certain characteristics that make it more challenging to guess. These characteristics are
called the password criteria. If your potential password does not meet the criteria, it is
rejected until you enter one that does. A typical set of criteria for password creation might
be:

Password criteria A set of rules that must be followed when creating a password

■ The password must be six (6) characters or longer.
■ It must contain at least one uppercase and one lowercase letter.
■ It must contain at least one digit.
■ It must contain at least one special character, such as ! or %.

The following table contains examples of passwords at varying levels of security:

Password Security Level
rollingrock Poor
RollingRock Slightly better
Rolling_Rock_63 Better
Ro11ing%ROCK!%63 Much better

You might not think that a password like Ro11ing%ROCK!%63 would be easy to

577

remember, but it is if you use particular techniques to come up with it. For example, if you
always replace the letter l with the number 1, and put second words in all caps, and separate
words with the % character, then something you can easily remember gets mapped to a
seemingly incomprehensible string of characters. The individual steps for creating it are not
something someone would typically guess, but you’ll have a fairly straightforward way of
recalling it when needed.

And while you should not get in the habit of writing down your passwords, either on
paper or electronically, if you have a large number of accounts to keep track of, some
external support may be warranted. There are software programs, such as 1Password and
RoboForm, whose purpose is to keep track of your authentication information in a secure
manner. These programs are referred to as password management software, although they
often also help store and manage other information, such as credit card numbers and PINs.
Information stored in password management software is encrypted and guarded by a master
password. Many of these programs provide plug-ins to your web browser that let you access
your information in a secure way without ever having to type in the password at all. Such
programs should be evaluated and used with care, but they may provide a good solution for
keeping track of security information for the active user.

Password management software A program that helps you manage sensitive data, such as passwords, in a secure
manner

CAPTCHA
Although username and password verification is used for the vast majority of software
systems, other authentication techniques do come into play. These range from seemingly
insignificant situations, such as posting a comment on a blog, to high-security systems that
use multiple levels of authorization.

CAPTCHA, for instance, is a system used to ensure that the information provided
through a web form has been filled in by a person as opposed to a computer program. For
example, some blogging software will employ CAPTCHA before a user submits a comment
to prevent a malicious program from posting comments containing spam or other
inappropriate material. In this case, the authorization process is not used to determine
which specific human is participating, but simply that the participant IS a human.

CAPTCHA A software mechanism used to verify that a web form is submitted by a human and not an automated
program

CAPTCHA software is designed to present a problem easy enough for all humans to
solve but difficult for an automated program to complete. The name CAPTCHA is a play
on the word “capture,” and is an acronym for Completely Automated Public Turing test to
tell Computers and Humans Apart.

578

FIGURE 17.2 A CAPTCHA form verification
Courtesy of Google

Most modern CAPTCHA techniques involve presenting the user with an image of a
word, phrase, or string of characters and then asking the user to type them in. The image of
the word is theoretically easy to decipher by a human but distorted in various ways to make
it difficult for a program to “read” the word. FIGURE 17.2 shows an example of a
CAPTCHA image.

If the user enters the word or phrase that matches the CAPTCHA image, then the form
content is accepted; if not, it is rejected. Sometimes CAPTCHA images are hard even for a
human to read, so most systems will provide an alternative image if needed.

A website developer can get CAPTCHA plug-ins from various places. The version
pictured in Figure 17.2 is from the reCAPTCHA project, which, in addition to providing
the standard CAPTCHA service, is designed to help digitize books. Instead of presenting
random words, the reCAPTCHA system presents words that an optical character reader
had difficulty deciphering. When the user types in the words (using human perceptual
abilities), that information is also passed along to the digitizing organization. The
reCAPTCHA system reportedly displays more than 100 million forms per day.

Fingerprint Analysis
As discussed earlier, other techniques for user authorization include state-of-the-art
techniques such as fingerprint analysis. Fingerprints, of course, are used to verify the
identity of a particular person. Fingerprint analysis is considered a much stronger level of
verification than username and password because it relies not only on information the user
provides, but also on inherent characteristics of the user himself or herself.

Fingerprint analysis A technique used for user authentication that compares a scanned fingerprint to a stored copy
of the authorized user’s fingerprint

Fingerprint analysis requires the use of a scanner to read the fingerprint, as well as
software to compare it to the fingerprint stored in the computer of the authorized user.
This approach has dropped in cost so much over recent years that it is becoming much
more popular.

Some modern laptop computers have fingerprint scanner hardware incorporated into
the computer itself, often near the trackpad. Users verify themselves by passing their finger
over the scanner before any access is granted. For other systems, the scanner is a small but
separate peripheral device connected to a computer via a USB port. FIGURE 17.3 shows a

579

fingerprint scanning peripheral.

?
Blaster

In August 2003, the Blaster worm spread quickly through computers running Microsoft operating systems. It was
designed to replicate on any vulnerable machines it could find and launch a denial-of-service attack on Microsoft’s
update website. Users of infected machines often didn’t realize they had become victims, but their computers
quickly became sluggish and often forced a reboot. The worm affected about 500,000 computers. Microsoft
announced a $250,000 reward for information leading to the worm’s creator. Although arrests were made of
individuals thought to be responsible for Blaster variants, the worm’s original creator was never caught.

FIGURE 17.3 A fingerprint scanner
© LongHa2006/Getty Images

A recent version of the Apple iPhone incorporates Touch ID, Apple’s own fingerprint
recognition technology. Touch ID is built into the Home button of the phone. You can
unlock your phone simply by placing your finger gently on the button—you don’t have to
type in your passcode. The Touch ID system occasionally has problems recognizing users,
but most issues can be avoided by keeping the scanner clean and making sure the initial
scan of the fingerprint is done carefully, using multiple scans with different finger
orientations.

17.3 Malicious Code
We’ll now explore deliberate attempts to gain inappropriate access or cause other problems
using software. Malicious code, or malware, can be defined as any program code that
explicitly attempts to bypass appropriate authorization safeguards and/or perform
unauthorized functions. Such code is transferred to a computer across a network or from
removable media such as USB memory sticks. Malicious code may cause serious damage,
such as the destruction of data, or it may merely create a nuisance, such as popping up
unwanted messages.

580

Malicious code (malware) A computer program that attempts to bypass appropriate authorization safeguards
and/or perform unauthorized functions

There are many categories of malicious code. The term computer virus is often used to
describe any malicious code, although it’s really just one type of problem. A virus is a
program that embeds a copy of itself in another program. This “infected” file is referred to
as the virus host. When the host is executed, the virus code runs as well.

Virus A malicious, self-replicating program that embeds itself into other code

A worm is self-replicating, like a virus, but does not require a host program to infect.
The worm runs as a stand-alone program. A worm tends to cause problems on the
networks it uses to send copies of itself to other systems, often by consuming bandwidth. In
contrast, a virus tends to cause problems on a particular computer by corrupting or deleting
files.

Worm A malicious stand-alone program that often targets network resources

The famous story of the Trojan horse gives its name to another category of malicious
code. In the myth, the Greeks built a giant wooden horse in which a small group of
warriors hid themselves. After the Trojans took the horse into the city, the hidden warriors
came out under cover of night, opened the city gates, and allowed the Greeks to conquer
Troy.

In programming, a Trojan horse is a program that appears to be helpful in some way,
but actually causes some kind of problem when executed. Even while the program is
running, it may appear to the user as a benevolent resource, which makes it difficult to
track down. Like a worm, a Trojan horse is a stand-alone program; like a virus, it tends to
cause problems on the computer on which it is executing.

Trojan horse A malicious program disguised as a benevolent resource

The final category of malware we’ll examine is called a logic bomb, which is malicious
code that executes when a specific system-oriented event occurs. It is often set to execute on
a certain date and time, such as Friday the 13th or April Fools’ Day, but it could be
triggered by many kinds of events.

Logic bomb A malicious program that is set up to execute when a specific system event occurs

Antivirus Software
Malware can be fought using antivirus software, which is specifically designed to detect

581

and remove malicious code, or, better yet, prevent it from being installed on your computer
in the first place. Antivirus software first became available in the mid-1980s, when virus
creation became a problem. The name is a bit misleading in that modern antivirus software
protects you from many kinds of malware, not just viruses.

Antivirus software Software designed to detect, remove, and/or prevent malicious software

There are dozens of competing developers of antivirus software: Norton, McAfee, and
Symantec are three of the most popular brands. If you haven’t done so already, you should
research your antivirus software options carefully, then install and use your favorite.

Some antivirus software works using signature detection. This approach generally works
only when a known malware program has been identified and analyzed. Signature detection
software looks for recognizable patterns of particular malware within executable code. That
is, once a piece of malware is identified, key patterns in the executable version are noted.
Then, when you do a scan of your hard drive or try to install a new piece of software, the
antivirus software attempts to find those patterns. If a match is found, an alarm is raised.

An extension of the signature detection approach to antivirus software uses heuristics to
identify potentially malicious code. The trouble with some malware is that it might
deliberately mutate to make itself less recognizable. A heuristic approach looks for more
general patterns than the strict signature detection approach, so that it hopefully can detect
an entire family of similar malware.

It’s important that you keep your antivirus software up to date. The companies that
make antivirus software are constantly updating their database of signatures and heuristics
to detect new malware.

Security Attacks
A computer system can be attacked in many different ways. Some attacks attempt to gain
inappropriate access, whereas others exploit development flaws. Still others rely on the
vulnerabilities of digital communication. Let’s examine the general characteristics of each
type.

Earlier in this chapter we discussed the importance of picking good passwords and
keeping them well guarded. Some attacks perform password guessing by repeatedly trying
to log in to a system or application using different passwords. It might be impractical for a
human to try many passwords individually, but a computer program can attempt
thousands of potential passwords each second in a “brute force” fashion. These programs
will often try every word in an online dictionary, combinations of words, and various other
character combinations, to see whether they can eventually find your password. To partially
address this problem, some authentication systems will allow a user to attempt to enter a
password only a few times without success, and then will terminate the session.

Password guessing An attempt to gain access to a computer system by methodically trying to determine a user’s
password

582

Instead of guessing a password, other attacks will attempt to trick you into divulging
that information willingly. Phishing is a technique that uses a web page that looks like an
official part of some trusted environment, but is actually a page designed to collect key
information such as usernames and passwords. For example, you might receive an email,
supposedly from eBay, suggesting that there is business you need to take care of and
presenting a link for you to follow. The resulting web page would ask you to log in, but
instead of giving you access to your eBay account, the page simply transmits that
information to a malicious user who will use it to gain inappropriate access to your
account.

Phishing Using a web page to masquerade as part of a trusted system to trick users into revealing security
information

Some phishing schemes are very clever and look very official. Beware of any situation in
which you are contacted (instead of you initiating the contact) and requested to provide
security information. That will almost never happen with a reputable company. And if you
are ever sent an email containing a link they encourage you to follow, scrutinize the link’s
true destination (the URL) carefully. (You can usually hover the mouse pointer over the
link to show the URL.) That often gives away the fact that you would not be sent to a valid
site.

Both password guessing and phishing are ways for a hacker to “spoof” a computer
system. Spoofing, in general, is an attack that allows one user to masquerade as another.

Spoofing An attack on a computer system in which a malicious user masquerades as an authorized user

A back door is a feature of a program that allows special access to a computer system or
application, usually granting high levels of functional privileges. A programmer explicitly
puts a back door into a system, perhaps for benign testing purposes, or perhaps for the
unscrupulous intent to bypass the system security at a later point. In either case, a back
door is a vulnerability that is deliberately integrated into a program and, therefore, might
not raise any security flags. The key to protecting against back door attacks is a high-quality
development process, in which careful code reviews by multiple participants minimize such
abuses.

Back door A program feature that gives special and unauthorized access to a software system to anyone who knows
it exists

The development process can be the source of other security problems as well. A system
defect, though unintentional, might allow a clever attacker to exploit the weakness. One
such flaw allows a user to create a buffer overflow, which causes a program to crash and
could leave the user in a state with increased authority levels—and thus with the ability to
do things he or she couldn’t do otherwise. A buffer is simply an area of memory of a
particular size. If a program attempts to store more information than a buffer can
accommodate, a system crash could occur.

583

Buffer overflow A defect in a computer program that could cause a system to crash and leave the user with
heightened privileges

This problem is another issue related to the quality of the development process.
Programmers should carefully guard against the potential for buffer overflows. As a user,
you should also make a point of staying current with updates to your programs. Often
these updates contain fixes that eliminate potential security risks that eluded the initial
quality assurance process during development.

A denial of service (DoS) attack does not directly corrupt data or give inappropriate
access. Instead, it renders a system essentially useless by keeping a valid user from being able
to access the resource. Usually, a DoS attack is network based, caused by flooding a website
or other network resource with communication packets that keep it so busy it cannot deal
with authorized users. It may even cause the system itself to crash due to the sheer volume
of requests for its attention.

Denial of service An attack on a network resource that prevents authorized users from accessing the system

Another network-based security problem is called the man-in-the-middle attack.
Network communication goes through many locations and devices as it moves from its
source to its destination. Usually, such communication is passed along as appropriate
without a problem. A man-in-the-middle attack occurs when someone has access to the
communication path at some point in the network and “listens,” usually with the help of a
program, to the traffic as it goes by. The goal is to intercept key information, such as a
password being transmitted as part of an email message. The encryption methods discussed
in the previous section can guard against these problems.

Man-in-the-middle A security attack in which network communication is intercepted in an attempt to obtain key
data

17.4 Cryptography
A technical approach to keeping information secure can be discussed under the general
umbrella of cryptography, which is the field of study related to encoded information. The
word cryptography comes from the Greek term for “secret writing.” The basic concepts of
cryptography have been used in one form or another for thousands of years to help people
keep secrets from falling into the wrong hands. In this section, we explore the general issues
related to cryptography, as well as some of the current cryptography approaches.

Cryptography The field of study related to encoded information

Encryption is the process of converting ordinary text, referred to as plaintext in
cryptography terminology, into a form that is unreadable, called ciphertext. Decryption

584

reverses this process, translating ciphertext into plaintext. A cipher is an algorithm used to
perform a particular type of encryption and decryption. The key to a cipher is the set of
particular parameters that guide the algorithm.

Encryption The process of converting plaintext into ciphertext

Decryption The process of converting ciphertext into plaintext

Cipher An algorithm used to encrypt and decrypt text

You might have played with ciphers of various kinds in the past. Substitution ciphers,
as the name implies, substitute one character in the plaintext message with another
character. To decode the message, the receiver performs the opposite substitution.

Substitution cipher A cipher that substitutes one character with another

Perhaps the most famous substitution cipher is the Caesar cipher, used by Julius Caesar
to communicate with his generals. The Caesar cipher simply shifts the characters of a
message by a certain number of positions down the alphabet. For example, shifting the
characters five positions to the right would result in the following substitutions:

Caesar cipher A substitution cipher that shifts characters a certain number of positions in the alphabet

?
Big Brother

The debate regarding encryption has been going on for decades. In the 1990s, the FBI began supporting a policy
that required citizens to surrender deciphering keys upon request. The government also wanted the ability to gain
access to secure information through “back doors,” bypassing the need for a deciphering key to access secure data.
Privacy advocates protest against such encryption restrictions, arguing that the government’s attempt to monitor
encryption technology is Orwellian in nature. They also feel that back doors open up secure sites to hackers, and
that powerful encryption helps keep confidential information out of the hands of criminals.

Using this approach, the message “MEET ME AT THE OLD BARN” would be
encrypted as

The key to this cipher consists of the number of characters shifted and the direction
(right or left). Of course, the space character could be left out of the encrypted version or
substituted with another character, and punctuation could be included. Many other
variations of substitution ciphers exist as well, such as those in which groups of letters are

585

substituted as a unit, or those that perform different substitutions at different points in the
message.

Transposition ciphers rearrange the order of the existing characters in a message in a
certain way. For example, a route cipher is a transposition cipher that lays out the message
as a grid of characters and specifies a route through the grid to encrypt the information. To
encrypt the message “MEET ME AT THE OLD BARN,” we could write the letters in
columns as follows:

Transposition cipher A cipher that rearranges the order of the characters in a message

Route cipher A transposition cipher that lays out a message in a grid and traverses it in a particular way

We could encrypt this message by spiraling inward from the top right of the grid
moving clockwise, yielding

ARNBOTEEEMTAHLDETM

After being delivered, the message would be decrypted by recreating the grid and
reading the letters down the columns. The key in this cipher is composed of the dimensions
of the grid and the route used to encrypt the data. When making the grid, extra characters
could be used as placeholders if the number of characters didn’t work out perfectly for a
particular grid dimension.

Cryptanalysis is the process of “breaking” a cryptographic code. That is, it is the
attempt to figure out the plaintext version of a message without knowing the cipher or its
key. Older approaches to cryptography, such as transposition and substitution ciphers,
don’t pose much of a challenge for modern computers. Programs have been written that
can fairly easily determine which of these types of encryption methods are used and
produce the corresponding plaintext messages. For modern computing, more sophisticated
approaches are needed.

Cryptanalysis The process of decrypting a message without knowing the cipher or key used to encrypt it

Another drawback to these approaches is that both the sender and the receiver must
share the cipher key, yet it must be kept secret otherwise. This shared key is a weakness in
the process because it must be communicated between the two parties and could be
intercepted. If the key is compromised, all future encrypted messages are at risk.

?
Alan Turing: Codebreaker

Alan Turing, often called the “father of computer science,” was also a cryptanalyst. During World War II, Turing
worked for the head of Britain’s code-breaking center and was head of the section responsible for German naval

586

cryptanalysis. He was instrumental in cracking the codes produced by the German cipher machine called Enigma,
allowing the Allied forces to decrypt a large number of messages sent by the German military. This intelligence gave
a significant advantage to the Allies during the war.

Let’s look at a modern approach to cryptography that minimizes these weaknesses. In
public-key cryptography, each user has a pair of keys that are related mathematically. This
relationship is so complex that a message encrypted with one key can be decrypted only
with the corresponding partner key. One key is designated as the public key, which can be
freely distributed, and the other key is the private key.

Public-key cryptography An approach to cryptography in which each user has two related keys, one public and
one private

Suppose two users (say, Alice and Bob) want to communicate securely with each other.
Keep in mind that they each have their own public and private key pair. To send a message
to Bob, Alice first obtains Bob’s public key, which he makes readily available, and uses it to
encrypt her message. Now no one—not even Alice—can decrypt the message except Bob.
Alice then sends the message safely to Bob, who decrypts it with his private key.

Likewise, Bob sends a message to Alice only after encrypting it with Alice’s public key.
Alice decrypts the message with her own private key. As long as both Alice and Bob keep
their private keys to themselves, it doesn’t matter who has their public keys.

Public-key encryption has also given rise to the use of digital signatures, which offer a
way to “sign” a document by appending extra data to the message that is both unique to
the sender and very difficult to forge. The digital signature allows the recipient to verify
that the message truly originates from the stated sender and has not been altered by a third
party during transmission. The signature is created using software that compresses the
message into a form called a message digest, and then encrypts the message digest with the
sender’s private key. The receiver uses the sender’s public key to decrypt the message digest
and then compares it to the digest created from the message itself. If they match, the
message is probably genuine and unaltered.

Digital signature Data that is appended to a message, made from the message itself and the sender’s private key, to
ensure the authenticity of the message

At the heart of public-key encryption is the fact that the public key can be made
generally available and be freely distributed. But what if someone else creates a key pair
using someone else’s name? How can a receiver be sure that a public key is authentic?
Organizations are handling this risk by creating a certificate authority center, which creates
a digital certificate for each trusted sender. The certificate is made using the sender’s
personal data and authenticated public key. Then, when a new message arrives, it is verified
using that digital certificate. If the message comes from someone for whom you don’t have
a digital certificate, you then have to decide whether to trust the message.

Digital certificate A representation of a sender’s authenticated public key used to minimize malicious forgeries

587

17.5 Protecting Your Information Online
We live in an online world. We shop online (see E-Commerce, Chapter 14), we store our
information online (Cloud Computing, Chapter 15), and we socialize online (Social
Media, Chapter 16). It’s convenient and productive and fun.

The trouble is, to have all of those wonderful interactions, we regularly put information
online that in years past we might have only entrusted to a close friend, if anyone. Online
interaction comes with a huge burden of responsibility to be smart about the information
we make available.

This issue goes beyond making sure no one steals a credit card number or a password.
When it comes to outlets such as blogs and Facebook posts, people regularly share
information that they would never share one-on-one with certain individuals, even if those
individuals can access that information just as easily as anyone else.

According to Consumer Reports magazine’s State of the Net 2010 analysis:

■ 25% of Facebook users don’t make use of its privacy controls or don’t know they
exist.

■ 40% of social media users post their full birthday online, opening themselves up to
identity theft.

■ 9% of social media users became victims of some form of information abuse in
2009, such as identity theft, harassment, or online scams.

In 2011, Google launched its Google+ (Google Plus) social media site as a direct
competitor to Facebook. Which feature was promoted as the biggest difference between the
two services? Information security.

One of the biggest complaints among Facebook users is the lack of control over who
can see particular information (posts, profile information, and so forth). Google+ makes
that issue a central point of their service, providing the ability to create “circles” of friends.
As a Google+ user, you might make a circle for your coworkers, another for your college
buddies, and another for people you “follow” online but don’t know directly. Then, when
you post something, you can determine which circles can see that post.

The truth is that, despite user complaints, Facebook has similar capabilities to control
the dissemination of information. But the controls for doing so have not always been
obvious or convenient. In light of the new competition, Facebook has been making changes
to its interface and functionality.

?
Words with Friends

Actor Alec Baldwin was removed from an American Airlines flight in December 2013 for refusing to turn off his
cell phone when passengers were requested to do so. Apparently he was playing Words with Friends, a Scrabble-like
game, and didn’t want to quit. When CNN anchor Brooke Baldwin (no relation) tagged Alec Baldwin in a tweet
asking about Words with Friends, the actor replied, “It’s … well … addicting.”2, 3

The point is that the conversation is centered on information privacy. The fact that

588

many users don’t use privacy controls, or even know about them, is a key to the problem.
Why do people make mistakes when it comes to keeping online information secure?

Some of the reasons include:

■ The Internet can create a false sense of anonymity.
■ People make assumptions about how securely their information is being treated.
■ People don’t think about the ramifications of sharing particular information in

particular ways.

The Internet puts a level of technology between us and the people with whom we
interact. That distance is often welcome, but it’s as much psychological as it is physical.
The perceived distance can create a feeling that you’re somehow protected by the
technology—that you’re in some ways anonymous—when the truth is that as a society,
we’re making more information about our private lives public than ever before.

In general, when it comes to posting online information, you should remember that
you can’t take it back. Once it’s out there, it gets copied and archived and distributed in
numerous ways. A recent survey noted that almost half of Internet users have regretted
making certain information available online.

When you’re having a face-to-face conversation with another person, you receive
immediate feedback in numerous ways: direct responses, facial cues, and so forth. Typed
responses, even with immediate feedback such as a text message, can easily lead to
misinterpretations that might never have happened with personal interaction. This is not to
say that remote interaction is bad; the point is that we should be aware of the limitations of
online communication.

Many websites request that users create a unique account so that you can log in and
personalize the process. In many cases, this is an important step and can result in a better
online experience. The trouble is that we have become so used to such requests now that we
are often too quick to give up that kind of information. Not all websites and online
organizations are created equal. While it’s not fun, it is often well worth the effort to
investigate the security practices of the site. For example, a site’s security policy should
state that your information would never be shared with a third party, or at least list the
situations in which it might be. That information provides a basis on which you can judge
the risk. Informally, you should inquire about a new site with friends and objective
references to give you a basis on which to make a decision.

Security policy A written statement describing the constraints or behavior an organization embraces regarding the
information provided by its users

Finally, it’s important to think about how some information can be used against you,
even if you have the best intent when posting it. A Facebook post that tells everyone you’re
excited about going on vacation next week also tells a potential thief that you’ll be out of
the house. A tweet that you’re running late to pick up your child lets other people know
that the child currently might be unprotected. You might think this information is only
being seen by your close friends and family, but that is often not the case, and possibly
unwise to post even if it is.

589

Security and Portable Devices
Today, mobile computing devices such as smart phones, tablets, and laptops are essential
equipment for most people. We are no longer restricted in our movement, even when we
want to read email and surf the Web. Add GPS capabilities to the mix, and we can now
make use of location-based services such as FourSquare and ensure that we don’t get lost.
Advertisements are even tailored to our location.

GPS (Global Positioning System) A system that uses satellites to pinpoint the location of any GPS receiver

This flexibility also comes with new security challenges. Recently, several mobile service
providers have been coming under scrutiny for their policies. In 2011, it became known
that the Apple iPhone logs GPS data, cell information, and WiFi hotspot locations, and
transmits that information to Apple every 12 hours. Phones that run the Android operating
system keep track of similar data and transmit it to Google. The information is used for
mapping programs and other apps, but is stored unencrypted and unprotected.

Law enforcement agencies have been making use of the data collected by these phones
to aid in criminal investigations. Using that data, the movements of an individual can be
tracked in detail. A device that reads the data from a phone can be purchased for less than
$3500, and manufacturers of such devices are encouraging police to make use of them.

A primary privacy concern is the circumstances under which law enforcement can gain
access to that location history. The U.S. Customs and Border Protection (CBP)
organization has publically asserted the authority to seize and copy the information stored
in portable electronic devices for any reason. There have been reports of police gathering
the information without a warrant during routine traffic stops.

With the advent of new and exciting technology comes the responsibility to wield it
with care. On this issue, short of abandoning mobile devices altogether, the end user can do
little other than encourage businesses and legislators to do the right thing.

WikiLeaks
WikiLeaks is an organization whose goal is to disseminate secret and classified information
to the public using the Web. As the name implies, the organization’s website was originally
designed as a wiki, allowing any users to upload information. It has evolved into an archival
site for information gathered from specific sources. WikiLeaks is no longer a wiki.

Wiki A website whose content can be created and edited by multiple users.

The “wiki” prefix, especially now that WikiLeaks isn’t a wiki, creates some confusion,
as does the similarity of the WikiLeaks name to other sites. For example, Wikipedia, the
popular online encyclopedia, is not related in any way to WikiLeaks.

The stated purpose of WikiLeaks is to provide a buffer between their sources, who are
often anonymous news journalists and whistleblowers, and the governments that might put
them in jail for making the information public. As an example, the WikiLeaks site refers to

590

Chinese journalist Shi Tao, who was jailed in 2005 for publicizing an email from Chinese
officials about the anniversary of the Tiananmen Square massacre.

By design, the administration of WikiLeaks makes it difficult for governments or other
groups to influence their practices. WikiLeaks is an international, nonprofit organization.
They no longer have an official headquarters—they operate offices out of countries such as
Sweden and Switzerland, which have some of the strongest laws protecting the
confidentiality between journalists and their sources. The WikiLeaks website is hosted on
many servers spread throughout Europe.

The original sources of the information that WikiLeaks publishes vary, but a large
percentage of the documents that they make available are related to United States
government operations. For example, in July 2010, WikiLeaks posted almost 77,000
documents about the U.S. war in Afghanistan. In April 2011, they began publishing secret
files relating to the prisoners held in the detention camp in Guantanamo Bay.

As you can imagine, this practice raises ethical issues and is a cause of concern for many
people, including those in the U.S. military. Debate continues about the balance between
the need for transparency in a free society and the need for secrecy to ensure the safety of
those involved.

So it can be argued that WikiLeaks, by its stated purpose alone, is an example of an
online security issue. Beyond that, though, is the simple fact that WikiLeaks is yet another
organization that manages sensitive information online, making itself a target for hackers
who attempt to gain inappropriate access.

Keep in mind that WikiLeaks archives a huge number of documents and makes
conscious decisions about which documents to make public. In September of 2011, it
became known that access to previously unpublished documents had been available for
months. A large set of unredacted U.S. State Department documents had been archived on
the WikiLeaks site and protected using an encryption key (as discussed in Section 17.4).
Not only had the documents themselves been made available outside of WikiLeaks’ control,
but the decryption key was made available as well.

Mavis Batey4, 5, 6

Mavis Batey was one of the original Bletchley Park girls. Bletchley Park, a mansion in
Milton Keynes, England, was the central site of the UK’s Government Code and
Cypher School (GC&CS) during World War II. Here in the lovely English countryside

591

the German Enigma and Lorenz ciphers were broken, shortening World War II
considerably.

Born Mavis Lever, she studied German at University College London. In 1940 she
decided to leave university, with the idea she would become a nurse to aid the war
effort. However, she was told that her country needed her more for her German skills,
so she began to work for GC&CS. After showing promise, she was sent to Bletchley
Park, where she worked with the famous codebreaker Dilly Knox. Lever wrote,
“Organisation is not a word you would associate with Dilly Knox. When I arrived, he
said: ‘Oh, hello, we’re breaking machines; have you got a pencil?’ That was it. I was
never really told what to do.”

In March of 1941, Lever deciphered a series of messages encrypted on the Italian
navy’s Enigma machine, which revealed Italy’s detailed plans to ambush the Royal Navy
supply convoy. The Italian Navy never again confronted the Royal Navy after that
defeat.

In late 1941, Lever broke a message between Belgrade and Berlin that allowed the
team to work out the wiring of the Abwehr Enigma machine, which had been deemed
impossible to break. This was of great importance. In the 1930s, the German spies who
infiltrated Great Britain were caught and turned into double agents; however, British
intelligence was uncertain as to whether the Germans still believed the misinformation
being sent back by the double agents. The deciphered information confirmed that the
Germans believed everything their double agents told them, including the information
that the Allied Forces would invade at Calais. All this and Lever was only 19 years old.

Lever married Keith Batey, another of the Bletchley “break-in” experts whom she
met when she sought help on a difficult problem. It wasn’t until 1970 that the couple
could tell their children what they did during the war. One of their daughters remarked
that she always wondered why her mother was so good at Scrabble.

After the war, Mavis Batey spent time in Her Majesty’s Diplomatic Service, then
retired to raise their three children. She developed a fascination with gardening and
published several books on garden history. She was made a Member of the Order of the
British Empire (MBE) in 1987, not for her code breaking but for her preservation and
conservation of gardens.

Batey died at age 92 on November 12, 2013.

The founder of WikiLeaks, Julian Assange, is a former hacker and programmer. For
many years he was constantly on the move, living for only a brief time in one of dozens of
countries before moving on. In 2012, Ecuador granted Assange political asylum, and has
been his base of operations since. Over the course of its tumultuous relationship with
WikiLeaks, the United States has considered various legal avenues against Assange but has
not pursued them to date.

Several films about Assange and WikiLeaks were released between 2012 and 2014,
including a thriller called The Fifth Estate, which was panned by critics and ignored by
moviegoers. Assange opposed the making of The Fifth Estate and was reportedly pleased by
its failure.

592

SUMMARY

Security issues are prevalent throughout all of the layers of a computer system, and some
have been explored in previous chapters. This chapter focused on high-level security issues
that are faced by almost all users in today’s online world.

Many of these issues fall under the umbrella of information security, which deals with
the confidentiality, integrity, and availability of information. Confidentiality ensures that
key data remains protected; integrity ensures that data can only be modified by appropriate
mechanisms; and availability ensures that authorized users can access the data when needed.

Controlling access to computer systems and software requires user authentication,
which uses some kind of user credentials to verify the user’s identity. Authentication
credentials could be something the user knows, like a password; something the user has,
like a smart card; or a physical trait of the user, such as a fingerprint.

A good password is something you will remember that is difficult for other people to
guess. Some systems require particular password criteria, such as a mix of upper- and
lowercase letters, numeric digits, and special characters. In general, you shouldn’t share
your password with anyone, send it in an email, or use the same password for multiple
accounts. Password management software helps keep track of information such as
passwords and credit card numbers in a secure manner.

There are other techniques for controlling access besides username and password
control. CAPTCHA is a software mechanism that ensures that the user is a human and not
an automated program by having the user type in a string of characters viewed in a
distorted image. Fingerprint analysis has become affordable recently and is often used to
identify particular uses using special hardware built into a laptop or as a USB peripheral
device.

There are several categories of malicious code (or malware) that are designed to cause
problems. They include viruses, which infect other software and self-replicate; Trojan
horses, which masquerade as beneficial software but have malicious intent; and logic
bombs, which are designed to execute in response to a particular system event.

Antivirus software is used to detect, remove, and/or prevent malware. Despite its name,
it protects the user from multiple kinds of malware, not just viruses. Antivirus software uses
signature detection to identify particular threats, or heuristics that generalize the detection
process to include families of similar threats.

Various types of security attacks include password guessing, phishing, and denial-of-
service attacks. They also include programming-related problems, such as a programmer
deliberately leaving “back door” access to a system and inadvertently creating a potential
flaw such as a buffer overflow that could leave a user with inappropriately high privileges.

Cryptography is the field of study related to encoding information. Various ciphers can
be used to encrypt and decrypt a message. A Caesar cipher and a transposition cipher are
two early techniques that are relatively easy to break. Modern cryptography deals with
public-key encryption, which has given rise to digital signatures and digital certificates.

The average user should make a better effort to protect their information online. Social
network services such as Facebook and Google+ provide mechanisms for determining who

593

can see what in terms of the data you make available, but many users don’t make use of
these mechanisms, or don’t even know they exist. Poor decisions regarding online security
stems from a false sense of anonymity and assumptions about the security policies of the
websites involved.

Protecting data in mobile devices has become a recent problem. Companies like Apple
and Google store location data on mobile phones. This data recently has been extracted and
used by law enforcement and other sources without permission. This issue is currently in
flux and will likely result in new policies and laws.

WikiLeaks is an organization that publishes secret and classified documents on the
Web, while protecting the sources of that information from government retaliation. It
operates in ways that make it difficult for anyone to influence its practices. While
WikiLeaks promotes the need for transparency in a free society, their practices raise
concerns, especially in the U.S. military. Furthermore, WikiLeaks was itself recently a target
of an online attack that allowed a huge cache of unredacted U.S. State Department
documents to be available for download.

ETHICAL ISSUES
Blogging

Like websites, blogs became ubiquitous virtually overnight. A blog is a weblog or online
journal. Most blogs are interactive and provide for feedback from readers. Whereas most
bloggers write about mundane matters, the blogosphere has also emerged as a viable
alternative news medium. Blogs are having an increasing impact on the public,
sometimes supplementing or correcting reporting of the mainstream media. For
example, in 2004, blogs quickly exposed the inauthenticity of the documents used in a
60 Minutes story about President George W. Bush’s National Guard service. Many
other blogs consistently provide a unique and unconventional perspective on the local
and national news.

According to The Wall Street Journal, the audience for alternative media is
expanding: “The number of Americans reading blogs jumped 58% in 2004 to an
estimated 32 million people … with about 11 million looking to political blogs for news
during the [2004] presidential campaign.”7 By March 2008, the number of people
globally who read blogs was 346,000,000.

But blogs are not just for online journalists or political commentators. There are
personal blogs, like the one being kept by the grandson of one of the authors. He is
taking a year off after college to travel; his blog keeps family and friends in touch. There
are corporate and organizational blogs, which enhance the communication and culture
of the organization. Blogs can be sorted by genre, such as political blogs, travel blogs,
and classical music blogs; the list is endless. Blogs can be sorted by media type: They can
contain videos, music, sketches, and photographs. Blogs also can be characterized by the
device used to create them.

Of course, the blogosphere is not without its share of controversies. One such
controversy erupted in 2005 after some bloggers posted confidential Apple Computer
documents about an unreleased Apple product. Apple demanded to know the source of
this information, but the bloggers argued that they were journalists, so they should be

594

protected under federal and state laws from revealing their sources. A California judge
disagreed, however, and ruled that the bloggers must reveal their sources.

Unfortunately, the judge in this case did not address the central question: Do
bloggers deserve the same privileges to protect their sources that are accorded to
journalists? On the one hand, these bloggers are acting just like journalists by reporting
the news, so why shouldn’t they have the same privileges as journalists? On the other
hand, “the prospect of 10, 20, or 50 million bloggers claiming journalistic privilege
terrifies judges and First Amendment lawyers alike, [since] they fear that anyone who
has a website, if called to testify by a grand jury, could claim the privilege and refuse to
cooperate.”8

In early 2014, the U.S. Court of Appeals for the Ninth Circuit in San Francisco
rendered a verdict that gives bloggers the same protection as journalists.

Because blogging is still a fairly new phenomenon, there has not been much debate
about “blogging ethics.” But such debate is surely needed. What are the responsibilities
of bloggers, especially those who operate alternative news sites? Do they have the same
obligations as the conventional media? Should they be held to the same standards of
objectivity? Although it may not be a good idea to put too many restrictions on
bloggers, they are, of course, subject to the same ethical rules as anyone who
communicates information: They must strive to be truthful at all times. They also have
an obligation to check their sources and to identify those sources whenever possible so
that readers are fully informed. In an online environment, this can often be done by
providing links to other sites.

Bloggers also have a duty to avoid unjust accusations and to retract erroneous
information as quickly as possible. Finally, bloggers should consider disclosing any
conflicts of interest in cases where their objectivity may be compromised. Sometimes it
may be necessary for a blogger to disclose who pays his or her salary, or who provides
funding for the website’s operating costs. As one blogger explained, “The audience
should be able to come to your blog and assume you’re not on the take.”9 If bloggers can
follow these simple rules, they will engender trust among their readers and the weblog
will have a bright future.

KEY TERMS

Antivirus software
Authentication credentials
Availability
Back door
Biometrics
Buffer overflow
Caesar cipher
CAPTCHA
Cipher
Confidentiality

595

Cryptanalysis
Cryptography
Decryption
Denial of service
Digital certificate
Digital signature
Encryption
Fingerprint analysis
GPS (Global Positioning System)
Information security
Integrity
Logic bomb
Malicious code (malware)
Man-in-the-middle
Password criteria
Password guessing
Password management software
Phishing
Public-key cryptography
Risk analysis
Route cipher
Security policy
Smart card
Spoofing
Substitution cipher
Transposition cipher
Trojan horse
User authentication
Virus
Wiki
Worm

EXERCISES

For Exercises 1–27, mark the answers true or false as follows:
A. True
B. False

 1. Information integrity ensures that data can be modified only by appropriate
mechanisms.

 2. Pairing threats with vulnerabilities is a part of risk analysis.
 3. Smart cards are the most popular form of authentication credentials currently

used.

596

 4. Biometrics is a type of user authentication that relies on the user having a smart
card or a card with a readable magnetic strip.

 5. A password should not resemble anything that looks like a word or phrase in a
language that humans speak.

 6. CAPTCHA is a software mechanism that authenticates a particular user before
allowing him or her to post a comment to a blog.

 7. The reCAPTCHA project serves a secondary purpose—to help digitize books.
 8. The cost of fingerprint analysis has dropped significantly in recent years, and

fingerprint analysis is now regularly built into laptop computers.
 9. The Touch ID biometric system uses retinal scans for user validation.
10. A computer virus “infects” another program by embedding itself into that

program.
11. The terms “Trojan horse” and “worm” are used interchangeably to describe a

particular category of malicious code.
12. A logic bomb is set to go off when a particular system event occurs, such as a

particular date and time.
13. Antivirus software is not effective against non-virus types of malware.
14. A password-guessing program uses dictionaries to try thousands of potential

passwords each second.
15. Phishing is a technique that uses deceptive emails and websites to obtain user

information, such as usernames and passwords.
16. A back door threat is implemented by a programmer of the system under attack.
17. A denial-of-service attack does not directly corrupt data.
18. Decryption is the process of converting plaintext into ciphertext.
19. A cipher is an algorithm used to encrypt and decrypt text.
20. A transposition cipher is an example of modern cryptography.
21. In public-key cryptography, each user has two related keys, one public and one

private.
22. A digital signature allows the recipient to verify that the message truly originates

from the stated sender.
23. The Internet can create a false sense of anonymity.
24. Users of social media sites make good use of the controls available to protect their

information online.
25. A website’s security policy describes the constraints and behaviors that an

organization embraces regarding information management.
26. Many mobile phones collect and store location data that can then be read and used

by third parties, such as law enforcement.
27. WikiLeaks founder Julian Assange is currently in prison in the United States.

Exercises 28–55 are problems or short-answer questions.
28. What is the CIA triad of information security?
29. Other than those presented in this chapter, give three examples of data integrity

violations.
30. What are the three general approaches to presenting authorization credentials?
31. List at least four guidelines related to password creation and management.
32. Is “diningroom” a good password? Why or why not?

597

33. Is “fatTony99” a good password? Why or why not?
34. What is password management software?
35. What is the goal of a CAPTCHA interaction?
36. What are the dual purposes of the reCAPTCHA system?
37. What is Apple’s Touch ID technology used for?
38. What do we mean when we say a computer virus is self-replicating?
39. Describe the two techniques used by antivirus software to identify malware.
40. Describe a hypothetical scenario, other than the one described in this chapter, of a

phishing attack.
41. Describe how a Trojan horse attacks a computer system.
42. Describe a buffer overflow and how it might make a computer system vulnerable.
43. How does a man-in-the-middle attack work?
44. Using a Caesar cipher, shifting three letters to the right, encrypt the message “WE

ESCAPE TONIGHT.”
45. Using the Caesar cipher described in this chapter, decrypt the message

“WJNSKTWHJRJSYX FWWNAJ RTSIFD.”
46. Using the transposition cipher technique used in this chapter, encrypt the message

“WHO IS THE TRAITOR?”
47. Describe how Claire would send a message to David using public-key encryption.
48. What is a digital signature?
49. What does a website’s security policy describe?
50. What is GPS? How is it used to support cell phone applications?
51. Which abuses are possible given the current state of cell phone data collection?
52. What is a wiki?
53. What is WikiLeaks? Is it a wiki?
54. Who is Julian Assange?
55. Describe the recent security failure regarding the WikiLeaks archives.

THOUGHT QUESTIONS

 1. Create and describe a process other than the one presented in this chapter for
creating a password with a strong security level, but that would be easy for a person
to remember. Give two examples that follow the process.

 2. What is encryption, and how does it relate to you as a student?
 3. Why do some people fail to keep their information secure online?
 4. Find an example of a security policy posted on a website, and list three of the most

important statements it makes regarding the management of information. Why do
you think the statements you chose are important?

 5. Describe the security issues related to the practice of collecting location data on
mobile phones. Under which circumstances do you think that data should be
collected and made available to other organizations?

 6. Defend the goals of the WikiLeaks organization. Now describe how those goals
can be harmful. Which goal is more important?

 7. In your opinion, how many restrictions should be placed on bloggers? Should they

598

be held to the same standards as journalists?
 8. Is blogging an effective tool to communicate with the general public? Or does its

individualistic stance and lack of an editor make it an unreliable source of
information?

 9. Is blogging only helpful in reporting news, or are there other valuable uses for
weblogs?

10. Has the U.S. Court of Appeals for the Ninth Circuit’s verdict about blogging been
challenged?

599

IN CONCLUSION

Laying the Groundwork
1 The Big Picture

The Information Layer

2 Binary Values and Number Systems
3 Data Representation

The Hardware Layer

4 Gates and Circuits
5 Computing Components

The Programming Layer
6 Low-Level Programming Languages and Pseudocode
7 Problem Solving and Algorithms
8 Abstract Data Types and Subprograms
9 Object-Oriented Design and High-Level Programming Languages

The Operating Systems Layer
10 Operating Systems
11 File Systems and Directories

The Applications Layer

12 Information Systems
13 Artificial Intelligence
14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer
15 Networks
16 The World Wide Web
17 Computer Security

In Conclusion
18 Limitations of Computing

600

18 LIMITATIONS OF COMPUTING

In the last 17 chapters, we have looked at computers: what they are, what they can do, and
how to use them to solve problems. In this chapter, we look at what computers cannot do.
That is, we examine the limits imposed by the hardware, the software, and the problems
themselves. The dictionary gives multiple meanings for the word limit, including
“boundary” and “something that is exasperating or intolerable.” We use both of these
definitions of limit in this chapter.

Just as a roadblock stops traffic, the limits imposed by the hardware, software, and
problems stop certain kinds of processing.

GOALS
After studying this chapter, you should be able to:

■ describe the limits that the hardware places on the solution to computing problems.
■ discuss how the finiteness of the computer influences the solutions to numeric problems.
■ discuss ways to ensure that errors in data transmission are detected.
■ describe the limits that the software places on the solutions to computing problems.
■ discuss ways to build better software.
■ describe the limits inherent in computable problems themselves.
■ discuss the continuum of problem complexity from problems in Class P to problems that are unsolvable.

18.1 Hardware
The limits on computing caused by hardware stem from several factors. One factor is that
numbers are infinite, but the representation of them within the computer is not. Another
problem with hardware is just the fact that it is hardware; that is, it is made up of
mechanical and electronic components that can fail. Another set of problems occurs when
data is transmitted from one internal device to another or from one computer to another.
Let’s look at each of these problems and some strategies to minimize their impact.

Limits on Arithmetic
We discussed numbers and their representation in the computer in Chapters 2 and 3.
There are limitations imposed by computer hardware on the representations of both integer
numbers and real numbers.

601

Integer Numbers
In the Pep/8 machine discussed in Chapter 6, the register that is used for arithmetic is 16
bits long. We said that the largest value we could store there is 65,535 if we represent only
positive values and 32,767 if we represent both positive and negative values. Pep/8 is a
virtual machine—but what about real machines? If the word length is 32 bits, the range of
integer numbers that can be represented is −2,147,483,648 to 2,147,483,647. Some
hardware systems support long-word arithmetic, where the range is
−9,223,372,036,854,775,808 to 9,223,372,036,854,775,807: Surely this is large enough
for any calculation. Or is it?

Henry Walker, in his book The Limits of Computing, tells the following fable.1 When
the king asked a bright young dot-commer to undertake a task for him, she agreed to do it
if the pay were adequate. She offered the king two choices: The king could pay her 1/5 of
the crops produced in the kingdom for the next five years or base her payment on a chess
board as follows:

■ One kernel of corn on the first square
■ Two kernels of corn on the second square
■ Four kernels of corn on the third square
■ Eight kernels of corn on the fourth square
■ The kernels of corn would double on each successive square until the 64th square

had been reached.

After a moment’s thought, the king chose the second option. (Which would you have
chosen?)

When it came time to pay up, the king started placing kernels of corn on the squares.
There were 255 kernels on the first row (1 + 2 + 4 + 8 + 17 + 32 + 64 + 128); not too bad,
he thought. For the next row, there were 65,280 kernels; still not too bad. The third row,
however, with its 963,040 kernels of corn, made the king uneasy. During the counting of
the next row, the king thought ahead to the last square, for he now understood the pattern.
The 64th square alone would have 263 kernels of corn—roughly 8 × 1018 kernels or
110,000 billion bushels. The king abdicated his throne in light of such a staggering debt,
and the mathematically sophisticated young woman became queen.

The moral of this story is that integer numbers can get very big very fast. If a computer
word is 64 bits and we represent only positive numbers, we could just represent the number
of kernels on the 64th square. If we tried to add up the kernels on the 64 squares, we could
not do so. Overflow would occur.

The hardware of a particular machine determines the limits of the numbers, both real
and integer, that can be represented. Some software solutions, however, allow programs to
overcome these limitations. For example, we could represent a very large number as a list of
smaller numbers. FIGURE 18.1 shows how integers could be presented by putting one or
more digits in each word. The program that manipulates integers in these forms would
have to add each pair of digits beginning at the rightmost and add any carry into the next
addition to the left.

602

Real Numbers
In Chapter 3, we said that a real number is stored as an integer along with information
about the position of the radix point. To better understand why real numbers pose a
problem, let’s look at a coding scheme that represents the digits and the radix-point
information.

To simplify the following discussion, let’s assume that we have a computer in which
each memory location is the same size and is divided into a sign plus five decimal digits.
When a variable or constant is defined, the location assigned to it consists of five digits and
a sign. When an integral variable or constant is defined, the interpretation of the number
stored in that place is straightforward. When a real variable is declared or a real constant is
defined, the number stored there has both a whole-number part and a fractional part. The
number must be coded to represent both parts.

Let’s see what these coded numbers might look like and what this coding does to
arithmetic values in programs. We begin with integers. The range of the numbers we can
represent with five digits is −99,999 through +99,999:

FIGURE 18.1 Representing very large numbers

603

The precision (the maximum number of digits that can be represented) is five digits,
and each number within that range can be represented exactly. What happens if we allow
one of these digits (let’s say the leftmost one, in red) to represent an exponent? For
example,

Precision The maximum number of significant digits that can be represented

represents the number +2345 * 103. The range of numbers we can now represent is
much larger:

Now the precision is only four digits. That is, we can represent only four significant digits
(nonzero digits or zero digits that are exact) of the number itself. This means we can
represent only four-digit numbers exactly in our system. What happens to larger numbers?
The four leftmost digits are correct, and the balance of the digits is assumed to be zero. We
lose the rightmost, or least significant, digits. The following example shows what happens.

Significant digits Those digits that begin with the first nonzero digit on the left and end with the last nonzero digit
on the right (or a zero digit that is exact)

?
Privacy is expensive

In an opinion piece in the New York Times, reporter Julia Angwin asks if privacy has become a luxury. “But, as I
have learned, it isn’t cheap or convenient to start buying privacy,” she writes. “I spend annoying amounts of time
updating software or trying to resolve technical difficulties when my different privacy-protecting services conflict
with one another.”2

Notice that we can represent 1,000,000 exactly, but not −4,932,417. Our coding scheme is
limited to four significant digits; the digits we cannot represent are assumed to be zero.

To extend our coding scheme to represent real numbers, we need to be able to

604

represent negative exponents. For example,

4394 * 10−2 = 43.94

or

22 * 10−4 = 0.0022

Because our scheme does not allow for a sign for the exponent, we have to change the
scheme slightly. Let’s allow the sign that we have already been using to be the sign of the
exponent and add a sign to the left of it to be the sign of the number itself.

Now we can represent all of the numbers between −9999 * 10−9 and 9999 * 109 accurately
to four digits, including all the fractional values.

Suppose we want to add three real numbers x, y, and z using this coding scheme. We
could add x to y, then add z to the result. Or we could do it another way: add y to z, then
add x to the result. The associative law of arithmetic says that the two answers should be the
same—but are they?

The computer limits the precision (the number of significant digits) of a real number.
Using our coding scheme of four significant digits and an exponent, let’s add the following
allowable values of x, y, and z:

First let’s look at the result of adding z to the sum of x and y:

605

Now let’s see what happens when we add x to the sum of y and z:

Our answers are the same in the thousands place but are different in the hundreds, tens,
and ones places. This is called representational error or round-off error. The result of
adding y to z gives us a number with seven digits of precision, but only four digits can be
stored.

Representational (round-off) error An arithmetic error caused by the fact that the precision of the result of an
arithmetic operation is greater than the precision of our machine

In addition to representational errors, there are two other problems to watch out for in
floating-point arithmetic: underflow and overflow. Underflow is the condition that arises
when the absolute value of a calculation gets too small to be represented. Going back to our
decimal representation, let’s look at a calculation involving very small numbers:

Underflow The condition that occurs when the results of a calculation are too small to represent in a given
machine

This value cannot be represented in our scheme because the exponent −13 is too small. Our
minimum is −9. Therefore, the result of the calculation would be set to zero. Any value too
small to be represented is set to zero, which is a reasonable thing to do under the
circumstances.

Overflow is the condition that arises when the absolute value of a calculation gets too
large to be represented. Overflow is a more serious problem because there is no logical thing
to do when it occurs. For example, the result of the calculation

Overflow The condition that occurs when the results of a calculation are too large to represent in a given machine

606

cannot be stored. What should we do? To be consistent with our response to underflow, we
could set the result to 9999 * 109, the maximum real value allowed in our scheme. But this
seems intuitively wrong. The alternative is to stop the computation and issue an error
message.

Another type of error that can happen with floating-point numbers is cancellation
error. This error happens when numbers of widely differing magnitudes are added or
subtracted. Here’s an example:

Cancellation error A loss of accuracy during addition or subtraction of numbers of widely differing sizes, due to
limits of precision

The laws of arithmetic say this equation should be true. But what happens when the
computer is doing the arithmetic?

With four-digit accuracy, this becomes 1000 * 10−3. Now the computer subtracts 1:

The result is 0, not 0.00001234.
We have been discussing problems with real numbers, but integer numbers can also

overflow (both negatively and positively). The moral of this discussion is twofold. First, the
results of real calculations often are not what you expect. Second, if you are working with
very large numbers or very small numbers, you need to be very careful of the order in which
you perform the calculations.

Limits on Components
“My hard disk crashed.” “The file server was down.” “My email went down last night.”
Any computing instructor has heard these tales of woe hundreds of time, as they are used to
explain (excuse?) late assignments. Of course, if an assignment is started when it is handed
out rather than the day it is due, these failures can be overcome. However, the problems of
hardware failure do exist: Disks do crash, file servers do go down, and networks do fail. The
Titanic effect, which states that “The severity with which a system fails is directly

607

proportional to the intensity of the designer’s belief that it cannot,” was coined by J. A. N.
Lee.3 Hardware failures do occur; the best solution is preventive maintenance. In
computing, this means periodic tests to detect problems and replacement of worn parts.

Preventive maintenance also means that the computer is housed in an appropriate
physical environment. Large mainframe computers often require air-conditioned, dust-free
rooms. PCs should not be set up under leak-prone plumbing. Alas, not all situations can be
anticipated. One such situation occurred during the days prior to the advent of integrated
circuits. A machine that had been working correctly started producing erratic results. The
problem was finally traced to a moth that had gotten into the cabinet of the machine. This
incident led to the term bug for a computer error. A more recent incident involved a DSL
connection that intermittently disconnected itself. The trouble was finally traced to faulty
telephone lines on which the local band of squirrels had enjoyed munching.

Of course, any discussion of component limits assumes that the computer hardware has
been thoroughly tested at the design stage and during manufacturing. A major scandal in
1994 was the circuit flaw in Intel’s Pentium processor. The Pentium chip was installed in
millions of computers manufactured by IBM, Compaq, Dell, Gateway 2000, and others.
The circuit flaw was a design error in the floating-point unit that caused certain types of
division problems involving more than five significant digits to give the wrong answer.

How often would the error affect a calculation? IBM predicted that spreadsheet users
would experience an error every 24 days, Intel asserted that it would occur every 27,000
years, and PC Week’s test suite placed the frequency once every 2 months to 10 years.4 The
chip’s flaw was corrected, but Intel did not recall all of the already-released chips. The
experience was a public relations disaster for Intel, but the company remains one of the
leading chip manufacturers today.

?
Tweets useful to burglars

On Twitter, most user posts are public. So a burglar doesn’t have to be your “follower” to hear all about your
vacation. And when you are on vacation, your house is most likely empty, ripe for a burglary.5

Limits on Communications
The flow of data within a computer and between computers is the life blood of computing.
Therefore, it is extremely important that the data not be corrupted in any way. This
realization leads to strategies known as error-detecting and error-correcting codes. Error-
detecting codes determine that an error has occurred during the transmission of data and
alert the system to this fact. Error-correcting codes not only determine that an error has
occurred, but also try to determine what the correct value actually is.

Parity Bits
Parity bits are used to detect that an error has occurred between the storing and retrieving
of a byte or the sending and receiving of a byte. A parity bit is an extra bit that is associated

608

with each byte in the hardware that uses the scheme. This bit is used to ensure that the
number of 1 bits in a 9-bit value (byte plus parity bit) is odd (or even) across all bytes.

Odd parity requires the number of 1s in a byte plus the parity bit to be odd. For
example, if a byte contains the pattern 11001100, the parity bit would be 1, giving an odd
number of 1s. If the pattern were 11110001, the parity bit would be 0, giving an odd
number of 1s. When a byte is retrieved from memory or received from a transmission, the
number of 1 bits is counted (including the parity bit). If the number is even, an error has
occurred. If this scheme is used in the hardware, each byte actually has an extra bit,
accessible only by the hardware, that is used for error detection. Even parity uses the same
scheme, but the number of 1 bits must be even.

Check Digits
A software variation of the same scheme is to sum the individual digits of a number and
then store the unit’s digit of that sum with the number. For example, given the number
34376, the sum of the digits is 23, so the number would be stored as 34376–3. If the 4
became corrupted as a 3, the error would be detected. Of course, if the 7 were corrupted to
a 6 and the 6 were corrupted to a 7, the sum would still be correct, but the number would
not be.

This scheme could be expanded to carry an additional digit, perhaps the unit’s digit of
the sum of the odd digits. In this case, 34376 would be stored as 34376–23: 3 is the unit’s
digit, of the sum of all the digits, and 2 is the unit’s digit of the sum of the first, third, and
fifth digits. This technique would catch a transposition error between adjacent digits but
would miss other transpositions. Of course, we could also carry the unit’s digit of the sum
of the even digits. You get the idea. The more important it is for errors to be detected, the
more complex the algorithm used to detect them is.

Error-Correcting Codes
If we keep enough information about a byte or number, it becomes possible to deduce what
an incorrect bit or digit must be. The ultimate redundancy would be to keep two separate
copies of every value that is stored. If the parity is in error or there is an error in the check
digits, we could look back at the extra copy to determine the correct value. Of course, both
copies could be in error.

The major work in error-correcting codes relates to disk drives and CDs, where
imperfections in the surface can corrupt data.

?
Yes, Watson?

In 2014, IBM challenged mobile developers to use Watson as a cognitive computing engine for new smartphone
apps. Watson is the computing platform that rose to fame when it beat two human champions of the TV game
show Jeopardy. Watson “reads” millions of pages of information on many subjects and is able to answer questions
about the information asked in natural language. Questions on Jeopardy are often tricky, which meant Watson had
to sort through double meanings to come up with correct answers.6

609

18.2 Software
We have all encountered horror stories about software that contained errors; they make for
very interesting reading. Are software errors in running programs really common
occurrences? Can’t we do something to make software more error free? To answer the first
question, a web search for “software bugs” retrieved 261,000,000 hits. To answer the
second, software developers are trying. In the next few sections, we examine why error-free
software is difficult—if not impossible—to produce. We also discuss current approaches to
software quality, and we end with a collection of interesting bugs.

Complexity of Software
If we accept the premise that commercial software contains errors, the logical question is
“Why?” Don’t software developers test their products? The problem is actually not a lack of
diligence but rather our old nemesis complexity. As our machines have grown increasingly
more powerful, the problems that can be tackled have become increasingly more complex.
A single programmer with a problem moved to a programming team with a problem and
finally graduated to a team of teams with a problem.

Software testing can demonstrate the presence of bugs but cannot prove their absence.
We can test software, find errors and fix them, and then test the software some more. As we
find problems and fix them, we raise our confidence that the software performs as it should.
But we can never guarantee that we have removed all of the bugs. There is always the
possibility of another bug lurking in the software that we haven’t found yet.

Given that we can never know for sure if we have found all the problems, when do we
stop testing? It becomes a question of risk. How much are you willing to risk that your
software may hold yet another bug? If you’re writing a game, you might take that risk a lot
sooner than you would if you’re writing airplane control software in which lives are on the
line.

As Nancy Leveson points out in Communications of the ACM, a branch of computing
known as software engineering emerged in the 1960s with the goal of introducing
engineering discipline into the development of software.7 Great strides toward this goal
have been made over the past half-century, including a greater understanding of the role of
abstraction, the introduction of modularity, and the notions of the software life cycle,
which we discuss in detail later.

Most of these ideas come from engineering, but had to be adapted to the unique
problems that arose when working with more abstract materials. Hardware designs are
guided and limited by the nature of materials used to implement these designs. Software
appears to have limits that are related more closely to human abilities than to physical
limitations. Leveson continues, “Thus, the first 50 years may be characterized as our
learning about the limits of our field, which are intimately bound up with the limits of
complexity with which humans can cope.”

Building software has changed. The early days were filled with the drive to write new
software, but more and more the problems of maintaining and evolving existing software

610

have taken center stage. As our systems have grown bigger and required large teams of
designers, we have started to examine the ways humans collaborate and to devise ways to
assist them to work together more effectively.

Current Approaches to Software Quality
Although the complexity of large software systems makes error-free products almost an
impossibility, it doesn’t mean that we should just give up. There are strategies that we can
adopt that, if used, improve the quality of software.

Software Engineering
In Chapter 7, we outlined four stages of computer problem solving: write the specification,
develop the algorithm, implement the algorithm, and maintain the program. When we
move from small, well-defined tasks to large software projects, we need to add two extra
layers on top of these:
software requirements and specifications. Software requirements are broad, but precise,
statements outlining what is to be provided by the software product. Software
specifications are a detailed description of the function, inputs, processing, outputs, and
special features of a software product. The specifications tell what the program does, but
not how it does it.

Software requirements A statement of what is to be provided by a computer system or software product

Software specification A detailed description of the function, inputs, processing, outputs, and special features of a
software product; it provides the information needed to design and implement the software

Leveson mentions the software life cycle as part of the contributions of software
engineering. The software life cycle is the concept that software is developed, not just coded,
and evolves over time. Thus the life cycle includes the following phases:

■ Requirements
■ Specifications
■ Design (high-level and lower-level)
■ Implementation
■ Maintenance

Verification activities must be carried out during all of these phases. Do the
requirements accurately reflect what is needed? Do the specifications accurately reflect the
functionality needed to meet the requirements? Does the high-level design accurately reflect
the functionality of the specifications? Does each succeeding level of design accurately
implement the level above? Does the implementation accurately code the designs? Do
changes implemented during the maintenance phase accurately reflect the desired changes?
Are the implementations of these changes correct?

611

In Chapters 6 and 7, we discussed the testing of the designs and code for the relatively
small problems presented in this book. Clearly, as the problems get larger, verification
activities become more important and more complex. (Yes, that word again.) Testing the
design and finished code is only a small—albeit important—part of the process. Half the
errors in a typical project occur in the design phase; only half occur in the implementation
phase. This data is somewhat misleading. In terms of the cost to fix an error, the earlier in
the design process an error is caught, the cheaper it is to correct the error.8

Teams of programmers produce large software products. Two verification techniques
effectively used by programming teams are design or code walk-throughs and inspections.
These are formal team activities, the intention of which is to move the responsibility for
uncovering errors from the individual programmer to the group. Because testing is time-
consuming and errors cost more the later they are discovered, the goal is to identify errors
before testing begins.

In a walk-through, the team performs a manual simulation of the design or program
with sample test inputs, keeping track of the program’s data by hand on paper or a
blackboard. Unlike thorough program testing, the walk-through is not intended to simulate
all possible test cases. Instead, its purpose is to stimulate discussion about the way the
programmer chose to design or implement the program’s requirements.

Walk-through A verification method in which a team performs a manual simulation of the program or design

At an inspection, a reader (never the program’s author) goes through the requirements,
design, or code line by line. The inspection participants are given the material in advance
and are expected to have reviewed it carefully. During the inspection, the participants point
out errors, which are recorded on an inspection report. Team members, during their pre-
inspection preparation, will have noted many of the errors. Just the process of reading aloud
will uncover other errors. As with the walk-through, the chief benefit of the team meeting is
the discussion that takes place among team members. This interaction among
programmers, testers, and other team members can uncover many program errors long
before the testing stage begins.

Inspection A verification method in which one member of a team reads the program or design aloud line by line
and the others point out errors

At the high-level design stage, the design should be compared to the program
requirements to make sure that all required functions have been included and that this
program or module works correctly in conjunction with other software in the system. At
the low-level design stage, when the design has been filled out with more details, it should
be inspected yet again before it is implemented. When the coding has been completed, the
compiled listings should be inspected again. This inspection (or walk-through) ensures that
the implementation is consistent with both the requirements and the design. Successful
completion of this inspection means that testing of the program can begin.

Walk-throughs and inspections should be carried out in as nonthreatening a way as
possible. The focus of these group activities is on removing defects in the product, not on

612

criticizing the technical approach of the author of the design or the code. Because these
activities are led by a moderator who is not the author, the focus is on the errors, not the
people involved.

In the last 10 to 20 years, the Software Engineering Institute at Carnegie Mellon
University has played a major role in supporting research into formalizing the inspection
process in large software projects, including sponsoring workshops and conferences. A
paper presented at the SEI Software Engineering Process Group (SEPG) Conference
reported on a project that was able to reduce product defects by 86.6% using a two-tiered
inspection process of group walk-throughs and formal inspections. The process was applied
to packets of requirements, design, or code at every stage of the life cycle. TABLE 18.1
shows the defects per 1000 source lines of code (KSLOC) that were found in the different
phases of the software life cycle in a maintenance project.9 During the maintenance phase,
40,000 lines of source code were added to a program with more than half a million lines of
code. The formal inspection process was used in all of the phases except testing activities.

We have talked about large software projects. Before we leave this section, let’s quantify
what we mean by “large.” The Space Shuttle Ground Processing System has more than
500,000 lines of code; Vista has 50 million lines of code. Most large projects fall
somewhere in between.

We have pointed out that the complexity of large projects makes the goal of error-free
code almost impossible to attain. The following is a guideline for the number of errors per
lines of code that can be expected:10

Standard software: 25 bugs per 1000 lines of program

Good software: 2 errors per 1000 lines

Space Shuttle software: < 1 error per 10,000 lines

TABLE 18.1 Errors found during a maintenance project
Stage Defects per KSLOC

System design 2

Software requirements 8

Design 12

Code inspection 34

Testing activities 3

Formal Verification
It would be nice if we could use a tool to automatically locate the errors in a design or code
without our even having to run the program. That sounds unlikely, but consider an
analogy from geometry. We wouldn’t try to prove the Pythagorean theorem by proving
that it worked on every triangle—that would simply demonstrate that the theorem works
for every triangle we tried. We prove theorems in geometry mathematically. Why can’t we
do the same for computer programs?

The verification of program correctness, independent of data testing, is an important
area of theoretical computer science research. The goal of this research is to establish a
method for proving programs that is analogous to the method for proving theorems in

613

geometry. The necessary techniques exist for proving that code meets its specifications, but
the proofs are often more complicated than the programs themselves. Therefore, a major
focus of verification research is the attempt to build automated program provers—verifiable
programs that verify other programs.

Formal methods have been used successfully in verifying the correctness of computer
chips. One notable example is the verification of a chip to perform real-number arithmetic,
which won the Queen’s Award for Technological Achievement. Formal verification to
prove that the chip met its specifications was carried out by C. A. R. Hoare, head of the
Programming Research Group of Oxford University, together with MOS Ltd. In parallel, a
more traditional testing approach was taking place. As reported in Computing Research
News:

The race [between the two groups] was won by the formal development method—
it was completed an estimated 12 months ahead of what otherwise would have been
achievable. Moreover, the formal design pointed to a number of errors in the
informal one that had not shown up in months of testing. The final design was of
higher quality, cheaper, and was completed quicker.11

It is hoped that success with formal verification techniques at the hardware level will
eventually lead to success at the software level. However, software is far more complex than
hardware, so we do not anticipate any major breakthroughs within the near future.

?
Dijkstra decried the term “bugs”

Ever since the first moth was found in the hardware, computer errors have been called bugs. Edsger Dijkstra chided
us for the use of this terminology. He said that it can foster the image that errors are beyond the control of the
programmer—that a bug might maliciously creep into a program when no one is looking. He contended that this
perspective is intellectually dishonest because it disguises the fact that the error is the programmer’s own creation.13

Open-Source Movement12

In the early days of computing, software came bundled with the computer, including the
source code for the software. Programmers adjusted and adapted the programs and happily
shared the improvements they made. In the 1970s, firms began withholding the source
code, and software became big business.

With the advent of the Internet, programmers from all over the world can collaborate
at almost no cost. A simple version of a software product can be made available via the
Internet. Programmers interested in extending or improving the program can do so. A
“benevolent dictator” who keeps track of what is going on governs most open-source
projects. If a change or improvement passes the peer review of fellow developers and gets
incorporated into the next version, it is a great coup.

Linux is the best-known open-source project. Linus Torvolds wrote the first simple
version of the operating system using UNIX as a blueprint and continued to oversee its
development. IBM spent $1 billion on Linux in 2001 with the objective of making it a

614

computing standard. As The Economist says,

Some people like to dismiss Linux as nothing more than a happy accident, but the
program looks more like a textbook example of an emerging pattern…. Open
source is certainly a mass phenomenon, with tens of thousands of volunteer
programmers across the world already taking part, and more joining in all the time,
particularly in countries such as China and India. SourceForge, a website for
developers, now hosts more than 18,000 open-source projects that keep 145,000
programmers busy.14

Now, 14 years later, open source is still going strong. Some companies consider it one of
several design choices; others consider it critical to their operations. As of May 2013,
SourceForge had more than 300,000 software projects registered and more than 3 million
registered users. By 2014, OpenSSL, an open-source implementation of a set of encryption
tools founded in 1998, was used in two-thirds of all web servers. A 2013 report by
Coverity, a company specializing in software quality and security testing solutions, showed
that open source software had fewer errors per thousand lines of code (KLOC) than
proprietary software.15,16

Unfortunately, in April 2014 a bug, popularly known as Heartbleed, was found in
OpenSSL. It was quickly fixed, but it brought attention to the volunteer programmers who
drive the open-source movement. Theoretically, each checks another’s work, leading to
better software. Clearly, this did not happen in the case of Heartbleed.17

Notorious Software Errors
Everyone involved in computing has a favorite software horror story. We include only a
small sample here.

AT&T Down for Nine Hours
In January 1990, AT&T’s long-distance telephone network came to a screeching halt for
nine hours because of a software error in the electronic switching systems. Of the 148
million long-distance and toll-free calls placed with AT&T that day, only 50% got
through. This failure caused untold collateral damage:

■ Hotels lost bookings.
■ Rental car agencies lost rentals.
■ American Airlines’ reservation system traffic fell by two-thirds.
■ A telemarketing company lost $75,000 in estimated sales.
■ MasterCard couldn’t process its typical 200,000 credit approvals.
■ AT&T lost some $60 million to $75 million.

As AT&T Chairman Robert Allen said, “It was the worst nightmare I’ve had in 32 years in
the business.”18

615

How did this happen? Earlier versions of the switching software worked correctly. The
software error was in the code that upgraded the system to make it respond more quickly to
a malfunctioning switch. The error involved a break statement in the C code.19 As Henry
Walker points out in The Limits of Computing, this breakdown illustrates several points
common to many software failures. The software had been tested extensively before its
release, and it worked correctly for about a month. In addition to testing, code reviews had
been conducted during development. One programmer made the error, but many others
reviewed the code without noticing the error. The failure was triggered by a relatively
uncommon sequence of events, difficult to anticipate in advance. And the error occurred in
code designed to improve a correctly working system—that is, it arose during the
maintenance phase. E. N. Adams in the IBM Journal of Research and Development estimates
that 15 to 50% of attempts to remove an error from a large program result in the
introduction of additional errors.

Therac-25
One of the most widely cited software-related accidents involved a computerized radiation
therapy machine called the Therac-25. Between June 1985 and January 1987, six known
accidents involved massive overdoses by the Therac-25, leading to deaths and serious
injuries. These accidents have been described as the worst series of radiation accidents in
the 35-year history of medical accelerators.

We look more closely at these incidents in the “Ethical Issues” section.

Bugs in Government Projects
On February 25, 1991, during the first Gulf War, a Scud missile struck a U.S. Army
barracks, killing 28 soldiers and injuring roughly 100 other people. A U.S. Patriot Missile
battery in Dhahran, Saudi Arabia, failed to track and intercept the incoming Iraqi Scud
missile because of a software error. This error, however, was not a coding error but a design
error. A calculation involved a multiplication by 1/10, which is a nonterminating number
in binary. The resulting arithmetic error accumulated over the 100 hours of the batteries’
operation amounted to 0.34 second, enough for the missile to miss its target.20

The General Accounting Office concluded:

The Patriot had never before been used to defend against Scud missiles nor was it
expected to operate continuously for long periods of time. Two weeks before the
incident, Army officials received Israeli data indicating some loss in accuracy after
the system had been running for 8 consecutive hours. Consequently, Army officials
modified the software to improve the system’s accuracy. However, the modified
software did not reach Dhahran until February 26, 1991—the day after the Scud
incident.”21

The Gemini V missed its expected landing point by about 100 miles. The reason? The
design of the guidance system did not take into account the need to compensate for the
motion of the Earth around the Sun.22

616

In October 1999, the Mars Climate Orbiter entered the Martian atmosphere about 100
kilometers lower than expected, causing the craft to burn up. Arthur Stephenson, chairman
of the Mars Climate Orbiter Mission Failure Investigation Board, concluded:

The “root cause” of the loss of the spacecraft was the failed translation of English
units into metric units in a segment of ground-based, navigation-related mission
software, as NASA has previously announced … The failure review board has
identified other significant factors that allowed this error to be born, and then let it
linger and propagate to the point where it resulted in a major error in our
understanding of the spacecraft’s path as it approached Mars.23

Launched in July 1962, the Mariner 1 Venus probe veered off course almost
immediately and had to be destroyed. The problem was traced to the following line of
Fortran code:

DO 5 K = 1. 3

The period should have been a comma. An $18.5 million space exploration vehicle was lost
because of this typographical error.

Errors in software are not only the province of the U.S. government. An unmanned
Ariane 5 rocket launched by the European Space Agency exploded on June 4, 1996, just 40
seconds after lift-off. The development cost for the rocket was $7 billion, spanning over a
decade. The rocket and its cargo were valued at $500 million. What happened? A 64-bit
floating-point number, relating to the horizontal velocity with respect to the platform, was
converted to a 17-bit signed integer; the number was larger than 32,767. The resulting
error caused the launcher to veer off its flight path, break up, and explode.

18.3 Problems
Life is full of all kinds of problems. There are problems for which it is easy to develop and
implement computer solutions. There are problems for which we can implement computer
solutions, but we wouldn’t get the results in our lifetime. There are problems for which we
can develop and implement computer solutions provided we have enough computer
resources. There are problems for which we can prove there are no solutions. Before we can
look at these categories of problems, we must introduce a way of comparing algorithms.

Comparing Algorithms
As we have shown in previous chapters, there is more than one way to solve most problems.
If you were asked for directions to Joe’s Diner (see FIGURE 18.2), you could give either of
two equally correct answers:

1. “Go east on the big highway to the Y’all Come Inn, and turn left.”

or

2. “Take the winding country road to Honeysuckle Lodge, and turn right.”

617

The two answers are not the same, but because following either route gets the traveler to
Joe’s Diner, both answers are functionally correct.

If the request for directions contained special requirements, one solution might be
preferable to the other. For instance, “I’m late for dinner. What’s the quickest route to Joe’s
Diner?” calls for the first answer, whereas “Is there a scenic road that I can take to get to
Joe’s Diner?” suggests the second. If no special requirements are known, the choice is a
matter of personal preference—which road do you like better?

FIGURE 18.2 Equally valid solutions to the same problem

?
Tag—you’re it

Some textile manufacturers falsify their products’ country of origin to avoid paying taxes on clothes imported into
the United States. A new marking system that encodes information invisible to the naked eye could save millions of
dollars annually in tax revenue lost to counterfeiters. The system marks textiles with a micro-taggant that scanners
can read using near-infrared light. Scanners identify the textile’s source, type, production conditions, and
composition. A micro-taggant can survive the harsh manufacturing process, which may include scouring, bleaching,
and dyeing steps. This technology also has potential for use in homeland defense, inventory tracking and control,
and military applications.

Often the choice between algorithms comes down to a question of efficiency. Which
one takes the least amount of computing time? Which one does the job with the least
amount of work? Here we are interested in the amount of work that the computer does.

To compare the work done by competing algorithms, we must first define a set of
objective measures that can be applied to each algorithm. The analysis of algorithms is an
important area of theoretical computer science; in advanced computing courses, students
see extensive work in this area. We cover only a small part of this topic in this book—just
enough to allow you to compare two algorithms that do the same task and understand that

618

the complexity of algorithms forms a continuum from easy to unsolvable.
How do programmers measure the work that two algorithms perform? The first

solution that comes to mind is simply to code the algorithms and then compare the
execution times for running the two programs. The one with the shorter execution time is
clearly the better algorithm. Or is it? Using this technique, we really can determine only
that program A is more efficient than program B on a particular computer. Execution times
are specific to a particular computer. Of course, we could test the algorithms on all possible
computers, but we want a more general measure.

A second possibility is to count the number of instructions or statements executed. This
measure, however, varies with the programming language used as well as with the style of
the individual programmer. To standardize this measure somewhat, we could count the
number of passes through a critical loop in the algorithm. If each iteration involves a
constant amount of work, this measure gives us a meaningful yardstick of efficiency.

Another idea is to isolate a particular operation fundamental to the algorithm and then
count the number of times that this operation is performed. Suppose, for example, that we
are summing the elements in an integer list. To measure the amount of work required, we
could count the integer addition operations. For a list of 100 elements, there are 99
addition operations. Note that we do not actually have to count the number of addition
operations; it is some function of the number of elements (N) in the list. Therefore, we can
express the number of addition operations in terms of N: for a list of N elements, there are
N − 1 addition operations. Now we can compare the algorithms for the general case, not
just for a specific list size.

Big-O Analysis
We have been talking about work as a function of the size of the input to the operation (for
instance, the number of elements in the list to be summed). We can express an
approximation of this function using a mathematical notation called order of magnitude, or
Big-O notation. (This is the letter O, not a zero.) The order of magnitude of a function is
identified with the term in the function that increases fastest relative to the size of the
problem. For instance, if

Big-O notation A notation that expresses computing time (complexity) as the term in a function that increases
most rapidly relative to the size of a problem

f(N) = N4 + 100N2 + 10N + 50

then f(N) is of order N4—or, in Big-O notation, O(N4). That is, for large values of N, some
multiple of N4 dominates the function for sufficiently large values of N. It isn’t that 100N2

+ 10N + 50 is not important, it is just that as N gets larger, all other factors become
irrelevant because the N4 term dominates.

How is it that we can just drop the low-order terms? Well, suppose you needed to buy
an elephant and a goldfish from one of two pet suppliers. You really need only to compare
the prices of elephants, because the cost of the goldfish is trivial in comparison. In analyzing
algorithms, the term that increases most rapidly relative to the size of the problem

619

dominates the function, effectively relegating the others to the “noise” level. The cost of an
elephant is so much greater that we could just ignore the goldfish. Similarly, for large values
of N, N4 is so much larger than 50, 10N, or even 100N2 that we can ignore these other
terms. This doesn’t mean that the other terms do not contribute to the computing time; it
simply means that they are not significant in our approximation when N is “large.”

What is this value N? N represents the size of the problem. Most problems involve
manipulating data structures like those discussed in Chapter 8. As we already know, each
structure is composed of elements. We develop algorithms to add an element to the
structure and to modify or delete an element from the structure. We can describe the work
done by these operations in terms of N, where N is the number of elements in the
structure.

Suppose that we want to write all the elements in a list into a file. How much work
does that task require? The answer depends on how many elements are in the list. Our
algorithm is

If N is the number of elements in the list, the “time” required to do this task is

time-to-open-the-file + [N * (time-to-get-one-element + time-to-write-one-element)]

This algorithm is O(N) because the time required to perform the task is proportional to
the number of elements (N)—plus a little to open the file. How can we ignore the open

620

time in determining the Big-O approximation? Assuming that the time necessary to open a
file is constant, this part of the algorithm is our goldfish. If the list has only a few elements,
the time needed to open the file may seem significant. For large values of N, however,
writing the elements is an elephant in comparison with opening the file.

The order of magnitude of an algorithm does not tell us how long in microseconds the
solution takes to run on our computer. Sometimes we may need that kind of information.
For instance, suppose a word processor’s requirements state that the program must be able
to spell-check a 50-page document (on a particular computer) in less than 120 seconds. For
this kind of information, we do not use Big-O analysis; we use other measurements. We
can compare different implementations of a data structure by coding them and then
running a test, recording the time on the computer’s clock before and after we conduct the
test. This kind of “benchmark” test tells us how long the operations take on a particular
computer, using a particular compiler. The Big-O analysis, by contrast, allows us to
compare algorithms without reference to these factors.

?
The Bletchley Circle

PBS aired a three-part murder mystery in spring 2013 in which the protagonists were the Bletchley Girls, who
reunite after the war and put their code-breaking skills toward solving crimes. They returned for a second season in
2014.

Family Laundry: An Analogy
How long does it take to do a family’s weekly laundry? We might describe the answer to
this question with the function

where N represents the number of family members and c is the average number of
minutes that each person’s laundry takes. We say that this function is O(N) because the
total laundry time depends on the number of people in the family. The “constant” c
may vary a little for different families, depending on how big the washing machine is
and how fast the family members can fold clothes, for instance. That is, the time to do
the laundry for two different families might be represented with these functions:

Overall, we describe these functions as O(N).
Now, what happens if Grandma and Grandpa come to visit the first family for a

week or two? The laundry time function becomes

621

We still say that the function is O(N). How can that be? Doesn’t the laundry for two
extra people take any time to wash, dry, and fold? Of course it does! If N is small (the
family consists of Mother, Father, and Baby), the extra laundry for two people is
significant. But as N grows large (the family consists of Mother, Father, 12 kids, and a
live-in babysitter), the extra laundry for two people doesn’t make much difference. (The
family’s laundry is the elephant; the guests’ laundry is the goldfish.) When we compare
algorithms using Big-O complexity, we are concerned with what happens when N is
“large.”

If we are asking the question, “Can we finish the laundry in time to make the 7:05
train?”, we want a precise answer. The Big-O analysis doesn’t give us this information; it
gives us an approximation. So, if 100 * N, 90 * N, and 100 * (N + 2) are all O(N), how
can we say which is “better”? We can’t—in Big-O terms, they are all roughly equivalent
for large values of N. Can we find a better algorithm for getting the laundry done? If the
family wins the state lottery, they can drop all their dirty clothes at a professional
laundry 15 minutes’ drive from their house (30 minutes round-trip). Now the function
is

This function is O(1). The answer does not depend on the number of people in the
family. If they switch to a laundry 5 minutes from their house, the function becomes

This function is also O(1). In Big-O terms, the two professional-laundry solutions are
equivalent: No matter how many family members or house guests you have, it takes a
constant amount of the family’s time to do the laundry. (We aren’t concerned with the
professional laundry’s time.)

Common Orders of Magnitude

O(1) is called bounded time. The amount of work is bounded by a constant and is not
dependent on the size of the problem. Assigning a value to the ith element in an array of N
elements is O(1), because an element in an array can be accessed directly through its index.
Although bounded time is often called constant time, the amount of work is not necessarily
constant. It is, however, bounded by a constant.

O(log2N) is called logarithmic time. The amount of work depends on the log of the size of
the problem. Algorithms that successively cut the amount of data to be processed in half at
each step typically fall into this category. Finding a value in a list of sorted elements using
the binary search algorithm is O(log2N).

O(N) is called linear time. The amount of work is some constant times the size of the
problem. Printing all of the elements in a list of N elements is O(N). Searching for a
particular value in a list of unsorted elements is also O(N) because you (potentially) must

622

search every element in the list to find it.

O(N log2N) is called (for lack of a better term) N log2N time. Algorithms of this type
typically involve applying a logarithmic algorithm N times. The better sorting algorithms,
such as Quicksort, Heapsort, and Mergesort, have N log2N complexity. That is, these
algorithms can transform an unsorted list into a sorted list in O(N log2N) time, although
Quicksort degenerates to O(N2) under certain input data.

O(N2) is called quadratic time. Algorithms of this type typically involve applying a linear
algorithm N times. Most simple sorting algorithms are O(N2) algorithms.

O(2N) is called exponential time. These algorithms are costly. As you can see in TABLE
18.2, exponential times increase dramatically in relation to the size of N. The fable of the
King and the Corn demonstrates an exponential time algorithm, where the size of the
problem is a kernel of corn. (The values in the last column of Table 18.2 grow so quickly
that the computation time required for problems of this order may exceed the estimated life
span of the universe!)

?
Would you respond?

I am Capt James Roy. I am US Army in artillery miltary unit here in Iraq, we discovered some oil money in Iraq.
we want you to keep it safe for us. email us at captjamesroy83@yahoo.com.hk24

TABLE 18.2 Comparison of rates of growth

623

mailto:captjamesroy83@yahoo.com.hk

O(N!) is called factorial time. These algorithms are even more costly than exponential
algorithms. The traveling salesperson graph algorithm (see page 624) is a factorial time
algorithm.

Algorithms whose order of magnitude can be expressed as a polynomial in the size of
the problem are called polynomial-time algorithms. Recall from Chapter 2 that a
polynomial is a sum of two or more algebraic terms, each of which consists of a constant
multiplied by one or more variables raised to a nonnegative integral power. Thus,
polynomial algorithms are those whose order of magnitude can be expressed as the size of
the problem to a power, and the Big-O complexity of the algorithm is the highest power in
the polynomial. All polynomial-time algorithms are defined as being in Class P.

Polynomial-time algorithms Algorithms whose complexity can be expressed as a polynomial in the size of the
problem

Class P The class made up of all polynomial-time algorithms

624

FIGURE 18.3 Orders of complexity

Think of common orders of complexity as being bins into which we sort algorithms
(see FIGURE 18.3). For small values of the size of the problem, an algorithm in one bin
may actually be faster than the equivalent algorithm in the next-more-efficient bin. As the
size increases, the difference among algorithms in the different bins gets larger. When
choosing between algorithms in the same bin, we look at the goldfish that we ignored
earlier.

Turing Machines
We have mentioned Alan Turing several times in this book. He developed the concept of a
computing machine in the 1930s. He was not interested in implementing his machine;
rather, he used it as a model to study the limits of what can be computed.

A Turing machine, as his model became known, consists of a control unit with a
read/write head that can read and write symbols on an infinite tape. The tape is divided
into cells. The model is based on a person doing a primitive calculation on a long strip of
paper using a pencil with an eraser. Each line (cell) of the paper contains a symbol from a
finite alphabet. Starting at one cell, the person examines the symbol and then either leaves
the symbol alone or erases it and replaces it with another symbol from the alphabet. The
person then moves to an adjacent cell and repeats the action.

The control unit simulates the person. The human’s decision-making process is
represented by a finite series of instructions that the control unit can execute. Each
instruction causes:

■ A symbol to be read from a cell on the tape
■ A symbol to be written into the cell
■ The tape to be moved one cell left, moved one cell right, or remain positioned as it

was

Alan Turing

© Pictorial Press Ltd/Alamy

625

Time magazine chose Alan Turing as one of its 100 most influential persons of the
twentieth century. The biography of Turing read:

For what this eccentric young Cambridge don did was to dream up an
imaginary machine—a fairly simple typewriter-like contraption capable
somehow of scanning, or reading, instructions encoded on a tape of theoretically
infinite length. As the scanner moved from one square of the tape to the next—
responding to the sequential commands and modifying its mechanical response
if so ordered—the output of such a process, Turing demonstrated, could
replicate logical human thought.

The device in this inspired mind-experiment quickly acquired a name: the
Turing machine, and so did another of Turing’s insights. Since the instructions
on the tape governed the behavior of the machine, by changing those
instructions, one could induce the machine to perform the functions of all such
machines. In other words, depending on the tape it scanned, the same machine
could calculate numbers or play chess or do anything else of a comparable
nature. Hence his device acquired a new and even grander name: the Universal
Turing Machine….

So many ideas and technological advances converged to create the modern computer
that it is foolhardy to give one person all the credit for inventing it. But the fact remains
that everyone who taps at a keyboard, opening a spreadsheet or a word-processing
program, is working on an incarnation of a Turing machine.25

Alan Turing was born in June 1912 to Julius Mathison Turing, a member of the
Indian Civil Service, and Ethel Sara Stoney, daughter of the chief engineer of the
Madras railway. His father and mother spent most of their time in India, while he and
his older brother were in various foster homes in England until his father’s retirement in
1926.

The British public (read private in American English) school system of the day did
not foster original thinking, so Turing had trouble fitting in. He was criticized for his
handwriting, struggled in English, and even in mathematics didn’t produce the expected
conventional answers. At Sherborne School, which he had entered at 13, the headmaster
said that if he was solely a scientific specialist, he was wasting his time at a public school.
Yet a public school education was terribly important to his mother, so Turing persisted.
Two things sustained him during this period: his own independent study and the
friendship of Christopher Morcom, who was a student a year ahead of him in school.
Morcom provided vital intellectual companionship, which ended after two years with
Morcom’s sudden death.

In 1931, Turing entered King’s College, Cambridge, to study mathematics. The
atmosphere at King’s College encouraged free-ranging thought, providing him with an
intellectual home for the first time. He graduated in 1934 and was elected a fellow of
King’s College in 1935 for a dissertation “On the Gaussian Error Function,” which
proved fundamental results in probability theory.

Turing then began to work on decidability questions, based on a course he had
taken on the foundations of mathematics with Max Newman. In 1936, Turing

626

published a paper in which he introduced the concept of what we now call a Turing
machine. These concepts were introduced within the context of whether a definite
method or process exists by which it could be decided whether any given mathematical
assertion was provable. Alonzo Church’s work at Princeton on the same subject became
known at the same time, so Turing’s paper was delayed until he could refer to Church’s
work. As a result, Turing spent two years as a student at Princeton working with
Church and von Neumann.

At the outbreak of World War II, Turing went to work for the British government.
Again we quote from the Time magazine text:

Turing, on the basis of his published work, was recruited to serve in the
Government Code and Cypher School, located in a Victorian mansion called
Bletchley Park in Buckinghamshire. The task of all those so assembled—
mathematicians, chess champions, Egyptologists, whoever might have
something to contribute about the possible permutations of formal systems—
was to break the Enigma codes used by the Nazis in communications between
headquarters and troops. Because of secrecy restrictions, Turing’s role in this
enterprise was not acknowledged until long after his death. And like the
invention of the computer, the work done by the Bletchley Park crew was very
much a team effort. But it is now known that Turing played a crucial role in
designing a primitive, computer-like machine that could decipher at high speed
Nazi codes to U-boats in the North Atlantic.26

Turing was awarded the Order of the British Empire in 1945 for his contributions
to the war effort.

After a frustrating experience at the National Physical Laboratory in London, where
he was to build a computer, Turing returned to Cambridge, where he continued to
work and write. The wartime spirit of cooperation that had short-circuited bureaucracy
had faded, and the ACE (Automatic Computing Engine) was never built. In 1948,
Turing became a Deputy Director of the computing laboratory at Manchester
University. The vague title reflected its meaninglessness, and Turing spent the next years
working and writing on a variety of different subjects.

In 1950, he published an article reflecting one of his major interests: Can machines
think? From this article came the well-known Turing test. Turing also became interested
in morphogenesis, the development of pattern and form in living organisms. All the
while he continued his research in decidability and quantum theory.

In 1952 Turing was convicted of “gross indecency,” a term used at that time to
mean homosexual acts. He was sentenced to chemical castration by a series of injections
of female hormones.

On June 7, 1954, Turing died of cyanide poisoning, a half-eaten apple laying beside
his bed. His mother believed that he accidentally died while conducting an experiment;
the coroner’s verdict was suicide.

A few years ago, the award-winning one-man play called Breaking the Code was
performed in London’s West End and on Broadway, giving audiences a brief glimpse of
Turing’s brilliant, complex character. In December 2013, Queen Elizabeth II granted
Alan Turing a posthumous pardon of his 1952 conviction.

627

If we allow the person to replace a symbol with itself, these actions do, indeed, model a
person with a pencil. See FIGURE 18.4.

Why is such a simple machine (model) of any importance? It is widely accepted that
anything that is intuitively computable can be computed by a Turing machine. This statement
is known as the Church–Turing thesis, named for Turing and Alonzo Church, another
mathematician who developed a similar model known as the lambda calculus and with
whom Turing worked at Princeton. The works of Turing and Church are covered in depth
in theoretical courses in computer science.

It follows from the Church–Turing thesis that if we can find a problem for which a
Turing-machine solution can be proven not to exist, then that problem must be unsolvable.
In the next section we describe such a problem.

FIGURE 18.4 Turing machine processing

Halting Problem
It is not always obvious that a computation (program) halts. In Chapter 6, we introduced
the concept of repeating a process; in Chapter 7, we talked about different types of loops.
Some loops clearly stop, some loops clearly do not (infinite loops), and some loops stop
depending on input data or calculations that occur within the loop. When a program is
running, it is difficult to know whether it is caught in an infinite loop or whether it just
needs more time to run.

It would be very beneficial if we could predict that a program with a specified input
would not go into an infinite loop. The halting problem restates the question this way:
Given a program and an input to the program, determine if the program will eventually stop
with this input.

628

Halting problem The unsolvable problem of determining whether any program will eventually stop given a
particular input

The obvious approach is to run the program with the specified input and see what
happens. If it stops, the answer is clear. What if it doesn’t stop? How long do you run the
program before you decide that it is in an infinite loop? Clearly, this approach has some
flaws. Unfortunately, there are flaws in every other approach as well. This problem is
unsolvable. Let’s look at the outlines of a proof of this assertion, which can be rephrased as
follows: “There is no Turing-machine program that can determine whether a program will
halt given a particular input.”

How can we prove that a problem is unsolvable or, rather, that we just haven’t found
the solution yet? We could try every proposed solution and show that every one contains an
error. Because there are many known solutions and many yet unknown, this approach
seems doomed to failure. Yet, this approach forms the basis of Turing’s solution to this
problem. In his proof, he starts with any proposed solution and then shows that it doesn’t
work.

Assume that there exists a Turing-machine program called SolvesHaltingProblem that
determines for any program Example and input SampleData whether program Example
halts given input SampleData. That is, Solves HaltingProblem takes program Example
and SampleData and prints “Halts” if the program halts and “Loops” if the program
contains an infinite loop. This situation is depicted in FIGURE 18.5.

Recall that both programs (instructions) and data look alike in a computer; they are just
bit patterns. What distinguishes programs from data is how the control unit interprets the
bit pattern. So we could give program Example a copy of itself as data in place of
SampleData. Thus SolvesHaltingProblem should be able to take program Example and a
second copy of program Example as data and determine whether program Example halts
with itself as data. See FIGURE 18.6.

FIGURE 18.5 Proposed program for solving the halting problem

FIGURE 18.6 Proposed program for solving the halting problem

Now let’s construct a new program, NewProgram, that takes program Example as both
program and data and uses the algorithm from SolvesHaltingProblem to write “Halts” if

629

Example halts and “Loops” if it does not halt. If “Halts” is written, NewProgram creates an
infinite loop; if “Loops” is written, NewProgram writes “Halts.” FIGURE 18.7 shows this
situation.

Do you see where the proof is leading? Let’s now apply program SolvesHaltingProblem
to NewProgram, using NewProgram as data. If SolvesHaltingProblem prints “Halts,”
program NewProgram goes into an infinite loop. If SolvesHaltingProblem prints “Loops,”
program NewProgram prints “Halts” and stops. In either case, SolvesHaltingProblem gives
the wrong answer. Because SolvesHaltingProblem gives the wrong answer in at least one
case, it doesn’t work on all cases. Therefore, any proposed solution must have a flaw.

Classification of Algorithms
Figure 18.3 shows the common orders of magnitude as bins. We now know that there is
another bin to the right, which would contain algorithms that are unsolvable. Let’s
reorganize our bins a little, combining all polynomial algorithms in a bin labeled Class P.
Then let’s combine exponential and factorial algorithms into one bin and add a bin labeled
Unsolvable. See FIGURE 18.8.

Class P problems Problems that can be solved with one processor in polynomial time

FIGURE 18.7 Construction of NewProgram

?
The Traveling Salesman problem

A classic NP problem is called the Traveling Salesman problem. A salesman is responsible for visiting all the cities in
his sales district. To visit every one in an efficient manner, he wants to find a route of minimal cost that goes
through each city once and only once before returning to the starting point. The cities can be represented in a
graph with the edges representing highways between cities. Each edge is labeled with the distance between the
cities. The solution then becomes a well-known graph algorithm whose solution with one processor is O(N!).

630

FIGURE 18.8 A reorganization of algorithm classifications

The algorithms in the middle bin have known solutions, but they are called intractable
because for data of any size, they simply take too long to execute. We mentioned parallel
computers in Chapter 1 when we reviewed the history of computer hardware. Could some
of these problems be solved in a reasonable time (polynomial time) if enough processors
worked on the problem at the same time? Yes, they could. A problem is said to be in Class
NP if it can be solved with a sufficiently large number of processors in polynomial time.

Class NP problems Problems that can be solved in polynomial time with as many processors as desired

Clearly, Class P problems are also in Class NP. An open question in theoretical
computing is whether Class NP problems, whose only tractable solution is with many
processors, are also in Class P. That is, do there exist polynomial-time algorithms for these
problems that we just haven’t discovered (invented) yet? We don’t know, but the problem
has been and is still keeping computer science theorists busy looking for the solution. The
solution? Yes, the problem of determining whether Class P is equal to Class NP has been
reduced to finding a solution for one of these algorithms. A special class called NP-
complete problems is part of Class NP; these problems have the property that they can be
mapped into one another. If a polynomial-time solution with one processor can be found
for any one of the algorithms in this class, a solution can be found for each of them—that
is, the solution can be mapped to all the others. How and why this is so is beyond the scope
of this book. However, if the solution is found, you will know, because it will make
headlines all over the computing world.

NP-complete problems A class of problems within Class NP that has the property that if a polynomial time
solution with one processor can be found for any member of the class, such a solution exists for every member of
the class

For now we picture our complexity bins with a new companion—a bin labeled Class
NP. This bin and the Class P bin have dotted lines on their adjacent sides, because they
may actually be just one bin. See FIGURE 18.9.

631

FIGURE 18.9 Adding Class NP

SUMMARY

Limits are imposed on computer problem-solving by the hardware, the software, and the
nature of the problems to be solved. Numbers are infinite, but their representation within a
computer is finite. This limitation can cause errors to creep into arithmetic calculations,
giving incorrect results. Hardware components can wear out, and information can be lost
during intercomputer and intracomputer data transfers.

The sheer size and complexity of large software projects almost guarantee that errors
will occur. Testing a program can demonstrate errors, but it cannot prove the absence of
errors. The best way to build good software is to pay attention to quality from the first day
of the project, applying the principles of software engineering.

Problems vary from those that are very simple to solve to those that cannot be solved at
all. Big-O analysis provides a metric that allows us to compare algorithms in terms of the
growth rate of a size factor in the algorithm. Polynomial-time algorithms are those
algorithms whose Big-O complexity can be expressed as a polynomial in the size factor.
Class P problems can be solved with one processor in polynomial time. Class NP problems
can be solved in polynomial time with an unlimited number of processors. As proved by
Turing, the halting problem does not have a solution.

ETHICAL ISSUES
Therac-25: Anatomy of a Disaster

Linear accelerators create high-energy beams that are used in treating tumors. There are
two kinds: For relatively shallow tissue, accelerated electrons are used, and for deeper
tissue, X-ray photons, converted from the electron beams, are used. The Therac-6
produced X-rays only; the Therac-20 was dual mode and produced both.

Like the Therac-20, the Therac-25 was a dual-mode machine, but it was more
compact and more versatile. All three Therac machines were controlled by a PDP-11
computer. The two earlier machines were designed around stand-alone machines that
had clinical histories without computer control. The computer controls were an add-on.

632

The Therac-25 was designed to be computer controlled from the beginning. Thus there
were hardware safety mechanisms in the early machines that were not in the Therac-25,
which relied basically on software.

Between 1985 and 1986, six patients died from radiation overdoses after receiving
treatment using the Therac-25. The cases occurred in different geographical regions,
were investigated mostly in isolation, and the software was corrected each time. No
accidents have been reported since 1987.

What were the causes of the problems?

■ Some of the software on the Therac-25 was reused from earlier models and not
adequately tested in the new environment. The earlier models had built-in
hardware checks for which the Therac-25 relied on software—the borrowed
software.

■ If an operator quickly made an input correction, both the original and the
corrected instructions were sent and the one that was received first was executed.
This is called a race condition. Error messages were given, but they were so cryptic
that the operators didn’t know what they meant and ignored them.

■ A small internal software flag occasionally overflowed, causing an arithmetic error
that bypassed safety checks.

■ The Therac-25 malfunctioned in small ways very frequently. A radiation
therapist reported that an average of 40 underdose malfunctions on a single day
were common. The operator testified that she had been taught that there were
“so many safety mechanisms” that she understood that it was virtually impossible
to overdose a patient.

Leveson and Turner, in their article in IEEE Computer, add this scathing comment:

“A lesson to be learned from the Therac-25 story is that focusing on particular software bugs is not the way to make
a safe system. Virtually all complex software can be made to behave in an unexpected fashion under certain
conditions. The basic mistakes here involved poor software-engineering practices and building a machine that relies
on the software for safe operation. Furthermore, the particular coding error is not as important as the general unsafe
design of the software overall.”27

KEY TERMS

Big-O notation
Cancellation error
Class NP problems
Class P
Class P problems
Halting problem
Inspection
NP-complete problems
Overflow

633

Polynomial-time algorithms
Precision
Representational (round-off) error
Significant digits
Software requirements
Software specification
Underflow
Walk-through

EXERCISES

For Exercises 1–15, match the Big-O notation with its definition or use.
A. O(1)
B. O(log2N)
C. O(N)
D. O(N log2N)
E. O(N2)
F. O(2N)
G. O(N!)

 1. Factorial time
 2. N log N time
 3. Linear time
 4. Quadratic time
 5. Exponential time
 6. Logarithmic time
 7. Bounded time
 8. Time not dependent on the size of the problem
 9. Algorithms that successively cut the amount of data to be processed in half at each

step
10. Mergesort and Heapsort
11. Selection sort and bubble sort
12. Adding a column of N numbers
13. Demonstrated by the fable of the King and the Corn
14. Traveling salesman problem
15. What Quicksort degenerates to if the data are already sorted

For Exercises 16–20, match the name of the technique with the algorithm.
A. Even parity
B. Odd parity
C. Check digits
D. Error-correcting codes
E. Parity bit

16. An extra bit is associated with each byte in the hardware that ensures that the
number of 1 bits is odd or even across all bytes.

634

17. Ultimate redundancy would be to keep two copies of every value.
18. The number of 1 bits plus the parity bit is odd.
19. The number of 1 bits plus the parity bit is even.
20. A scheme to sum the individual digits in a number and store the unit’s digit of

that sum with the number.

For Exercises 21–30, mark the answers true or false as follows:
A. True
B. False

21. (1 + x − 1) is always equal to x.
22. Representational error is a synonym for round-off error.
23. Software verification activities are limited to the implementation phase.
24. Half the errors in a software project occur in the design phase.
25. Most large software projects are designed by a single genius and then given to

teams of programmers to implement.
26. The later in the software life cycle that an error is detected, the cheaper it is to fix.
27. Formal verification of programs is of theoretical interest but has never really been

useful.
28. Big-O notation tells us how long the solution takes to run in terms of

microseconds.
29. Software engineering, a branch of computing, emerged in the 1960s.
30. Maintaining and evolving existing software has become more important than

building new systems.

Exercises 31–61 are problems or short-answer questions.
31. Define representational error, cancellation error, underflow, and overflow. Discuss

how these terms are interrelated.
32. Show the range of integer numbers that can be represented in each of the

following word sizes:
a. 8 bits
b. 16 bits
c. 24 bits
d. 32 bits
e. 64 bits

33. There is a logical action to take when underflow occurs, but not when overflow
occurs. Explain.

34. a. Show how the numbers 1066 and 1492 would be represented in a linked list
with one digit per node.
b. Use a linked list to represent the sum of these integers.
c. Outline an algorithm to show how the calculation might be carried out in a

computer.
35. Explain the Titanic effect in relation to hardware failure.
36. Have any hardware failures happened to you? Explain.
37. Given the following 8-bit code, what is the parity bit if odd parity is being used?

a. 11100010
b. 10101010
c. 11111111

635

d. 00000000
e. 11101111

38. Given the following 8-bit code, what is the parity bit if even parity is being used?
a. 11100010
b. 10101010
c. 11111111
d. 00000000
e. 11101111

39. Given the following numbers, what would be the check digit for each?
a. 1066
b. 1498
c. 1668
d. 2001
e. 4040

40. What errors would be detected using the check bits in Exercise 39?
41. Given the following numbers, what would be the additional digits if the unit’s

digit of the sum of the even digits is used along with the check digit?
a. 1066
b. 1498
c. 1668
d. 2001
e. 4040

42. Given the following numbers, what would be the additional digits if the unit’s
digit of the sum of the odd digits is used along with the check digit?
a. 1066
b. 1498
c. 1668
d. 2001
e. 4040

43. How do the representations in Exercises 41 and 42 improve the error detection
over a simple check digit?

44. Explain the concept of the software life cycle.
45. Where do most of the errors occur in a software project?
46. Why does the cost of fixing an error increase the longer the error remains

undetected?
47. Compare and contrast the software verification activities of code or design walk-

throughs and inspections.
48. How can a program be verified to be correct but still be worthless?
49. Name at least five places where a software error could be introduced.
50. How was the AT&T software failure typical of such failures?
51. What is formal verification?
52. Explain the analogy of the elephant and the goldfish.
53. Define polynomial time.
54. How is it possible to throw away all but the term with the largest exponent when

assessing the Big-O complexity of a polynomial-time algorithm?
55. Give the Big-O complexity measure of the following polynomials:

636

a. 4x3 + 32x2 + 2x + 1003
b. x5 + x
c. x2 + 124,578
d. x + 1

56. Explain the analogy of bins of complexity measures.
57. Who manufactures a Turing machine?
58. How does a Turing machine simulate a human with a paper and pencil?
59. Are there problems for which there are no solutions?
60. Describe the halting problem.
61. How is the fact that data and programs look alike inside a computer used in the

proof that the halting problem is unsolvable?

THOUGHT QUESTIONS

 1. Search the Web for information on the Pentium chip error. Try different
keywords and combinations of keywords, recording how many hits occur with
each. Read at least three of the articles, and then write a description of the problem
in your own words.

 2. Search the Web for the answers to the following questions.
a. Did the Russian Phobos 1 spacecraft commit suicide?
b. What caused the delay in the opening of the Denver airport?
c. What was the cost of the software repair in London’s ambulance dispatch

system failure?
d. The USS Yorktown was dead in the water for several hours in 1998. What

software error caused the problem?
 3. A professor was giving a lecture to a local service club about the limits of

computing. A member of the audience said, “But I didn’t think there were any
limits.” If you were the professor, how would you have answered?

637

GLOSSARY

Absolute path A path that begins at the root and includes all successive subdirectories

Abstract data type (ADT) A container whose properties (data and operations) are specified
independently of any particular implementation

Abstract step An algorithmic step for which some details remain unspecified

Abstraction A model of a complex system that includes only the details essential to the
viewer

Access control policy A set of rules established by an organization that specify which types
of network communication are permitted and denied

Access time The time it takes for a block to start being read; the sum of seek time and
latency

Adder An electronic circuit that performs an addition operation on binary values

Addressability The number of bits stored in each addressable location in memory

Address binding The mapping from a logical address to a physical address

Adjacent vertices Two vertices that are connected by an edge

Aggregate operation An operation on a data structure as a whole, as opposed to an
operation on an individual component of the data structure

Algorithm Unambiguous instructions for solving a problem or subproblem in a finite
amount of time using a finite amount of data

ALU See arithmetic/logic unit

Analog data A continuous representation of data

Antivirus software Software designed to detect, remove, and/or prevent malicious software

Application software Programs that help us solve real-world problems

Arguments The identifiers listed in parentheses on the subprogram call; sometimes called
actual parameters

Arithmetic/logic unit (ALU) The computer component that performs arithmetic
operations (addition, subtraction, multiplication, division) and logical operations

638

(comparison of two values)

Artificial intelligence (AI) The study of computer systems that model and apply the
intelligence of the human mind

Artificial neural network A computer representation of knowledge that attempts to mimic
the neural networks of the human body

Assembler A program that translates an assembly-language program into machine code

Assembler directives Instructions to the translating program

Assembly language A low-level programming language in which a mnemonic represents
each of the machine-language instructions for a particular computer

Assignment statement A statement that stores the value of an expression into a variable

Asynchronous Not occurring at the same moment in time as some specific operation of the
computer; in other words, not synchronized with the program’s actions

Attribute Part of a tag that provides additional information about the element

Authentication credentials Information users provide to identify themselves

Availability The degree to which authorized users can access information for legitimate
purposes

Back door A program feature that gives special and unauthorized access to a software
system to anyone who knows it exists

Bandwidth The number of bits or bytes that can be transmitted from one place to another
in a fixed amount of time

Base The foundational value of a number system, which dictates the number of digits and
the value of digit positions

Base register A register that holds the beginning address of the current partition

Big-O notation A notation that expresses computing time (complexity) as the term in a
function that increases most rapidly relative to the size of a problem

Binary digit A digit in the binary number system; a 0 or a 1

Binary file A file that contains data in a specific format, requiring a special interpretation of
its bits

Binary search Looking for an item in an already sorted list by eliminating large portions of
the data on each comparison

Binary tree An abstract composite structure with a unique starting node called the root, in
which each node is capable of having two child nodes and in which a unique path exists
from the root to every other node

639

Biometrics Using physiological characteristics, such as fingerprints, to identify users and
control access

Bit Binary digit

Block The information stored in a sector

Bluetooth A technology used for wireless communication over short distances

Boolean algebra A mathematical notation for expressing two-valued logical functions

Boolean expression A sequence of identifiers, separated by compatible operators, that
evaluates to either true or false

Bounds register A register that holds the length of the current partition

Breadth-first approach Searching across levels of a tree prior to searching down specific
paths

Broadband Network technologies that generally provide data transfer speeds greater than
256 Kbps

Buffer overflow A defect in a computer program that could cause a system to crash and
leave the user with heightened privileges

Bus topology A LAN configuration in which all nodes share a common line

Bus width The number of bits that can be transferred in parallel over the bus

Byte Eight binary digits

Bytecode A standard machine language into which Java source code is compiled

Cable modem A device that allows computer network communication using the cable TV
hookup in a home

Cache memory A type of small, high-speed memory used to hold frequently used data

Caesar cipher A substitution cipher that shifts characters a certain number of positions in
the alphabet

Cancellation error A loss of accuracy during addition or subtraction of numbers of widely
differing sizes, due to limits of precision

CAPTCHA A software mechanism used to verify that a web form is submitted by a human
and not an automated program

Cardinality constraint The number of relationships that may exist at one time among
entities in an ER diagram

Case sensitive Uppercase and lowercase letters are not considered the same; two identifiers
with the same spelling but different capitalization are considered to be two distinct

640

identifiers

Cell An element of a spreadsheet that can contain data or a formula

Character set A list of the characters and the codes used to represent each one

Chatbot A program designed to carry on a conversation with a human user

Cipher An algorithm used to encrypt and decrypt text

Circuit A combination of interacting gates designed to accomplish a specific logical
function

Circuit equivalence The same output for each corresponding inputvalue combination for
two circuits

Circular reference A set of formulas that ultimately, and erroneously, rely on each other to
compute their results

Class (implementation phase) A pattern for an object

Class NP problems Problems that can be solved in polynomial time with as many
processors as desired

Class P The class made up of all polynomial-time algorithms

Class P problems Problems that can be solved with one processor in polynomial time

Client/server model A distributed approach in which a client makes requests of a server
and the server responds

Cloud computing A service that provides storage space and other resources on the Internet

Code-coverage (clear-box) testing Testing a program or subprogram based on covering all
the statements in the code

Combinational circuit A circuit whose output is solely determined by its input values

Comment Explanatory text for the human reader

Compiler A program that translates a high-level language program into machine code

Compression ratio The size of the compressed data divided by the size of the
uncompressed data

Computational biology An interdisciplinary field that applies techniques of computer
science, applied mathematics, and statistics to problems in biology

Computer gaming A computer simulation of a virtual world

Computer hardware The physical elements of a computing system

Computer network A collection of computing devices connected so that they can

641

communicate and share resources

Computer software The programs that provide the instructions that a computer executes

Computing system Computer hardware, software, and data, which interact to solve
problems

Concrete step A step for which the details are fully specified

Confidentiality Ensuring that data is protected from unauthorized access

Constant time An algorithm whose Big-O work expression is a constant

Containers Objects whose role is to hold and manipulate other objects

Context switch The exchange of register information that occurs when one process is
removed from the CPU and another takes its place

Control abstraction The separation of the logical view of a control structure from its
implementation

Control structure An instruction that determines the order in which other instructions in a
program are executed

Control unit The computer component that controls the actions of the other components
so as to execute instructions in sequence

CPU The central processing unit, a combination of the arithmetic/logic unit and the
control unit; the “brain” of a computer, which interprets and executes instructions

CPU scheduling The act of determining which process in memory is given access to the
CPU so that it may execute

Cryptanalysis The process of decrypting a message without knowing the cipher or key used
to encrypt it

Cryptography The field of study related to encoded information

Cylinder The set of concentric tracks on all surfaces

Data Basic values or facts

Data abstraction The separation of the logical view of data from its implementation

Data compression Reducing the amount of space needed to store a piece of data

Data coverage (black-box) testing Testing a program or subprogram based on the possible
input values, treating the code as a black box

Data structure The implementation of a composite data field in an abstract data type

Data transfer rate (bandwidth) The speed with which data is moved from one place to
another on a network

642

Data type A description of the set of values and the basic set of operations that can be
applied to values of the type

Database A structured set of data

Database management system A combination of software and data made up of the
physical database, the database engine, and the database schema

Declaration A statement that associates an identifier with a variable, an action, or some
other entity within the language that can be given a name so that the programmer can refer
to that item by name

Decryption The process of converting ciphertext into plaintext

Demand paging An extension to paged memory management in which pages are brought
into memory only when referenced (on demand)

Denial of service An attack on a network resource that prevents authorized users from
accessing the system

Depth-first approach Searching down the paths of a tree prior to searching across levels

Desk checking Tracing the execution of a design on paper

Digital certificate A representation of a sender’s authenticated public key used to minimize
malicious forgeries

Digital data A discrete representation of data

Digital signature Data that is appended to a message, made from the message itself and the
sender’s private key, to ensure the authenticity of the message

Digital subscriber line (DSL) An Internet connection made using a digital signal on
regular phone lines

Digitize The act of breaking information down into discrete pieces

Direct file access The technique in which data in a file is accessed directly, by specifying
logical record numbers

Directed graph (digraph) A graph in which each edge is directed from one vertex to
another (or the same) vertex

Directory A named group of files

Directory tree A structure showing the nested directory organization of the file system

Disk scheduling The act of deciding which outstanding requests for disk I/O to satisfy first

Document Type Definition (DTD) A specification of the organization of an XML
document

643

Domain name The part of a hostname that specifies an organization or group

Domain name server A computer that attempts to translate a hostname into an IP address

Domain name system A distributed system for managing hostname resolution

Domain squatting Purchasing a domain name with the sole intent of selling it at a high
price to a person or organization that actually wants to use it

Download Receiving data on a local computer from the Internet

Dumb terminal A monitor and keyboard that allowed the user to access the mainframe
computer in early timesharing systems

Dynamic-partition technique The memory management technique in which memory is
divided into partitions as needed to accommodate programs

Edge (arc) A pair of vertices representing a connection between two nodes in a graph

Effective weight In an artificial neuron, the sum of the weights multiplied by the
corresponding input values

Electronic commerce The process of buying and selling products and services using the
World Wide Web

Encapsulation A language feature that enforces information hiding; bundling data and
actions so that the logical properties of data and actions are separated from the
implementation details

Encryption The process of converting plaintext into ciphertext

Entity-relationship (ER) modeling A popular technique for designing relational databases

ER diagram A graphical representation of an ER model

Ethernet The industry standard for local-area networks, based on a bus topology

Expert system A software system based on the knowledge of human experts

Extensible Markup Language (XML) A language that allows the user to describe the
content of a document

Extensible Stylesheet Language (XSL) A language for defining transformations from XML
documents to other output formats

Field (or attribute) A single value in a database record

Fields Named items in a class; can be data or subprograms

File A named collection of data, used for organizing secondary memory

File extension Part of a file name that indicates the file type

644

File server A computer dedicated to storing and managing files for network users

File system The operating system’s logical view of the files it manages

File type The specific kind of information contained in a file, such as a Java program or a
Microsoft Word document

Fingerprint analysis A technique used for user authentication that compares a scanned
fingerprint to a stored copy of the authorized user’s fingerprint

Firewall A gateway machine and its software that protects a network by filtering the traffic
it allows

Fixed-partition technique The memory management technique in which memory is
divided into a specific number of partitions into which programs are loaded

Floating point A representation of a real number that keeps track of the sign, mantissa, and
exponent

Frame A fixed-size portion of main memory that holds a process page

Full adder A circuit that computes the sum of two bits, taking an input carry bit into
account

Game engine A software system within which computer games are created

Gameplay The type of interactions and experiences a player has during the game

Gate A device that performs a basic operation on electrical signals, accepting one or more
input signals and producing a single output signal

Gateway A node that handles communication between its LAN and other networks

GPS (Global Positioning System) A system that uses satellites to pinpoint the location of
any GPS receiver

Graph A data structure that consists of a set of nodes and a set of edges that relate the
nodes to each other

Half adder A circuit that computes the sum of two bits and produces the appropriate carry
bit

Halting problem The unsolvable problem of determining whether any program will
eventually stop given a particular input

Host number The part of an IP address that specifies a particular host on the network

Hostname A name made up of words separated by dots that uniquely identifies a computer
on the Internet; each hostname corresponds to a particular IP address

HTML5 The newest HTML standard with a streamlined tag system and support for
dynamic content

645

Huffman encoding Using a variable-length binary string to represent a character so that
frequently used characters have short codes

Hypertext Markup Language (HTML) The language used to create or build a web page

ICANN The international organization that approves top-level domain names

Inference engine The software that processes rules to draw conclusions

Information Data that has been organized or processed in a useful manner

Information hiding The practice of hiding the details of a module with the goal of
controlling access to the details of the module

Information security The techniques and policies used to ensure proper access to data

Information system Software that helps the user organize and analyze data

Inheritance A mechanism by which one class acquires the properties—data fields and
methods—of another class

Input unit A device that accepts data to be stored in memory

Inspection A verification method in which one member of a team reads the program or
design aloud line by line and the others point out errors

Instant messsaging A technique for sending short messages in real time

Instantiate To create an object from a class

Instruction register (IR) The register that contains the instruction currently being
executed

Integer A natural number, a negative of a natural number, or zero

Integrated circuit (chip) A piece of silicon on which multiple gates have been embedded

Integrity Ensuring that data can be modified only by appropriate mechanisms

Interactive system A system that allows direct communication between the user and the
computer

Internet A wide-area network that spans the planet

Internet backbone A set of high-speed networks carrying Internet traffic

Internet Protocol (IP) The network protocol that deals with the routing of packets
through interconnected networks to the final destination

Internet service provider (ISP) An organization providing access to the Internet

Interoperability The ability of software and hardware on multiple machines and from
multiple commercial vendors to communicate

646

Interpreter A program that inputs a program in a high-level language and directs the
computer to perform the actions specified in each statement

IP address An address made up of four numeric values separated by dots that uniquely
identifies a computer on the Internet

Java applet A Java program designed to be embedded into an HTML document,
transferred over the Web, and executed in a browser

JSP scriptlet A portion of code embedded in an HTML document designed to dynamically
contribute to the content of the web page

Key One or more fields of a database record that uniquely identifies it among all other
records in the table

Keyword encoding Replacing a frequently used word with a single character

Knowledge-based system Software that uses a specific set of information

Latency The time it takes for the specified sector to be in position under the read/write
head

Leaf node A tree node that has no children

Lexical ambiguity The ambiguity created when words have multiple meanings

Link A connection between one web page and another

Linked list A list in which the order of the components is determined by an explicit link
field in each node, rather than by the sequential order of the components in memory

Linked structure An implementation of a container where the items are stored together
with information on where the next item can be found

Loader A piece of software that takes a machine-language program and places it into
memory

Local-area network (LAN) A network connecting a small number of nodes in a close
geographic area

Loebner prize The first formal instantiation of the Turing test, held annually

Logic bomb A malicious program that is set up to execute when a specific system event
occurs

Logic diagram A graphical representation of a circuit; each type of gate has its own symbol

Logical address A reference to a stored value relative to the program making the reference

Lossless compression A data compression technique in which there is no loss of
information

647

Lossy compression A data compression technique in which there is loss of information

Machine language The language made up of binary-coded instructions that is used directly
by the computer

Mainframe A large, multi-user computer often associated with early timesharing systems

Malicious code A computer program that attempts to bypass appropriate authorization
safeguards and/or perform unauthorized functions

Man-in-the-middle A security attack in which network communication is intercepted in
an attempt to obtain key data

Markup language A language that uses tags to annotate the information in a document

Memory management The act of keeping track of how and where programs are loaded in
main memory

Metalanguage A language that is used to define other languages

Method A named algorithm that defines one aspect of the behavior of a class

Metropolitan-area network (MAN) A network infrastructure developed for a large city

MIME type A standard for defining the format of files that are included as email
attachments or on websites

Model An abstraction of a real system; a representation of objects within a system and the
rules that govern the behavior of the objects

Motherboard The main circuit board of a personal computer

Multimedia Several different media types

Multiplexer A circuit that uses a few input control signals to determine which of several
input data lines is routed to its output

Multiprogramming The technique of keeping multiple programs in main memory at the
same time, competing for the CPU

Natural language Languages that humans use to communicate, such as English

Natural language comprehension Using a computer to apply a meaningful interpretation
to human communication

Natural number The number 0 and any number obtained by repeatedly adding 1 to it

Negative number A value less than 0, with a sign opposite to its positive counterpart

Nested structure (nested logic) A structure in which one control structure is embedded
within another

Network address The part of an IP address that specifies a network

648

Network neutrality The principle that ISPs should deliver data to everyone equally, as fast
as the technology allows

Node (host) Any addressable device attached to a network

Nonpreemptive scheduling CPU scheduling that occurs when the currently executing
process gives up the CPU voluntarily

NP-complete problems A class of problems within Class NP that has the property that if a
polynomial time solution with one processor can be found for any member of the class,
such a solution exists for every member of the class

Number A unit of an abstract mathematical system subject to the laws of arithmetic

Object An entity or thing that is relevant in the context of a problem

Object (implementation phase) An instance of a class

Object class (class) (problem-solving phase) A description of a group of objects with
similar properties and behaviors

Open system A system that is based on a common model of network architecture and an
accompanying suite of protocols

Open Systems Interconnection (OSI) Reference Model A seven-layer logical breakdown
of network interaction to facilitate communication standards

Operating system System software that manages computer resources and provides an
interface for system interaction

Output unit A device that prints or otherwise displays data stored in memory or makes a
permanent copy of information stored in memory or another device

Overflow The condition that occurs when the results of a calculation are too large to
represent in a given machine

P2P model A decentralized approach that shares resources and responsibilities among many
“peer” computers

Packet A unit of data sent across a network

Packet switching The approach to network communication in which packets are
individually routed to their destination, then reassembled

Page A fixed-size portion of a process that is stored into a memory frame

Page-map table (PMT) The table used by the operating system to keep track of page/frame
relationships

Page swap Bringing in one page from secondary memory, possibly causing another to be
removed

649

Paged memory technique A memory management technique in which processes are
divided into fixed-size pages and stored in memory frames when loaded

Parameter list A mechanism for communicating between two parts of a program

Parameters The identifiers listed in parentheses beside the subprogram name; sometimes
called formal parameters

Password criteria A set of rules that must be followed when creating a password

Password guessing An attempt to gain access to a computer system by methodically trying
to determine a user’s password

Password management software A program that helps you manage sensitive data, such as
passwords, in a secure manner

Path A text designation of the location of a file or subdirectory in a file system

Phishing Using a web page to masquerade as part of a trusted system to trick users into
revealing security information

Phone modem A device that converts computer data into an analog audio signal and back
again

Phonemes The set of fundamental sounds made in any given natural language

Physical address An actual address in the main memory device

Ping A program used to test whether a particular network computer is active and reachable

Pipelining A technique that breaks an instruction into smaller steps that can be overlapped

Pixels Individual dots used to represent a picture; stands for picture elements

Polymorphism The ability of a language to determine at runtime which of several possible
methods will be executed for a given invocation

Polynomial-time algorithms Algorithms whose complexity can be expressed as a
polynomial in the size of the problem

Port A numeric designation corresponding to a particular high-level protocol

Positional notation A system of expressing numbers in which the digits are arranged in
succession, the position of each digit has a place value, and the number is equal to the sum
of the products of each digit by its place value

Precision The maximum number of significant digits that can be represented

Preemptive scheduling CPU scheduling that occurs when the operating system decides to
favor another process, preempting the currently executing process

Procedural abstraction The separation of the logical view of an action from its

650

implementation

Process The dynamic representation of a program during execution

Process control block (PCB) The data structure used by the operating system to manage
information about a process

Process management The act of keeping track of information for active processes

Process states The conceptual stages through which a process moves as it is managed by the
operating system

Program A sequence of instructions written to perform a specified task

Program counter (PC) The register that contains the address of the next instruction to be
executed

Proprietary system A system that uses technologies kept private by a particular commercial
vendor

Protocol A set of rules that defines how data is formatted and processed on a network

Protocol stack Layers of protocols that build and rely on each other

Pseudocode A language designed to express algorithms

Public-key cryptography An approach to cryptography in which each user has two related
keys, one public and one private

Pulse-code modulation Variation in a signal that jumps sharply between two extremes

Query A request to retrieve data from a database

Radix point The dot that separates the whole part from the fractional part in a real number
in any base

Range A set of contiguous cells specified by the endpoints

Raster-graphics format Storing image information pixel by pixel

Rational number An integer or the quotient of two integers (division by zero excluded)

Real-time system A system in which response time is crucial given the nature of the
application domain

Reclock The act of reasserting an original digital signal before too much degradation occurs

Record (or object, or entity) A collection of related fields that make up a single database
entry

Recursion The ability of an algorithm to call itself

Reference parameter A parameter that expects the address of its argument to be passed by

651

the calling unit (put on the message board)

Referential ambiguity The ambiguity created when pronouns could be applied to multiple
objects

Register A small storage area in the CPU used to store intermediate values or special data

Relational model A database model in which data and the relationships among them are
organized into tables

Relative path A path that begins at the current working directory

Repeater A network device that strengthens and propagates a signal along a long
communication line

Representational (round-off) error An arithmetic error caused by the fact that the
precision of the result of an arithmetic operation is greater than the precision of our
machine

Reserved word A word in a language that has special meaning; it cannot be used as an
identifier

Resolution The number of pixels used to represent a picture

Response time The time delay between receiving a stimulus and producing a response

Ring topology A LAN configuration in which all nodes are connected in a closed loop

Risk analysis Determining the nature and likelihood of the risks to key data

Root The unique starting node in a tree

Root directory The topmost directory, in which all others are contained

Route cipher A transposition cipher that lays out a message in a grid and traverses it in a
particular way

Router A network device that directs a packet between networks toward its final
destination

Rule-based system A software system based on a set of if-then rules

Run-length encoding Replacing a long series of repeated characters with a count of the
repetition

Schema A specification of the logical structure of data in a database

Scientific notation An alternative floating-point representation

Search tree A structure that represents alternatives in adversarial situations, such as game
playing

Sector A section of a track

652

Security policy A written statement describing the constraints or behavior an organization
embraces regarding the information provided by its users

Seek time The time it takes for the read/write head to get positioned over the specified
track

Semantic network A knowledge representation technique that represents the relationships
among objects

Semiconductor Material such as silicon that is neither a good conductor nor a good
insulator

Sequential circuit A circuit whose output is a function of its input values and the current
state of the circuit

Sequential file access The technique in which data in a file is accessed in a linear fashion

Shared memory parallel processor The situation in which multiple processors share a
global memory

Signed-magnitude representation Number representation in which the sign represents the
ordering of the number (negative and positive) and the value represents the magnitude

Significant digits Those digits that begin with the first nonzero digit on the left and end
with the last nonzero digit on the right (or a zero digit that is exact)

Simulation Developing a model of a complex system and experimenting with the model to
observe the results

Single contiguous memory management The approach to memory management in which
a program is loaded into one continuous area of memory

Smart card A card with an embedded memory chip used to identify users and control
access

Social network An online service that allows people with shared interests to communicate
and interact

Software requirements A statement of what is to be provided by a computer system or
software product

Software specification A detailed description of the function, inputs, processing, outputs,
and special features of a software product; it provides the information needed to design and
implement the software

Spatial compression Movie compression technique based on the same compression
techniques used for still images

Spoofing An attack on a computer system in which a malicious user masquerades as an
authorized user

653

Spreadsheet A program that allows the user to organize and analyze data using a grid of
cells

Spreadsheet function A computation provided by the spreadsheet software that can be
incorporated into formulas

Star topology A LAN configuration in which a central node controls all message traffic

Strong equivalence The equality of two systems based on their results and the process by
which they arrive at those results

Strong typing Each variable is assigned a type and only values of that type can be stored in
the variable

Structured Query Language (SQL) A comprehensive relational database language for data
management and queries

Substitution cipher A cipher that substitutes one character with another

Synchronous processing Multiple processors apply the same program in lockstep to
multiple data sets

Syntactic ambiguity The ambiguity created when sentences can be constructed in various
ways

System software Programs that manage a computer system and interact with hardware

Table A collection of database records

Tag The syntactic element in a markup language that indicates how information should be
displayed

TCP/IP A suite of protocols and programs that support low-level network communication

Temporal compression Movie compression technique based on differences between
consecutive frames

Ten’s complement A representation of negative numbers, such that the negative of I is 10
raised to k minus I

Test plan A document that specifies how a program is to be tested

Test plan implementation Using the test cases specified in a test plan to verify that a
program outputs the predicted results

Text file A file that contains characters

Thrashing Inefficient processing caused by constant page swapping

Time slice The amount of time given to each process in the round-robin CPU scheduling
algorithm

654

Timesharing A system in which CPU time is shared among multiple interactive users at
the same time

Top-level domain (TLD) The last section of a domain name, specifying the type of
organization or its country of origin

Traceroute A program that shows the route a packet takes across the Internet

Track A concentric circle on the surface of a disk

Training The process of adjusting the weights and threshold values in a neural net to get a
desired outcome

Transfer rate The rate at which data moves from the disk to memory

Transistor A device that acts either as a wire or a resister, depending on the voltage level of
an input signal

Transmission Control Protocol (TCP) The network protocol that breaks messages into
packets, reassembles them at the destination, and takes care of errors

Transposition cipher A cipher that rearranges the order of characters in a message

Trojan horse A malicious program disguised as a benevolent resource

Truth table A table showing all possible input values and the associated output values

Turing test A behavioral approach to determining whether a computer system is intelligent

Turnaround time The CPU scheduling metric that measures the elapsed time between a
process’s arrival in the ready state and its ultimate completion

Underflow The condition that occurs when the results of a calculation are too small to
represent in a given machine

Undirected graph A graph in which the edges have no direction

Uniform Resource Locator (URL) A standard way of specifying the location of a web page

Upload Sending data from a local computer to a destination on the Internet

User authentication The process of verifying the credentials of a particular user of a
computer or software system

User Datagram Protocol (UDP) An alternative to TCP that achieves higher transmission
speeds at the cost of reliability

Value parameter A parameter that expects a copy of its argument to be passed by the
calling unit (put on the message board)

Variable A location in memory, referenced by an identifier, that contains a data value

Vector graphics Representation of an image in terms of lines and shapes

655

Vertex A node in a graph

Video codec Methods used to shrink the size of a movie

Virtual computer (machine) A hypothetical machine designed to illustrate important
features of a real machine

Virtual machine The illusion created by a timesharing system that each user has a
dedicated machine

Virtual memory The illusion that there is no restriction on program size because an entire
process need not be in memory at the same time

Virus A malicious, self-replicating program that embeds itself into other code

Voice recognition Using a computer to recognize the words spoken by a human

Voice synthesis Using a computer to create the sound of human speech

Voiceprint The plot of frequency changes over time representing the sound of human
speech

Walk-through A verification method in which a team performs a manual simulation of the
program or design

Weak equivalence The equality of two systems based on their results

Web analytics The collection and analysis of data related to website usage

Web browser A software tool that retrieves and displays web pages

Web page A document that contains or references various kinds of data

Web server A computer set up to respond to requests for web pages

Website A collection of related web pages, usually designed and controlled by the same
person or company

What-if analysis Modifying spreadsheet values that represent assumptions to see how
changes in those assumptions affect related data

Wide-area network (WAN) A network connecting two or more localarea networks

Wiki A website whose content can be created and edited by multiple users

Wireless A network connection made without physical wires

Wireless network A network in which devices communicate with other nodes through a
wireless access point

Word A group of one or more bytes; the number of bits in a word is the word length of the
computer

656

Working directory The currently active subdirectory

World Wide Web (the Web) An infrastructure of information and the network software
used to access it

Worm A malicious stand-alone program that often targets network resources

657

ENDNOTES

Chapter 1
 1. G. A. Miller, “Reprint of the Magical Number Seven Plus or Minus Two: Some Limits on Our Capacity for

Processing Information,” Psychological Review 101, no. 2 (1994): 343–352.
 2. “Beyond All Dreams,” http://www.mith.umd.edu/flare/lovelace/index.html.
 3. National Geographic News, May 29, 2008.
 4. http://en.wikipedia.org/wiki/Timeline_of_computing_hardware_2400_BC%E2%80%931949 (accessed

2/11/2014).
 5. P. E. Grogono and S. H. Nelson, Problem Solving and Computer Programming (Reading, MA: Addison-Wesley,

1982): 92.
 6. D. Schmandt-Berrerat, “Signs of Life,” Odyssey, January/February 2002: 6, 7, 63.
 7. Written by C. Weems, adapted from: N. Dale, C. Weems, and M. Headington, Java and Software Design

(Sudbury, MA: Jones and Bartlett Publishers, 2001): 3523.
 8. P. E. Cerruzzi, A History of Modern Computing (Cambridge, MA: The MIT Press, 1998): 217.
 9. “Scientists Build First Nanotube Computer,” The Wall Street Journal, September 25, 2013.
10. R. X. Gringely, “Be Absolute for Death: Life After Moore’s Law,” Communications of the ACM 44, no. 3 (2001):

94.
11. http://mlgnn.com/?tag=steve-jobs (accessed 9/14/2009).
12. P. E. Cerruzzi, A History of Modern Computing (Cambridge, MA: The MIT Press, 1998): 291.
13. http://www.computerhistory.org (accessed 2/12/2014).
14. “Newsmakers: Schools for the World,” Parade, April 5, 2009.
15. http://www.roomtoread.org/page.aspx?pid=212 (accessed 2/21/2014).
16. S. Levy, “Back to the Future,” Newsweek, April 21, 2003.
17. L. Kappelman, “The Future Is Ours,” Communications of the ACM 44, no. 3 (2001): 46.
18. http://wilk4.com/humor/humore10.htm (accessed 4/10/2009).
19. http://digg.com/d1LmM (accessed 4/13/2009).
20. P. Denning, “Computer Science the Discipline,” Encyclopedia of Computer Science, ed. E. Reilly, A. Ralston, and D.

Hemmendinger (Groves Dictionaries, Inc., 2000).
21. Andrew Tannenbaum. Keynote address at the Technical Symposium of the Special Interest Group on Computer

Science Education, San Jose, California, February 1997.
22. P. Denning, D. Comer, D. Gries, et al., “Computing as a Discipline,” Communications of the ACM 32, no. 1

(1989): 932.
23. http://www.comphist.org/ifip_report.php (accessed 4/14/2009).
24. A. Ventakesh, D. Dunkle, and A. Wortman. “Evolving Patterns of Household Computer Use, 1999–2010,” The

Paul Merage School of Business, University of California-Irvine, April 2011.
25. http://laptop.org/en/laptop/ (accessed 2/12/2014).
26. http://www.internetworldstats.com/stats.htm (accessed 2/12/2014).

Chapter 2
 1. Webster’s New Collegiate Dictionary, 1977, s.v. “positional notation.”
 2. G. Ifrah, From the Abacus to the Quantum Computer: The Universal History of Computing (John Wiley & Sons,

2001): 245.
 3. D. Schmandt-Besseerat, “One, Two … Three,” Odyssey, September/October 2002: 6–7.
 4. http://en.wikipedia.org/wiki/United_States_Foreign_Intelligence_Surveillance_Court (accessed 2/21/2014).
 5. http://www.fjc.gov/history/home.nsf/page/courts_special_fisc.html (accessed 2/22/2014).

658

http://www.mith.umd.edu/flare/lovelace/index.html
http://en.wikipedia.org/wiki/Timeline_of_computing_hardware_2400_BC%E2%80%931949
http://mlgnn.com/?tag=steve-jobs
http://www.computerhistory.org
http://www.roomtoread.org/page.aspx?pid=212
http://wilk4.com/humor/humore10.htm
http://digg.com/d1LmM
http://www.comphist.org/ifip_report.php
http://laptop.org/en/laptop/
http://www.internetworldstats.com/stats.htm
http://en.wikipedia.org/wiki/United_States_Foreign_Intelligence_Surveillance_Court
http://www.fjc.gov/history/home.nsf/page/courts_special_fisc.html

 6. Congressional Research Service, “Reauthorization of the FISA Amendments Act,” R42725.

Chapter 3
 1. Character set maze from draft article by Bob Bemer.
 2. http://www.bobbemer.com/AWARD.HTM
 3. K. Dozier, “Intelligence Chief Reveals More on NSA Authorizations,” Austin American-Statesman, December 22,

2013.
 4. http://www.nytimes.com/interactive/2013/12/18/us/recommended-changes-to-the-nsa.html?_r=0 (accessed

2/22/2014).
 5. http://www.cnn.com/2014/01/17/politics/obama-nsa-changes/ (accessed 2/22/2014).
 6. http://en.wikipedia.org/wiki/Edward_Snowden (accessed 2/24/2014).

Chapter 4
 1. Written by C. Weems, adapted from: N. Dale, C. Weems, and M. Headington, Java and Software Design

(Sudbury, MA: Jones and Bartlett Publishers, 2001): 2423.
 2. http://www.nano.gov/nanotech-101/what/definition (accessed 9/17/2011).
 3. R. Orr, “Augustus DeMorgan,” http://www.engr.iupui.edu/~orr/webpages/cpt120/mathbios/ademo.htm.
 4. M. Campbell-Kelly, “Historical Reflections,” Communications of the ACM, September 2011.
 5. IEEE Code of Ethics, http://www.ieee.org/about/corporate/governance/p7-8.html.

Chapter 5
 1. M. Campbell-Kelly, “Historical Reflections,” Communications of the ACM, September 2011.
 2. Austin American-Statesman, 6/20/2013, 1/10/2014, and 1/11/2014.
 3. A. Perlis, “Epigrams on Programming,” ACM Sigplan Notices, October 1981: 713.
 4. Austin American-Statesman, 12/10/2013.
 5. Webopedia, s.v. “embedded systems,” http://webopedia.com/TERM/E/embedded_system.htm.
 6. The Ganssle Group. “Microcontroller C Compilers,” http://www.ganssle.com/articles/acforuc.htm.
 7. http://en.wikipedia.org (accessed 5/14/2009).

Chapter 6
 1. Pep/1 through Pep/8 are virtual machines designed by Stanley Warford for his textbook Computer Systems

(Sudbury, MA: Jones and Bartlett, 2010).
 2. http://www.nytimes.com/2014/01/12/opinion/sunday/friedman-if-i-had-a-hammer.html?_r=0 (accessed

3/16/2014).
 3. http://www.nytimes.com/2014/02/16/technology/intels-sharp-eyed-social-scientist.html (accessed 2/21/14).
 4. http://en.wikipedia.org/wiki/Pandora_Radio (accessed 3/17/2014).
 5. http://www.nndb.com/people/538/000126160/ (accessed 3/18/2014).
 6. http://en.wikipedia.org/wiki/Konrad_Zuse (accessed 3/18/2014).
 7. http://www.idsia.ch/~juergen/zuse.html (accessed 3/18/2014).
 8. http://www-history.mcs.st-and.ac.uk/Biographies/Zuse.html
 9. http://www.nationmaster.com/country-info/stats/Crime/Software-piracy-rate (accessed 3/27/2014).
10. http://news.cnet.com/8301-1023_3-20004783-93.html#-comment (accessed 8/20/2011).

Chapter 7

659

http://www.bobbemer.com/AWARD.HTM
http://www.nytimes.com/interactive/2013/12/18/us/recommended-changes-to-the-nsa.html?_r=0
http://www.cnn.com/2014/01/17/politics/obama-nsa-changes/
http://en.wikipedia.org/wiki/Edward_Snowden
http://www.nano.gov/nanotech-101/what/definition
http://www.engr.iupui.edu/~orr/webpages/cpt120/mathbios/ademo.htm
http://www.ieee.org/about/corporate/governance/p7-8.html
http://webopedia.com/TERM/E/embedded_system.htm
http://www.ganssle.com/articles/acforuc.htm
http://en.wikipedia.org
http://www.nytimes.com/2014/01/12/opinion/sunday/friedman-if-i-had-a-hammer.html?_r=0
http://www.nytimes.com/2014/02/16/technology/intels-sharp-eyed-social-scientist.html
http://en.wikipedia.org/wiki/Pandora_Radio
http://www.nndb.com/people/538/000126160/
http://en.wikipedia.org/wiki/Konrad_Zuse
http://www.idsia.ch/~juergen/zuse.html
http://www-history.mcs.st-and.ac.uk/Biographies/Zuse.html
http://www.nationmaster.com/country-info/stats/Crime/Software-piracy-rate
http://news.cnet.com/8301-1023_3-20004783-93.html#-comment

 1. G. Polya, How to Solve It: A New Aspect of Mathematical Method, 2nd ed. (Princeton, NJ: Princeton University
Press, 1945).

 2. http://www.fbi.gov/news/stories/2013/august/pirated-software-may-contain-malware (accessed 3/16/2014).
 3. S. P. Zehler, letter to the editor of The Wall Street Journal, March 16, 2014.
 4. GNU General Public License, http://www.gnu.org/copyleft/gpl.html (accessed 8/28/2011).
 5. http://en.wikipedia.org/wiki/Open-source_software (accessed 1/19/2014).

Chapter 8
 1. Austin American-Statesman, “UTeach Program Looks for Better Uses of Classroom Technology,” December 4,

2013.
 2. S. Warford, Computer Systems (Sudbury, MA: Jones and Bartlett Publishers, 1999): 146.
 3. “Who Needs Banks? PayPal and Lending Club Want to Make Small Business Loans,” Bloomberg Businessweek,

March 20, 2014.
 4. Privacy Rights Clearinghouse, “Workplace Privacy and Employee Monitoring,”

https://www.privacyrights.org/fs/fs7-work.htm (accessed 8/26/2011).
 5. “Workplace privacy? Forget it!” http://www.bankrate.com/brm/news/advice/20050718a1.asp (accessed

8/26/2011).

Chapter 9
 1. Webster’s New Collegiate Dictionary, 1977, s.v. “brainstorming.”
 2. G. Booch, “What Is and Isn’t Object Oriented Design,” American Programmer 2, no. 78 (Summer 1989).
 3. http://www.microsoft.com/en-us/news/press/2013/mar13/03-05playitsafepr.aspx (accessed 3/16/2014).
 4. T. W. Pratt, Programming Languages: Design and Implementation, 2nd ed. (Englewood Cliffs, NJ: Prentice-Hall,

1984): 604.
 5. http://www.yourdictionary.com/paradigm#americanheritage (accessed 9/4/2014).
 6. http://whatis.techtarget.com/search/query?q=paradigm (accessed 9/4/2014).
 7. K. C. Louden, Programming Languages: Principles and Practice (Boston: PWS-Kent Publishing Company, 1993).
 8. SISC: Second Interpreter of Scheme Code, http://sisc-scheme.org/sisc-online.php (accessed 6/9/2009).
 9. J. B. Rogers, A Prolog Primer (Reading, MA: Addison-Wesley, 1986).
10. O. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming (New York: Academic Press, 1972).
11. S. Warford, Computer Systems (Sudbury, MA: Jones and Bartlett Publishers, 1999): 222.
12. S. P. Zehler, letter to the editor of The Wall Street Journal, March 16, 2014.
13. http://www.hoax-slayer.com/ (accessed 8/22/2011).
14. http://www.ftc.gov/opa/2010/02/2009fraud.shtm (accessed 8/22/2011).

Chapter 10
 1. “Bitcoin Explained: Crypto Fad or the Future of Money?” ExtremeTech, February 7, 2014.
 2. Privacy Rights Clearinghouse, https://www.privacyrights.org/fs/fs8a-hipaa.htm (accessed 8/25/2011).
 3. Summary of the HIPAA Privacy Rule, United States Department of Health and Human Services.

Chapter 11
 1. http://www.lsoft.com/resources/optinlaws.asp (accessed 8/23/2011).
 2. S. Daley of The New York Times, “Europe sees ‘right to be forgotten’ as Web privacy issue.” Austin American-

Statesman, August 15, 2011.

660

http://www.fbi.gov/news/stories/2013/august/pirated-software-may-contain-malware
http://www.gnu.org/copyleft/gpl.html
http://en.wikipedia.org/wiki/Open-source_software
https://www.privacyrights.org/fs/fs7-work.htm
http://www.bankrate.com/brm/news/advice/20050718a1.asp
http://www.microsoft.com/en-us/news/press/2013/mar13/03-05playitsafepr.aspx
http://www.yourdictionary.com/paradigm#americanheritage
http://whatis.techtarget.com/search/query?q=paradigm
http://sisc-scheme.org/sisc-online.php
http://www.hoax-slayer.com/
http://www.ftc.gov/opa/2010/02/2009fraud.shtm
https://www.privacyrights.org/fs/fs8a-hipaa.htm
http://www.lsoft.com/resources/optinlaws.asp

Chapter 12
 1. “New Tech Keeps Eye on Senior Parents,” Austin American-Statesman, March 16, 2014.
 2. Email to one of the authors, 4/11/2014.
 3. M. Scherer, “Inside the Secret World of Quants and Data Crunchers Who Helped Obama Win,” Time, November

7, 2012.
 4. http://en.wikipedia.org/wiki/ORCA_%28computer_system%29 (accessed 3/27/2014).

Chapter 13
 1. D. Kortenkamp, R. P. Bonasso, and R. Murphy, Artificial Intelligence and Mobile Robots (Menlo Park, CA: AAAI

Press/The MIT Press, 1998).
 2. J. Weizenbaum, Computer Power and Human Reason (San Francisco: W. H. Freeman, 1976): 34.
 3. R. A. Brooks, “A Robust Layered Control System for a Mobile Robot,” IEEE Transactions on Robotics and

Automation 2, no. 1:1423.
 4. Mars Now Team and the California Space Institute, October 6, 2001.
 5. J. H. L. Jones and A. M. Flynn, Mobile Robots: Inspiration to Implementation (Wellesley, MA: A K Peters, 1993):

175.
 6. http://stocks.about.com/od/advancedtrading/a/UnderstandIPO.htm (accessed 3/27/2014).
 7. https://www.briefing.com/investor/learning-center/general-concepts/how-ipos-work/ (accessed 3/27/2014).
 8. http://www.investopedia.com/university/ipo/ipo.asp (accessed 3/27/2014).

Chapter 14
 1. M. Pidd, “An Introduction to Computer Simulation,” Proceedings of the 1994 Winter Simulation Conference.
 2. R. E. Shannon, “Introduction to the Art and Science of Simulation,” Proceedings of the 1998 Winter Simulation

Conference.
 3. http://heim.ifi.uio.no/~kristen/FORSKNINGSDOK_MAPPE/F_OO_start.html.
 4. D. R. Stauffer, N. L. Seaman, T. T. Warner, and A. M. Lario, “Application of an Atmospheric Simulation Model

to Diagnose Air-Pollution Transport in the Grand Canyon Region of Arizona,” Chemical Engineering
Communications 121 (1993): 925.

 5. “Some Operational Forecast Models,” USA Today Weather (November 8, 2000),
http://www.usatoday.com/weather/wmodlist.htm.

 6. D. R. Stauffer, N. L. Seaman, T. T. Warner, and A. M. Lario. “Application of an Atmospheric Simulation Model
to Diagnose Air-Pollution Transport in the Grand Canyon Region of Arizona,” Chemical Engineering
Communications 121 (1993): 925.

 7. “2013 Atlantic Hurricane Season’s Dire Predictions Were a Dud,” WTSP.com, November 12, 2013.
 8. Austin American-Statesman, February 20, 2014.
 9. The New York Times, October 19, 2014. http://www.nytimes.com/2014/10/19/fashion/how-apples-siri-became-

one-autistic-boys-bff.html?smprod=nytcore-ipad&smid=nytcore-ipad-share&_r=0

Chapter 15
 1. D. Sefton, Newhouse, News Service, Austin American-Statesman, April 27, 2001.
 2. M. Softky, “Douglas Engelbart: Computer Visionary Seeks to Boost People’s Collective Ability to Confront

Complex Problems Coming at a Faster Pace,” The Almanac, February 21, 2001.
 3. “The Psychology of Video Game Addiction,” The Kernel, February 6, 2014.
 4. The New York Times, October 7, 2014.
 5. M. O’Toole, “Social Networking Boosts Teen Drug Abuse Risk—Study,” Reuters, August 25, 2011.
 6. http://www.pewinternet.org/fact-sheets/social-networking-fact-sheet/ (accessed 1/23/2014).

661

http://en.wikipedia.org/wiki/ORCA_%28computer_system%29
http://stocks.about.com/od/advancedtrading/a/UnderstandIPO.htm
https://www.briefing.com/investor/learning-center/general-concepts/how-ipos-work/
http://www.investopedia.com/university/ipo/ipo.asp
http://heim.ifi.uio.no/~kristen/FORSKNINGSDOK_MAPPE/F_OO_start.html
http://www.usatoday.com/weather/wmodlist.htm
http://WTSP.com
http://www.nytimes.com/2014/10/19/fashion/how-apples-siri-became-one-autistic-boys-bff.html?smprod=nytcore-ipad&smid=nytcore-ipad-share&_r=0
http://www.pewinternet.org/fact-sheets/social-networking-fact-sheet/

Chapter 16
 1. http://en.wikipedia.org/wiki/Tim_Berners-Lee (accessed 1/23/2014).
 2. Austin American-Statesman, December 22, 2013.
 3. D. Watts, “Six Degrees: The Science of a Connected Age.”
 4. A. Jeffries, “Congress to Consider Banning Online Gambling,” The Verge, March 26, 2014.
 5. N. Vardi, “Department of Justice Flip-Flops on Internet Gambling,” Forbes.com, December 23, 2011.

Chapter 17
 1. http://en.wikipedia.org/wiki/Radio-frequency_identification (accessed 4/9/2014).
 2. “Rude Alec Baldwin Fled to Toilet, Booted from Plane,” CNN, December 7, 2011.
 3. “Alec Baldwin Thrown Off AA Flight at LAX for ‘Playing Game’ on Phone,” New York Post, December 6, 2011.
 4. http://en.wikipedia.org/wiki/Mavis_Batey (accessed 4/15/14).
 5. “Mavis Batey—Obituary,” The Telegraph, November 13, 2013.
 6. “Mavis Batey Obituary,” The Guardian, November 20, 2013.
 7. J. Mintz, “When Bloggers Make News,” The Wall Street Journal, January 21, 2005: B1.
 8. Editorial, “The Apple Case Isn’t Just a Blow to Bloggers,” BusinessWeek, March 28, 2005: 128.
 9. J. Mintz, “When Bloggers Make News,” The Wall Street Journal, January 21, 2005: B4.

Chapter 18
 1. H. M. Walker, The Limits of Computing (Sudbury, MA: Jones and Bartlett Publishers, 1994). This fable and many

of the ideas in this chapter come from Dr. Walker’s thought-provoking little book. Thank you, Henry.
 2. “Has Privacy Become a Luxury Good?” The New York Times, March 3, 2014.
 3. Software Engineering Note 11, no. 1 (January 1986): 14.
 4. J. Markoff, “Circuit Flaw Causes Pentium Chip to Miscalculate, Intel Admits,” The New York Times, November

24, 1994.
 5. Austin American-Statesman, November 27, 2013.
 6. “IBM Wants Developers to Make Watson Mobile,” Re/code, February 26, 2014.
 7. N. G. Leveson, “Software Engineering: Stretching the Limits of Complexity,” Communications of the ACM 40, no.

2 (February 1997): 129.
 8. D. Bell, I. Morrey, and J. Pugh, Software Engineering, A Programming Approach, 2nd ed. (Prentice Hall, 1992).
 9. T. Huckle, Collection of Software Bugs, http://www5.in.tum.de/~huckle/bugse.html.
10. D. Beeson, Manager, Naval Air Warfare Center, Weapons Division, F18 Software Development Team.
11. D. Gries, “Queen’s Awards Go to Oxford University Computing and INMOS,” Computing Research News 2, no. 3

(July 1990): 11.
12. “Out in the Open,” The Economist, April 2001.
13. E. Dijkstra, “On the Cruelty of Really Teaching Computing Science,” Communications of the ACM 32, no. 12

(December 1989): 1402.
14. “Out in the Open,” The Economist, April 2001.
15. S. J. Vaughan-Nichols, “Coverity Finds Open Source Software Quality Better Than Proprietary Code,” ZDNet,

April 16, 2014.
16. http://en.wikipedia.org/wiki/SourceForge (accessed 4/19/2014).
17. N. Perlroth, “Heartbleed Highlights a Contradiction in the Web,” The New York Times, April 18, 2014.
18. “Ghost in the Machine,” TIME, January 29, 1990: 59.
19. T. Huckle, “Collection of Software Bugs,” http://www5.in.tum.de/~huckle/bugse.html.
20. Douglas Arnold, “The Patriot Missile Failure,” http://www.ima.umn.edu/~arnold/disasters/patriot.html.
21. United States General Accounting Office Information Management and Technology Division, B247094, February

4, 1992.
22. J. Fox, Software and Its Development (Englewood Cliffs, NJ: Prentice-Hall, 1982): 187–188.
23. D. Isbell and D. Savage, “Mars Polar Lander,” 1999, http://mars.jpl.nasa.gov/msp98/news/mco991110.html.
24. Email received by N. Dale on 9/27/2011.
25. P. Gray, “Computer Scientist Alan Turing,” Time,

662

http://en.wikipedia.org/wiki/Tim_Berners-Lee
http://Forbes.com
http://en.wikipedia.org/wiki/Radio-frequency_identification
http://en.wikipedia.org/wiki/Mavis_Batey
http://www5.in.tum.de/~huckle/bugse.html
http://en.wikipedia.org/wiki/SourceForge
http://www5.in.tum.de/~huckle/bugse.html
http://www.ima.umn.edu/~arnold/disasters/patriot.html
http://mars.jpl.nasa.gov/msp98/news/mco991110.html

http://www.time.com/time/time100/scientist/profile/turing.html.
26. Ibid.
27. N. G. Leveson and C. S. Turner, “An Investigation of the Therac25 Accidents,” IEEE Computer 26, no. 7 (July

1993): 1841.

663

http://www.time.com/time/time100/scientist/profile/turing.html

INDEX

The index that appeared in the print version of this title was intentionally removed from the eBook. Please use the search
function on your eReading device to search for terms of interest. For your reference, the terms that appear in the print index are
listed below.

A
A register, in Pep/8
Abacus
Absolute path name
Abstract art
Abstract data types
Abstraction

car engine and
defined
power of
subprograms and

Abstract numerals
Abstract step
Access control policy
Access time
Accumulator, in Pep/8
ACM. See Association for Computing Machinery
Action-adventure games
Action games
Action responsibilities
Ada (programming language)
Adams, E. N.
Adders
Addiction, gaming as
Adding machine
Addition

of integers
of numbers in other bases

Addressability
Address binding

for fixed and dynamic partitions
Addresses

kinds of
network addresses

Addressing mode specifier, in Pep/8
Address of argument, reference parameter and
Address resolution, in partition memory management
Adjacent vertices
Advanced Research Projects Agency (ARPA)
Adware
AI. See Artificial intelligence
Aibo, demise of
AIFF
ALGOL
Algorithm development phase, in computer problem-solving process

664

Algorithmic thinking
Algorithms. See also Boolean expressions and variables; Responsibility algorithms

classification of
comparing
complexity and
defined
expressing
following pseudocode algorithm
nesting in
pseudocode functionality
recursive
with repetition

count-controlled loops
event-controlled loops
square root

searching
binary search
sequential search
sequential search in sorted array

with selection
summary of methodology for
testing
translating pseudocode algorithm
writing pseudocode algorithm

Allen, Paul
Allen, Robert
Alliance for Affordable Internet
ALU. See Arithmetic/logic unit
Amazon.com
AMBER Alert
American Management Association
American National Standards Institute (ANSI)
American Standard Code for Information Interchange (ASCII). See also ASCII character set
America Online (AOL)
Ampersand, in C++
Analog data
Analog signal

degradation of
Analysis, algorithm design and
Analysis and specification phase, in computer problem-solving process
Analytical Engine
AND Boolean operator
AND gate

combinational circuit and
constructing
three-input

Andreesen, Marc
Android
Angle brackets, HTML tags within
Animation
Annals of Mathematics
ANSI (American National Standards Institute)
Antivirus software
AOL
APL
Apple Computer
Apple I
Apple II
Apple iPhone. See iPhone
Apple Macintosh
Applets

665

http://Amazon.com

Application (or user) level
Application packages
Applications areas
Applications layer, in computing system
Application software
Applications programmers
Application systems
Architecture
Argument
Arithmetic, in other bases
Arithmetic, limits on

integer numbers
real numbers

Arithmetic/logic unit
Pep/8

Arithmetic operations
integers and
spreadsheet formulas and

ARPA (Advanced Research Projects Agency)
ARPANET
Arrays

algorithm putting values into places in
lists vs.
sequential search in
sorted
with ten numbers
unsorted

Artificial intelligence (AI)
branches of
computer limitations
computing discipline and
defined
expert systems
knowledge representation
Lisp and
natural language processing
neural networks
robotics
search trees
semantic networks
subsumption architecture
thinking machines

Artificial neural networks
Artists, computer graphics used by
ASCII character set

output from operand in Pep/8
Asimov, Isaac
Asking questions strategy
Assange, Julian
Assembler directives
Assembler Listing window
Assemblers
Assembly language

first-generation software
second-generation software
third-generation software
assembler directives
Hello program in
mnemonic letter codes assigned by
new program in
Pep/8 assembly

666

program with a loop
program with branching

Assembly process
Assertions
Assignment, in pseudocode algorithm
Assignment statements
Association for Computing Machinery (ACM)

Code of Ethics
Associative property
Asterisk (*)

for AND operation
in select clause

Asynchronous processing
Atanasoff, John Vincent
AT&T

nine-hour failure (1990)
Atari
Atari 2600
Atomic data types
Atomic Energy Commission
Attributes

of database objects
in discrete-event models
tag attributes

AU
Audio data

MP3 audio format
representing

audio formats
Audio formats
Audio signal, sampling
Augusta, Ada (Countess of Loveless)
Austin American-Statesman
Authentication credentials
Automobile diagnostic programs
Auxiliary storage devices
Availability of information
Average wait time, in queuing model
Axon

B
Babbage, Charles
Back door
Backslash, root of directory system and
Backus, John
Baldwin, Alec
Baldwin, Brooke
Bandwidth
Barcode
Bardeen, John
Base

of number system
transistor

Base 10, converting from, to other bases
Base case

in recursive algorithm
for recursive factorial

Base register
BASIC
Batch jobs

667

Batch processing
Batey, Mavis
Battery capacity, in laptops
Bay, Austin
Bear family tree
Bell, Genevieve
Bell Labs
Bemer, Bob
Berners-Lee, Tim
Berry, Clifford
Best fit
Betting online
Big-O analysis

common orders of magnitude
family laundry analogy
traveling salesman problem

Big-O notation, defined
Bill and Melinda Gates Foundation
Bina, Eric
Binary

counting in, with octal and decimal equivalents
rules of binary arithmetic

Binary data, CD player and reading of
Binary digits
Binary files
Binary floating-point value
Binary numbers

octal numbers and
Binary (base-2) number system
Binary programmable computer
Binary representations
Binary search

algorithm
average number of comparisons with sequential search and

Binary search trees
building

from strings
four-level
printing data in
searching
ten-level
trace for

Binary system
Binary trees
Binary values

computers and
Binding of addresses
Biographies

Atanasoff, John Vincent
Batey, Mavis
Bemer, Bob
Berners-Lee, Tim
Boole, George
Bricklin, Daniel
Dijkstra, Edsger W.
Engelbart, Doug
Hollerith, Herman
Hopper, Grace Murray
Jobs, Steve
Lovelace, Ada (Countess of Lovelace)
Polya, George

668

Simon, Herbert A.
Sutherland, Ivan
Turing, Alan M.
von Neumann, John
Zuse, Konrad

Bioinformatics
Biological neural networks
Biological neuron
Biometrics
Bi-quinary number representation
Bitcoin
Bit combinations
Bit-level parallelism
Bitmap file
Bits

in address
binary representations and

Black-box testing
“Black hat”
Blaster worm
Bletchley Girls
Block
.BLOCK pseudo-op
Blogs and blogging

presidential elections and
Bluetooth wireless network
Blu-Ray disks
Boggs, David
Booch, Grady
Boole, George
Boolean algebra

combinational circuit expressed with use of
properties of

Boolean binary search
Boolean expressions and variables
Booting
Bootstrap Institute
Bottom-up approach
Bounded rationality theory
Bounded time
Bounds register
Braces, in Java and C++
Brainstorming

example
Branching, program with

assembler listing and screenshot of input and output
opcodes and meaning of

Brattain, Walter H.
Breadth-first search
Break-even calculations, spreadsheets and
Bricklin, Daniel
Broadband
Browsers
Bubble sort algorithm
Buffer overflow
Bugs

in government projects
Bullets
Bullying, social networking and
Bureau of Ordnance Computation Project (Harvard)
Burning

669

Burroughs, William
Burroughs Corporation
Bus
Bush, George W., election strategies
Business and economic forecasting models
Business Software Alliance
Bus topology
Bus width
Byron, Augusta Ada (Ada Lovelace)
Byron, Lord George Gordon
Bytecode

Java program compiled into, and run on different systems
Bytes

C
Cable modems
Cache memory
CAD (Computer-aided design)
Caesar cipher
Calling unit
Cambridge Mathematical Journal
Campaign tools of social media
Cancellation error
CAN-SPAM Act
Capacitive touch screens
CAPTCHA
Carbon nanotubes
Cardinality constraints
Cardinality relationships, types of
Car engine, abstraction and
Carry-in
Carry-out
Carry value
Cartesian product operation, in SQL
Cascading Style Sheets (CSS)
Case-sensitive languages
Catenary curve
CD player, binary data read by
CD-R
CD-ROM
CD-RW
CDs. See Compact disks
Celestial mechanics
Cells, in spreadsheets
Census Bureau, U.S.
Central Intelligence Agency (CIA)
Central processing unit
CERN
Ceruzzi, Paul E.
Champolion, Francois
Change directory
Characters
Character set
Chatbot
Chat room
Check bit
Check digits

in Universal Product Code
Chemistry Markup Language (CML)
Children, in binary search trees

670

Chips
Church, Alonzo
Church-Turing thesis
CIA (Central Intelligence Agency)
CIA triad (confidentiality, integrity, and availability)
Cinepak
Cipher
Circuit boards
Circuit equivalence
Circuits

adders
combinational
integrated
as memory
multiplexers
sequential

Circular references
“Citizen journalists”
C language

game development and
C++ language

braces in
game development and
if and while statements in
input statement in
subprogram declaration in
uppercase and lowercase used in
variable declaration in

Clapper, James
Class (implementation phase)
Classes

mapping objects into
responsibilities assigned to

Class NP problems
Class P
Class P problems
Clear-box testing
Client/server model
Cliki
Cloud computing
Clustering
Clusters
CML (Chemistry Markup Language)
COBOL
CODASYL
Codd, E. F.
Code

error-correcting
errors per lines of

Codec
Code coverage
Collision detection algorithms
Color

for data in cells in spreadsheets
indexed
representing

Color bleeding
Color depth
Color palette, restricted
Color photoreceptor cone cells, in retina
Color space, three-dimensional

671

Colossus computer
Column designations, spreadsheet cells
Combinational circuits
Combinatorial theory
Comments

prefacing
Comment symbol
Commodore
Common orders of magnitude
Communications

in computing systems
limits on

check digits
error-correcting code
error-detecting code
parity bits

Communications of the ACM (Leveson)
Community cloud
Commutative property
Compact disk–digital audio
Compact disks (CDs)
Compaction
Compaq
Compilation process
Compilers
Complement property
Complexity

algorithms and
software

Complex objects, modeling
Complex systems
Complicated systems
Component architecture
Components, limits on
Composite variables

arrays
records

Compositio Mathematica
Compression ratio
CompuServe
Computational biology
Computational biomodeling
Computational genomics
Computer Addiction Service
Computer-aided design (CAD)
Computer bugs. See Bugs
Computer ethics. See also Ethical issues
Computer gaming. See also Games and gaming
Computer graphics

animation
complex object modeling
light and
light simulation and
object shapes and

Computer hardware. See Hardware
Computer History Museum
Computer hoaxes and scams
Computerized tomography (CT)
Computer limitations. See Limitations on computing
Computer mouse
Computer network, defined

672

Computer operations
Computer operators
Computer problem-solving process
Computer professionals

ethics codes
licensing

Computer programming and philosophy
Computers. See also Hardware; Limitations on computing; Software

binary values and
data and
electricity and
predictions about
prototype
virtual

Computer science
computer graphics applications in
curricula for
defined
as discipline
Tenth Strand (Social and Professional Issues)
university programs in

“Computer Science Curriculum 2008: An Interim Revision of CS 2001”
Computer security. See Security
Computer software. See Software
Computer terminals
Computing

history of
computing hardware
computing software

numbers and
parallel
predictions related to
prefixes used in
as tool and discipline

Computing Curricula 1991 (ACM report)
Computing systems

abstraction
defined
layers of

Concept-based searches
Concrete step
Conditions
Confidentiality

information security
medical information and

Containers
Context switch
Continuous simulation
Control abstraction
Control Data
Control structures

asynchronous processing
nested logic

Control unit
Conversion algorithm, walk-through of
Conversions

from base 10 to other bases
from binary to hexadecimal
in binary with octal and decimal equivalents
of decimal numbers to hexadecimals
of whole value from base 10 to another base

673

Cook, Tim
Cookies
Copy aspect, of spreadsheets
Copy of the argument, value parameter and
Copyright, open-source software and
Cores
Cost-benefit analysis, spreadsheets and
Count-controlled loops
Counterfeit software
COUNT function
Counting and writing
C++ program, compiling of, and run on different systems
CPU. See Central processing unit
CPU chips
CPU scheduling algorithms

first-come, first-served
nonpreemptive
preemptive
round-robin
shortest-job-next

Crackers and hackers
Craft, Jon
Craigslist
CRC cards

inheritance and
Credit/debit card thefts
Cryptanalysis
Cryptocurrency
Cryptography
CSP concurrent programming model
CSS (Cascading Style Sheets)
CT (computerized tomography)
Customer database table
Customs and Border Protection, U.S.
Cyber-bullying
Cylinder

D
Dahl, Ole-Johan
Dale, Nell
Data

analog and digital
computers and
information vs.
printing in binary search tree

Data abstraction
Database content, modifying
Database design
Database management systems

database design
defined
elements of
relational model
relationships
Structured Query Language

Database object
Database research
Databases

defined
table made up of records and fields

674

Data compression
Data coverage
Data-level parallelism
Data management
Data objects
Data Processing Management Association
Data representation

analog and digital data
audio data
binary representations and
images and graphics
for numeric data
text
video

Data structures
Data transfer rate (bandwidth)
Data types

atomic
Boolean variables
characters
defined
integers
reals
simple
strings

Data typing
dBase IV
DBMS. See Database management systems
Dean, Howard
DEC. See Digital Equipment Corporation
Decimal notation, values in
Decimal number system
Declarations
Declarative paradigm

functional model
logic programming

Decryption
Deep Blue computer chess program
Deferring details strategy, pseudocode algorithm and
Delete statement, in SQL
Deletions, spreadsheet formulas and
Dell
Delta frames
Demand paging
DeMorgan, Augustus
DeMorgan’s law
Demultiplexer
Dendrites
Denial of service
Denning, Peter
Depth-first search
Derived class
Dertouzos, Michael
Design
Desk checking
Desktop replacement laptops
Diagnostic and Statistical Manual of Mental Disorders
Difference Engine
Difference operation, in SQL
Digital camera, built-in, for laptop
Digital certificate

675

Digital circuits, role of
Digital currency
Digital data
Digital divide
Digital Equipment Corporation
Digital signal

degradation of
Digital signature
Digital subscriber line (DSL)
Digital world
Digitization of data
Digitized images and graphics
Dijkstra, Edsger W.
Directed graph (digraph)
Direct file access
Directories

defined
directory trees
path names

Directory trees
UNIX
Windows

Discipline, defined
Discrete-event simulation
Discrete structures
Disk drive
Disks, varieties of
Disk scheduling

defined
first-come, first-served disk scheduling
SCAN
shortest-seek-time-first

Distributed computers
Distributive law
Distributive property
Divide and conquer strategy

problem solving and
pseudocode algorithm and
quicksort algorithm and

Division, of integers
DL. See Dual layer
DL DVD-R
DNS (Domain name system)
Document Type Definition (DTD)
Domain names
Domain name servers
Domain name system (DNS)
Domain squatting
Donner, Jan Hein
“Dot-com” collapse of 2001
Double quotes, strings enclosed within
Downloads
Drivers
DSL (Digital subscriber line)
DSM (Diagnostic and Statistical Manual of Mental Disorders)
DTD (Document Type Definition)
Dual-boot system
Dual-channel DDR2
Dual layer
Duchamp, Marcel
Dumb terminal

676

DVD drive
DVD-R
DVD+/-R
DVD+R
DVD-RW
DVD+RW
DVD types
Dvorak, John C.
Dynamic-partition technique
Dynamic systems

E
eBay
Eckert, J. Presper
Eckert-Mauchly Computer Corporation
e-commerce
Economic forecasting
The Economist
Edges (arcs), in graphs
Effective weight
802.11 (wireless networking support)

versions 802.11a, 802.11g, 802.11n
Einstein, Albert, telegraph described by
Electricity
Electro-mechanical tabulator
Electronic commerce (e-commerce)
Electronic health records
Electronic spreadsheets
Electronic voting system
ELEMENT tags, in DTD documents
ELIZA
Ellis Island website
email

opt-in or opt-out and marketing
scams
workplace monitoring of

Embedded systems
Emergency action notification
Emitter, transistor
Employee Internet monitoring
Employee record
emWave
Encapsulation
Encryption
Endangered species, managing
eNeighbor system
Engelbart, Doug
ENIAC machine
Enigma cipher
Entities, in discrete-event models
Entity-relationship (ER) modeling
EPAM
Epic Game’s Unreal Script for the Unreal Engine
ePolicy Institute
Equal sign (=)
Equal to relational operator
Erasing data in file
E-Rate Program
ER diagrams
Erosion models

677

Error-correcting code
Error-detecting code
Errors

in government projects
maintenance project and

Escape character
ETA model
Ethernet
Ethernet cable
Ethical issues

ACM code of ethics
blogging
computing limitations
digital divide
FISA Court
gaming as an addiction
HIPAA
hoaxes and scams
IEEE Code of Ethics
initial public offerings
Internet and politics
Internet gambling
medical privacy
open-source software development
politics
privacy
software piracy and copyrighting
spam and email marketing
surveillance
workplace monitoring

European Space Agency, rocket software error
European Union
Even parity
Event-controlled loops
Event-driven processing
Events, in discrete-event models
Excited state, neurons in
Execution units
Experimentation
Expert systems

defined
Exponential time
Extensible Markup Language. See XML
Extensible Stylesheet Language (XSL)

F
Facebook

initial public offering
presidential elections and
privacy and
protecting information on

Factorial time
False value, in Boolean data type
Family laundry analogy
FBI (Federal Bureau of Investigation)
FCC (Federal Communications Commission)
FCFS. See First-come, first-served
Feigenbaum, E. A.
Fetch-execute cycle

hand simulation

678

Fiedler, Edna
Fields (or attributes)
FIFO. See First-in, first-out
Fifth-generation software
Fighting games
File access

direct
sequential

File extensions
File operations
File protection
Files

defined
reading

File servers
File systems

defined
file access
file operations
file protection
file types
text and binary files

File Transfer Protocol (FTP)
File types
Filtering

example
Fingerprint analysis
Firefox
Firewalls
Firewire
First Amendment protection of bloggers
First-come, first-served

disk scheduling
First fit
First-generation software
First-in, first-out (FIFO)
FISA Amendments Act of 2008
FISA Amendments Act Reauthorization Act of 2012
FISA Court
Fixed-partition technique
Fixed robots
Fixed-sized numbers, representing
Flag character
Flash drives
Flash images
Flash memory
Flight graph, data for
Floating point
Floating-point notation, values in
Floppy disks
Flowers, Thomas
Fonts, for data cells in spreadsheets
Forecasting models
Foreign Intelligence Surveillance Act of 1978 (FISA)
Formal verification, of program correctness
Formulas, spreadsheets
FORTRAN
FORTRANSIT
Forward slashes

absolute paths in UNIX system and use of
comments prefaced with

679

root in UNIX environment designated with
Four-level binary search tree
Fourth-generation computer hardware
Fourth-generation computer software
Fractal models
Frame
Franksten, Bob
Free Software Foundation
From clause
Front-side bus (FSB)
FTP (File Transfer Protocol)
Full adder
Functional model

G
Gambling on Internet
Game engine, defined
Game loop
Gameplay, defined
Games and gaming

as addiction
dangers of
defined
design and development of
history of
programming
virtual world

Gantt charts
first-come, first-served
round-robin scheduling algorithm
shortest-job-next

Gantz, John
Gates

combinational circuits and
constructing

transistors
AND gate
gate processing review
logic
with more inputs
NAND or NOR gates
NOT gate
OR gate
XOR gate

Gates, Bill
Gateway 2000
Gateway between LAN and other networks
General case

in recursive algorithm
for recursive factorial

General Public License
Genomics, computational
Geometric modeling techniques
Geophysical and Fluid Dynamics Laboratory (GFDL)
The George Polya Prize
German Enigma and Lorenz ciphers
GIF (Graphics Interchange Format)

image file
.gif extension
Giga

680

Glaser, Will
Goldstine, Herbert
Google
Google+ (Google Plus)
Google Analytics
Google spider bots
Government projects, bugs in
GPL. See General Public License
GPS (Global Positioning System)
GPU (graphics processor unit)
Grace Murray Hopper Award
Grade-point average, calculating
Graph algorithms

breadth-first search
depth-first search
single-source shortest-path search

Graphical user interface (GUI)
Graphics and images

color
digitized images
vector representation of graphics

Graphics-capable browsers
Graphics processor unit (GPU)
Graphs

creating
defined
directed
examples of
undirected
vertices and edges in

Graph theory
Greater than or equal to relational operator
Greater than relational operator
Green trends
Grid lines, in spreadsheets
Grounded electrical signal, transistors and
Group permissions, in UNIX operating system
Growth rates, comparison of
GUI. See Graphical user interface
Gulf War I, missile software errors during

H
Hackers
Half adder
Halting problem

proposed program for solving
Hand simulation, fetch-execute cycle
Haptics
Hard disk drive
Hard disks
Hardware

first generation (1951–1959)
second generation (1959–1965)
third generation (1965–1971)
fourth generation (1971–?)
in computing system
limits caused by
networking
in relationship to software

Harris Interactive Poll

681

Harvard Mark I computer
Hashing
HDMI (High-Definition Multimedia Interface)
Head-mounted display
Health Insurance Portability and Accountability Act (HIPAA)
HeartMath
Heart rate variability
Hello program, assembly-language version of
Hertz (Hz)
Hertz, Heinrich H.
Heuristics
Hewlett-Packard
Hexadecimal (base 16) number system
High Color
High-definition multimedia interface (HDMI)
High-level languages

functionality in
Boolean expressions
control structures
data typing
input/output structures

Plankalkul (Plan Calculus)
High-level protocols
High-speed digital cameras
HIPAA (Health Insurance Portability and Accountability Act)
A History of Modern Computing (Ceruzzi)
Hoare, C. A. R.
Hoare, Tony
Hoaxes
Hollerith, Herman
Hollerith cards
Home monitoring sensors
Hopper, Grace Murray
Hostnames
Host table
Houses relationship
How to Solve It: A New Aspect of Mathematical Method (Polya)
HTML. See Hypertext Markup Language
HTML5
HTTP (Hypertext Transfer Protocol)
Huffman, David
Huffman encoding
Human–computer communication
Hurricane tracking
Huynh, Justin
HWRF
Hybrid cloud
Hybrid deliberate/reactive approach
Hypermedia
HyperScope project
Hypertext
Hypertext Markup Language (HTML)

elements
tag attributes
tags

Hypertext Transfer Protocol (HTTP)

I
IBM

founding of

682

IBM 370/168
IBM 650
IBM Automatic Sequence Controlled Calculator
IBM cards
IBM Deep Blue
IBM PC
IBM PC/AT
ICANN
ICs. See Integrated circuits
Identifiers

in assembly language
uppercase and lowercase used in

Identity property
Identity theft
IE. See Internet Explorer
IEEE. See Institute of Electrical and Electronics Engineers
IEEE 1394 (Firewire)
IEEE Code of Ethics
IF function, in spreadsheets
Ifrah, Georges
If statement

in demonstration languages
If-then-else statement
Illumination model
IM (instant messaging)
iMac
Images
Immigration database
Imperative paradigm

object-oriented
procedural

Implementation level
Implementation phase, in computer problem-solving process
Inclusive OR gate
Indentation, in Python
Indexed color
Indexing techniques, search engines and
Inference engine
Infinite loop
Infinite recursion
Informatics
Information

data vs.
Information Age
Information hiding
Information management
Information retrieval
Information security
Information Superhighway
Information systems
Infrared touch screens
Inheritance
Inhibited state, neuron in
Initial public offerings
Input

to assembler
in pseudocode algorithm

Input devices
Input/output devices
Input statements, in four languages
Input stream

683

Input units
Insertions, spreadsheet formulas and
Insertion sort algorithm
insert statement, in SQL
Inspection
Instance
Instance-of relationships
Instantiation
Instant messaging (IM)
Institute of Electrical and Electronics Engineers (IEEE)
Instruction-level parallelism
Instruction register

hand simulation program
in Pep/8

Instruction specifier, in Pep/8
Integers

limits on
sorted list of
unsorted list of

Integrated circuits (IC)
classification of

Integrity
Intel
Intelligent browsers
Intelligent systems
Interactive systems
Interactive web pages
International Species Inventory System (ISIS)
Internet. See also Web

connections
control of
digital divide and
Ethernet and
lending clubs
privacy issues
shopping
stock sales
surveillance on
workplace monitoring and

Internet access
Internet Explorer
Internet gambling
Internet gaming disorder
Internet Protocol, types of
Internet service providers (ISPs)

privacy and spam
wireless

Internetworking
Interoperability
Interpreters
Intersection operation, in SQL
Intractable problems
Introductory programming language
Inventory control systems
Inversion bubble
Inverter
An Investigation of the Laws of Thought (Boole)
I/O. See Input/output devices
iOS mobile operating system
IP. See Internet Protocol
iPad

684

IP address
iPhone
iPod
iPod Touch
IR. See Instruction register
ISBLANK function, in spreadsheets
ISIS (International Species Inventory System)
i-soldit.com
ISPs. See Internet service providers
Item number, in Universal Product Code
iTunes software

J
Jacquard, Joseph
Jacquard’s loom
Java

asynchronous processing in
braces in
class concept and
if and while statements in
input statement in
variable declaration in

Java applets
Java Bytecode
.java extension
Java Model Railroad Interface
JavaScript, in game development
Java Server Pages (JSPs)
Java Virtual Machine
Job
Jobs, Steve
Journalism protection of bloggers
JPEG format

K
Kasparov, Garry
Katzer, Matthew
Kennedy–Nixon debate
Kerry–Bush election
Keyboard
Key fields
Keyframe
Keyword encoding
Keywords
Keyword stuffing
Knowledge-based system
Knowledge representation

defined
search trees
semantic networks

Knowledge responsibilities
KSLOC. See 1000 source lines of code
Kuhn, Thomas

L
Lambda calculus
Landscape, computer-generated

685

http://i-soldit.com

LANs. See Local area networks
Laptop computers

hard disks
translating advertisement for

Lardner, Dionysius
Large-scale integration
Large-scale integration circuit
Last-in, first-out (LIFO)
Latency
Latin-1 Extended ASCII character set
Leaf node
LED (light-emitting diode)
Lee, J. A. N.
Left child, in binary trees
LEFT function, in spreadsheets
Leibniz, Gottfried Wilhelm von
Leibniz machine
Lending Club initial public offering
Lending clubs
Less than or equal to relational operator, meaning, example, and evaluation of
Less than relational operator, meaning, example, and evaluation of
Leveson, Nancy
Lexical ambiguity
Library class
Licensing, of computer professionals
Life-simulation games
LIFO. See Last-in, first-out
Light

how it works
normal view and reflection vectors
simulating

Light-emitting diode (LED)
Lightweight laptops
Like operation, in SQL
Limitations on computing

ethical issues
hardware

limits on arithmetic
limits on communication
limits on components

problems
Big-O analysis
classification of algorithms
comparing algorithms
halting problem
Turing machines

software
complexity of software
notorious software errors

The Limits of Computing (Walker)
Lincoln, Abraham
Linear accelerators
Linear time
Lines
LinkedIn
Linked structure
Linkers
Links
Linux
LISP
List data structure and subprograms, in object-oriented design

686

Lists
Lively (monitoring product)
Lives-in relationships
Loaders
Local-area networks (LANs)
Loebner, Hugh
Loebner prize
Logarithmic time
Logical address

binding of, to physical address
invalid
in paged memory management system

Logical (or abstract) level
Logic bomb
Logic diagram

of circuit
Logic gates
Logic programming
Logic Theorist
Login process
LOOK disk scheduling
Loop control variable
Looping

selection statements nested within structures of
Loops

count-controlled
event-controlled
halting problem and
history behind
infinite
pretest
program with

assembler listing and screen shot of a run
Lorenz cipher
Lossless compression
Lossy compression
Lotus 1-2-3
Lovelace, Ada (Countess of Lovelace)

M
Machine code
Machine language

first-generation software
second-generation software
third-generation software
program example

Machine translation, unrealized early promise of
Macintosh computers
Mac OS family
Magnetic cores
Magnetic disk drive
Magnetic disks
Magnetic drum
Magnetic tape
Magnetic tape drives
Mainframe
Main memory

partition memory management and
sections of

Main module

687

Main tasks, listing, algorithm design and
Maintenance phase

in computer problem-solving process
errors found during

Malware (malicious code)
Malware detection software
MAN (metropolitan-area network)
Man-in-the-middle
Mantissa, binary floating-point value and
Manufacturer identification number, in Universal Product Code
Many-to-many relationship
Mariner 1 (Venus probe) error
Mark I
Markup language. See also Hypertext Markup Language (HTML)
Markup specification language
Mars Climate Orbiter Mission Failure
Mars Reconnaissance Orbiter
Massachusetts Institute of Technology (MIT)
Massively parallel processor
The Mathematical Analysis of Logic (Boole)
Mathematical logic
Mathematics and Plausible Reasoning (Polya)
Mathematics education
Mauchly, John
MAX function, in spreadsheets
MB (megabytes)
McAfee
McCain, John
Medical diagnosis applications
Medical records, privacy issues and
Medium-scale integration circuit
Megabytes (MB)
Memory

circuits as
management of

paged
partition
single contiguous

transistors
Memory address
Menabrea, Luigi
Mercury thermometer, as analog device
Metadata
Metalanguage
Metcalfe, Robert
Meteorological models

hurricane tracking
weather forecasting

Method
Metrics, scheduling algorithms evaluation and
Metropolitan-area network (MAN)
Microcomputers
Microphones
Microseconds
Microsoft Corporation

open-source software debate and
Microsoft Excel spreadsheet program
Microsoft Office suite
Microsoft Research (England)
Microsoft Windows, versions of
Microsoft Word

688

Micro-taggants
Midpoint sub-division
Miller’s law
MIMD (multiple-instruction, multiple-data-stream) computers
MIME types
Minicomputers
Missile guidance programs
ML
Mnemonic letter codes, assembly languages and assignment of
Mobile devices. See also iPhone; Laptop computers; Smartphones

in classroom
Mobile robots
Model Output Statistics (MOS) model
Models
Modem
Modula-2
Modulus operator
Molecular dynamics
Molecular modeling
Moore, Gordon
Moore’s law
Mosaic
Motherboard
Mouse
Mouse clicking
Mozilla Firefox
MP3 audio format
MPEG video codec
MS-DOS
Multi-boot system
Multimedia
Multiple-instruction, multiple-data-stream (MIMD) computers
Multiplexers

with three select control lines
Multiplication, of integers
Multiprogramming
Multipurpose Internet Mail Extension (MIME)
Music Genome Project
Music streaming
MySpace.com

N
Name class, in responsibility algorithm
Naming things
NAND gates

memory circuits and
SSI chip containing
transistors and

Nanoscience
Nanoseconds
Nanotube transistors
NASA twin robot launch
National Intellectual Property Rights Coordination Center
National Medal of Technology
National Oceanic and Atmospheric Administration (NOAA)
National Science Foundation (NSF)
National Security Agency (NSA)
National Weather Service
Natural join operation, in SQL
Natural language comprehension

689

http://MySpace.com

Natural language processing
defined
natural language comprehension
voice recognition
voice synthesis

Natural numbers
NCR
Negative numbers
Negative values

fixed-sized numbers
number overflow
signed-magnitude representation
two’s complement

Negroponte, Nicholas
Neiman Marcus (retailer)
Nested directories
Nested Grid model
Nested logic
Nested structure
Net-centric computing
Netscape Navigator
Netware (Novell)
Network addresses
Networked workstations
Networking. See also Social networks

over social media
Network neutrality
Network protocols
Networks. See also Social networks types of
Neural networks

artificial
biological
defined

Neurons
Newell, Allen
Newman, Max
Newspapers
New state
NeXT
Nigerian check scams
Nike sensor
Nim, search trees for simplified version of
Nintendo
Nixon–Kennedy debate
N log2N time
NOAA (National Oceanic and Atmospheric Administration)
Node (host)
Nodes

in binary search trees
graph theory

Nonpreemptive scheduling
NOR gates

transistors and
Norton
Norwegian Computing Center
NOT Boolean operator
Not equal to relational operator, meaning, example, and evaluation of
“Notes on Structured Programming” (Dijkstra)
NOT expression
NOT gates

transistors and

690

NOT operator, DeMorgan’s law and
Nouns

circling
in object-oriented design

NP-complete problems
NSA. See National Security Agency
NSF (National Science Foundation)
Number overflow
Numbers

computing and
defined

Numeric data, representing
Numeric values
Nygaard, Kristen

O
Obama, Barack

Internet election strategy of
on NSA eavesdropping

Object (implementation phase)
Object class
Object Code window
Object orientation
Object-oriented design

nouns in
procedural design compared with
top-down design vs.

Object-oriented languages classes
functionality of

encapsulation
inheritance
polymorphism

Object-oriented methodology
design methodology

brainstorming
example

brainstorming and filtering
problem statement
responsibility algorithms

filtering
responsibility algorithms
scenarios

object orientation
Object-oriented paradigm
Objects

matter shaped by
shadows and

Objects being served, in queuing model
Octal (base 8) number system
Odd parity
Office suites
Offset value
Olsen, Ken
1-bit binary adder
One Laptop per Child (OLPC) program
One-to-many relationship
One-to-one relationship
Online gambling
OOD. See Object-oriented design
Open Handset Alliance

691

Open Source Hardware Bank
Open-source software

open-source code
Open systems
Open Systems Interconnection (OSI) Reference Model
Operand specifier, in Pep/8
Operating systems

batch processing
in computing system
CPU scheduling and
defined
factors related to
first-come, first-served and
interactions of
main memory and
memory, process, and CPU management
memory management and
path names and
process control block
process states
roles of
round-robin CPU scheduling and
secondary memory tracked by
timesharing

Operation codes (opcodes), in Pep/8
Operator
Opt-in and opt-out
OR Boolean operator
ORCA app and 2012 presidential election
Order of magnitude
OR gate

combinational circuit and
OR operation
Orzack, Maressa Hecht
OS. See Operating systems
Output

to assembler
in pseudocode algorithm

Output devices
Output statements
Output units
Overflow
Owner permissions, in UNIX operating system

P
P2P model
Pacific Marine Environmental Laboratory
Packets
Packet switching
Paged memory management
Paged memory technique
Page-map table (PMT)
Page number value
Page swap
Paging, memory management with
Paint programs
Pairs algorithm, walk-through
Pandora
Paradigms

declarative

692

defined
imperative

Parallel architectures
classes of parallel hardware
parallel computing

Parallel ATA
Parallel computing
Parameter lists
Parameters

passing by reference
passing by value
positional

Parent directory
Parentheses, objects within
Pareto’s law
Parity bits
Partition memory management

address resolution in
Partition selection, approaches to
Partition table
Pascal, Blaise
Pascal language
Password guessing
Password management software
Passwords and password criteria
Path
Path names
Paul, Ron
PayPal
PCs. See Personal computers
PCB (Process control block)
PC-DOS
PCM (Pulse-code modulation)
PC Magazine
p-code
Peer-to-peer (P2P) model
Pentium chip
Pep/8 (virtual computer)

architecture
difference between immediate addressing mode and direct addressing mode
important features reflected in
instruction format
instruction of Stop in
limits on
object code and output window after entering ‘A’ and ‘B’
sample instructions

add operand to A register
character input to the operand
character output from the operand
load the operand into the A register
stop execution
store the A register to operand
subtract the operand

simulator
subset of instructions
Terminal I/O button
Trace Program option

Period, statements of fact ended with
Peripheral devices
Perlis, Alan
Personal computers (PCs)

693

Personal identification number (PIN)
Person class, in responsibility algorithm
Philosophy and computer programming
Phishing
Phone-answering competition
Phone data
Phonemes
Phone modems
Photographs
Physical address

logical address bound to
producing

Physics engine
Picoseconds
PI function, in spreadsheets
Piggybacking
PIN. See Personal identification number
Ping
Pipeline, processors in
Pipelining
Pirated software
Pixar
Pixels
Pixel values
Planning systems, robotics and
Plato
Playstation
PMT (page-map table)
PNG (Portable Network Graphics) format
Point-and-click
Polya, George
Polya’s How To Solve It list
Polymorphism
Polynomials
Polynomial-time algorithms
Pong
Popping items, off stack
Popular Mechanics
Portability, standardized languages vs. interpretation by Bytecode
Portable devices, security of
Ports
Positional notation
Pound sign (#), at beginning of comment in Python
Power of 2 number systems
Pratt, Terry
Precision
Preemptive scheduling
Prefixes, in computing
Prentice Hall
Presidential campaigns

electronic voting in
Internet and
social networking and

Pretest loop
Preventive maintenance
Princeton Ocean Model
Printing, data in binary search tree
Priority queue
Privacy

electronic health records
expense of

694

workplace
Private cloud
Private fields, in class
Probabilistic models
Problems

equally valid solutions to
halting problem

Problem solving
algorithms
divide and conquer
look for familiar things
Polya’s list
questions to ask

Procedural abstraction
Procedural design, object-oriented design compared with
Procedural programming
Process
Process control block (PCB)
Processing algorithms with arrays
Process life cycle
Process management
Processors
Process states
Program counter

hand simulation program
in Pep/8

Programming
in computing system
game
object-oriented
structured

Programming languages
Programming layer
Programming Research Group
Project operation, in SQL
PROLOG
Proprietary systems
Protein structure prediction
Protocols

defined
high-level
network
open systems and
ports used by
TCP/IP

Protocol stack
Pseudocode
Pseudocode algorithm

following
translating
writing

Pseudocode functionality
assignment
input/output
repetition
selection
variables

Pseudocode statements
Psychoacoustics
Public cloud
Public fields

695

Public-key cryptography
Pulse-code modulation (PCM)
Punched cards
Purdue University
Pushing items, onto stack
Python

if and while statements in
input statement in
reserved words in
variable declaration and

Q
Quadratic time
Queries

in Structured Query Language
Questions, in problem solving
Queues

FIFO
priority queue
routes stored in

Queuing model
Queuing systems
Quicksort algorithm

discovery of
ordering list using

R
Race condition
Radiation overdoses
Radio-frequency identification technology
Radiosity
Radix point
Radix-point information
Rag-doll physics
Random access memory (RAM). See also Main memory
Random-number generator
Range of cells, spreadsheet
Raster-graphics format
Rational number
Ray tracing
Read-only memory
Read/write head, in disk drive
Ready state
Real data type
Real numbers

limits on
representing

Real-time system
Real Video
Reclock
Record (or object or entity)
Records
Recurrence coding
Recursion

infinite
power of

Recursive algorithms
Quicksort

696

recursive binary search
recursive factorial
subprogram statements

Recursive binary search
Recursive call
Recursive definition
Recursive factorial
Red Hat (Linux)
Reduced-instruction-set computer (RISC) architecture
Reference parameters

value parameters vs.
Referential ambiguity
Reflections
Register
Register specifier, in Pep/8
Relational model
Relational operators
Relationships
Relative path name
Relays
Relocatable models
Remington Rand
Rendering
Rendering, for graphics
Rents database table
Repeaters
Repetition construct, in pseudocode algorithm
Representation
Representational error
Reserved words
Resistive touch screens
Resolution
Response time
Responsibilities

assigning to classes
Responsibility algorithms
Reuse

inheritance and
Revolutions per minute (RPM)
Rewritable DVD
RFID tags
RGB (red-green-blue)
RGB values
Rickover, Hyman
Right child, in binary trees
Ring topology
RISC (reduced-instruction-set computer) architecture
RISC chips
Risk analysis
Robotics

Asimov’s laws of
hybrid deliberative/reactive
mobile
new control paradigm
physical components
sense-plan-act paradigm
subsumption architecture
topological maps and

Robotic whiskers
Robots

Aibo

697

fixed
mobile
physical components of
Sojourner rover
twin, NASA launch of

Role-playing games
ROM. See Read-only memory
Romney campaign for president
Room to Read
Root, in binary tree
Root directory
Rosetta stone
Ross, Blake
Rotation delay
Round-off error
Round-robin scheduling
Route cipher
Routers
Row designations, spreadsheet cells
RPM (revolutions per minute)
Rule-based system
Run-length encoding
Running state

S
Sales estimates, spreadsheets and
Sampling, audio signal
SARS (severe acute respiratory syndrome)
Savage Beast Technologies
Scams
Scanbuy Shopper
SCAN disk scheduling
Scanner fraud
Scenarios
Scheduling algorithms, evaluating
Schema
Scheme
Scheme expressions
Scientific disciplines
Scientific notation
Scientific visualization systems
Screen dimensions
Scriptlets
Sculley, John
Search engines
Search for Extraterrestrial Intelligence (SETI)
Searching algorithms with arrays
Search trees

defined
for simplified version of Nim

Secondary memory, operating system and tracking of
Secondary storage devices

CDs and DVDs
flash drives
magnetic disks
magnetic tape

Second-generation computers
hardware
software

Secondhand shopping

698

Sector
Securities and Exchange Commission, U.S.
Security

antivirus software
attacks
authentication credentials
back door
biometrics
Blaster worm
buffer overflow
CAPTCHA
ciphers
cryptanalysis
cryptography
decryption
denial of service
digital certificate
digital signature
e-commerce and
encryption
ethical issues associated with blogging
fingerprint analysis
information security
malicious code
man-in-the-middle
password management software
passwords and password criteria
phishing
policy
portable devices and
protecting online information
public-key cryptography
smart cards
spoofing
unauthorized access
user authentication
viruses
WikiLeaks

Seek time
Seismic models
SEI Software Engineering Process Group
Select clause
Selection
Selection construct, in pseudocode algorithm
Selection sort

algorithm
example of

Selection statements, nesting within looping structures
Select operation, in SQL
Select signals/select control lines
Select statements
Semantic networks
Semicolons

in Pep/8
statements ended with

Semiconductors
Sense-plan-act paradigm
Sequential circuits
Sequential file access
Sequential search

average number of comparisons with binary search and

699

in sorted array
Serial ATA
Server, in queuing model
Servers. See Web servers
SETI@Home
Severe acute respiratory syndrome (SARS)
SGML (Standard Generalized Markup
Language)
Shading model
Shadows
Shannon, Claude E.
Shared-memory parallel processor
Shaw, J. C.
Shi Tao
Shockley, William B.
Shortest-job-next
Shortest-seek-time-first disk scheduling
Siemens
SIGCSE. See Special Interest Group for Computer Science Education
Signature detection software
Signed-magnitude representation
Significant digits
Silicon and silicon chips
Silicon Valley
SIMD (single-instruction, multiple-data-stream) computers
Simon, Herbert A.
Simple data types
Simple Mail Transfer Protocol (SMTP)
Simple variables

algorithms
with repetition
with selection

SIMULA programming language
Simulated worlds
Simulation

complex systems
continuous simulation
defined
discrete-event

Simulation models
business and economic forecasting models
computational biology
computing power necessary for
forecasting models
meteorological models
queuing systems
seismic models
weather models

Simulators
SIN function, in spreadsheets
Single contiguous memory management
Single-instruction, multiple-data-stream (SIMD) computers
Single instructions, multiple data
Single quotes, characters enclosed within
Single-source shortest-path search
Six degrees of separation
Size factor
“The Sketch of the Analytical Engine”
Sketchpad
Slate Corporation
Slot load

700

Small-scale integration circuit
Smalltalk
Small world phenomenon
Smart cards
Smartphones

apps
SMPs (symmetric multiprocessors)
SMTP (Simple Mail Transfer Protocol)
SNOBOL4
Snowden, Edward
Social and professional issues
Social network analysis
Social networks

benefits vs. costs of
defined
ethical issues
security issues

Software
first generation (1951–1959)
second generation (1959–1965)
third generation (1965–1971)
fourth generation (1971–1989)
fifth generation (1990–present)
categories of
complexity of
laptop
limits on

notorious software errors
open-source
piracy and
systems software
terrorist detection
testing

Software Arts
Software engineering
Software Engineering Institute (Carnegie Mellon University)
Software errors

AT&T down for nine hours
bugs in government projects
notorious
Therac-25

Software Garden
Software methodology and engineering
Software piracy and copyrighting
Software quality

formal verification
open-source movement
software engineering

Software requirements
Software specifications
Software tools
Software viruses
Sojourner rover
Solid-state disks (SSDs)
Sony Playstation
Sorenson video codec
Sorted arrays

sequential search in
Sorted lists
Sorting algorithms

with arrays

701

bubble sort
insertion sort
Quicksort
selection sort

Sound perception
Sound waves
Source, transistor
Source Code window
Source file
SourceForge
Space Shuttle Ground Processing System
Spam
Spamdexers
Spatial compression
Special Interest Group for Computer Science Education
Spider “bots”
Splitting algorithm
Spoofing
Spreadsheet function, defined
Spreadsheets

analysis of
applications with
behind some of the cells
circular references and
common functions for
data and computations in
defined
formulas for
grid of labeled cells in

Spyware
SQL. See Structured Query Language
Square root algorithm

completed
walk-through of

S-R latch
SSD. See Solid-state disks
SSI circuit. See Small-scale integration circuit Stack, Matt
Stacks

routes stored in
Standard Generalized Markup Language (SGML)
Stanford University
Star topology
Starvation
Statistical Package for the Social Sciences
Statistical packages
STDEV function, in spreadsheets
Stephenson, Arthur
Stereo signal
Stewart, Martha
Stibitz, George
Stonehenge
Storage capacity, expressed in binary notation
Stored-program concept

fetch-execute cycle
RAM and ROM
secondary storage devices
touch screens
von Neumann architecture

Strachey, Christopher
Strategy games
Stress management, soothing software and

702

Strings
binary search tree built from

Strong equivalence
Strong typing
Structured design
Structured programming
Structured Query Language

defined
mathematical basis of
modifying database content
queries

The Structure of Scientific Revolutions (Kuhn)
Styluses
Subdirectory
Subprogram declaration, in VB.NET and C++
Subprogram flow of control
Subprograms

nested logic and
Subprogram statements
Substitution cipher
Subsumption architecture
Subtraction

of integers
of numbers in other bases

SUM function, in spreadsheets
Sun Microsystems
Superclass
Superensembles
Superscalar processor
Surface acoustic wave touch screens
Surveillance technology, at workplace
Sutherland, Ivan
SVG (Scalable Vector Graphics) format
Swap algorithm
Symantec
Symbolic logic and relays
Symbols

arithmetic operations
comment
relational operators

Symmetric multiprocessors (SMPs)
Synapse
Synchronous processing
Syntactic ambiguity
Systems

complex
definition of
queuing
types of

Systems areas
Systems programmers
Systems software

T
Tablet computers
Tablets for teaching
Tags, HTML. See Hypertext Markup Language
Tandy/Radio Shack
Tape drives
Target (retailer)

703

Target game platform
Task-level parallelism
TCP/IP (Transmission Control Protocol/Internet Protocol)
Technology use, study of
Telegraph, Einstein’s description of
Television and elections
Telnet
Temporal compression
Ten-level binary search tree
Ten’s complement
Tenth Strand (Social and Professional Issues)
Terminal
Terminated state
Terrorist detection software
Testing

algorithms
importance of
programs

Test plan
Test plan implementation
Text, representing
Text compression

Huffman encoding
keyword encoding
run-length encoding

Text files
Textile counterfeiting
Texting
Texture mapping techniques
Theory
Therac-25

software errors
Thinking machines
Third-generation computer hardware
Third-generation computer software
Thrashing
Three-input AND gate
Threshold values
Thumb drive
TIFF
Time-driven simulation
Time sharing
Time slice
Titanic effect
TLDs. See Top-level domains
TODAY function, in spreadsheets
Top-down design

object-oriented design vs.
verbs in

Top-level domains (TLDs)
Torvolds, Linus
Touch ID
Touch screens
Traceroute
Track
Training
Transfer rate
Transistors

connections of
defined
gate construction and

704

Translation process
Translators, software
Transmission Control Protocol (TCP)
Transmission Control Protocol/Internet Protocol. See TCP/IP
Transposition cipher
Traveling Salesman problem
Treatise on Differential Equations (Boole)
Treatise on the Calculus of Finite Differences (Boole)
Trees

binary
binary search

Trellix Corporation
Trojan horse
True color
True value, in Boolean data type
Truth table

combinational circuit and
full adder
AND gate
NAND gate
NOR gate
NOT gate
OR gate
XOR gate

Tsunami detection
Turing, Alan M.
Turing Award
Turing machine
Turing test
Turnaround time
Twitter
Two’s complement

U
UDP (User Datagram Protocol)
Unauthorized access
Underflow
Undirected graph
Unicode character set
Uniform Resource Locator (URL)
Union operation, in SQL
UNIVAC I
The Universal History of Computing (Ifrah)
Universal Product Code (UPC)
Universal serial bus (USB)
University of Pennsylvania
UNIX directory tree
UNIX operating system

file protection settings in
UNIX workstations
Unordered lists
Unsorted arrays
Unsorted linked lists
Unsorted lists, of integers
UPC. See Universal Product Code
Update statement, in SQL
Uploads
USA PATRIOT Act of 2001
USB. See Universal serial bus
USB ports

705

User authentication
User Datagram Protocol (UDP)
User-friendly software packages
Users, ever-changing role of
UTeach Institute

V
Vacuum tubes
Value parameters

reference parameters vs.
Value-returning subprograms
Values, copying in spreadsheets
van Dam, Andy
Variables

composite
arrays
records

in pseudocode algorithms
VB .NET

asynchronous processing in
End If and End While in
If and While statements in
input statement in
subprogram declaration in
uppercase used in
variable declaration in

Vector graphics
Vector representation
Veeder, Jane
Verbs

in top-down design
underlining

Verification
formal
in software life cycle

Vertex (vertices)
adjacent
breadth-first search and
depth-first search and
in graphs

Very large numbers, representing
Very-large-scale integration circuit
VGA port
Video, representing
Video codecs
Video game addiction
Virtual computers
Virtual environments
Virtual games
Virtual machines
Virtual memory
Virtual world
Viruses
VisiCalc
Visio
Visual system, human
VLSI circuit. See Very-large-scale integration circuit
Voiceprint
Voice recognition
Voice synthesis

706

Voltage levels
von Neumann, John
von Neumann architecture

arithmetic/logic unit
control unit
input/output units
memory

von Neumann machine
Voyager 1 and Voyager 2 space probes
VQF

W
Waiting, in queuing systems
Waiting state
Walker, Henry
Walk-through
WAN (wide-area network)
Warford, Stanley
WARPITOUT
Watson, Thomas
Watson as cognitive computing engine for smartphone apps
WAV
Wayne, Ronald
Weak equivalence
Weather forecasting
Weather models
Web (World Wide Web). See also Internet

birth and expansion of
Web 2.0
Web analytics
Web browsers. See Browsers
Weblogs. See Blogs and blogging
Web pages

interactive
Web servers
Websites
Web surfing
Westergren, Tim
What-if analysis
Where clause
While loop, count-controlled loop and
While statement

in demonstration languages
event-controlled loops and

Whiskers, robotic
“White hat”
Wide-area network (WAN)
Wi-Fi
Wiki
WikiLeaks
Wikipedia
Wilkes, Maurice
Windows 7
Windows 8
Windows directory tree
Windows NT
Windows operating system
Windows XP
Winfrey, Oprah
Wired magazine

707

Wireless access points
Wireless Internet service providers
Wireless networking technology
Wireless networks
Wireless TV cameras
Wood, John
WordPerfect
Word processors
Words

reserved
various meanings for

Working directory
Workplace monitoring
Workplace privacy
Workstations
World of Warcraft players, addiction and
World permissions, in UNIX operating system
World Wide Web. See Web
World Wide Web Consortium
Worms
Worst fit
Wozniak, Steve
WPS-8
word processing product
Writing and counting

X
XBox (Microsoft)
Xerox
Xerox PARC
XML
XO laptops
XOR gate
XSL (Extensible Stylesheet Language)

Y
Yahoo!
Young, Thomas
YouTube, presidential elections and

Z
Z1–Z4 machines
Z specification language
Zero, importance of
Zuckerberg, Mark
Zuse, Konrad
Zuse machines

708

	Title Page
	Copyright
	Dedication
	Breif Contents
	Contents
	Preface
	Acknowledgments
	Special Features
	1 Laying the Groundwork
	Chapter 1 The Big Picture
	1.1 Computing Systems
	Layers of a Computing System
	Abstraction

	1.2 The History of Computing
	A Brief History of Computing Hardware
	A Brief History of Computing Software
	Predictions

	1.3 Computing as a Tool and a Discipline
	Summary
	Ethical Issues: Digital Divide
	Key Terms
	Exercises
	Thought Questions

	2 The Information Layer
	Chapter 2 Binary Values and Number Systems
	2.1 Numbers and Computing
	2.2 Positional Notation
	Binary, Octal, and Hexadecimal
	Arithmetic in Other Bases
	Power-of-2 Number Systems
	Converting from Base 10 to Other Bases
	Binary Values and Computers
	Summary
	Ethical Issues: The FISA Court
	Key Terms
	Exercises
	Thought Questions

	Chapter 3 Data Representation
	3.1 Data and Computers
	Analog and Digital Data
	Binary Representations

	3.2 Representing Numeric Data
	Representing Negative Values
	Representing Real Numbers

	3.3 Representing Text
	The ASCII Character Set
	The Unicode Character Set
	Text Compression

	3.4 Representing Audio Data
	Audio Formats
	The MP3 Audio Format

	3.5 Representing Images and Graphics
	Representing Color
	Digitized Images and Graphics
	Vector Representation of Graphics

	3.6 Representing Video
	Video Codecs
	Summary
	Ethical Issues: The Fallout from Snowden’s Revelations
	Key Terms
	Exercises
	Thought Questions

	3 The Hardware Layer
	Chapter 4 Gates and Circuits
	4.1 Computers and Electricity
	4.2 Gates
	NOT Gate
	AND Gate
	OR Gate
	XOR Gate
	NAND and NOR Gates
	Review of Gate Processing
	Gates with More Inputs

	4.3 Constructing Gates
	Transistors

	4.4 Circuits
	Combinational Circuits
	Adders
	Multiplexers

	4.5 Circuits as Memory
	4.6 Integrated Circuits
	4.7 CPU Chips
	Summary
	Ethical Issues: Codes of Ethics
	Key Terms
	Exercises
	Thought Questions

	Chapter 5 Computing Components
	5.1 Individual Computer Components
	5.2 The Stored-Program Concept
	von Neumann Architecture
	The Fetch–Execute Cycle
	RAM and ROM
	Secondary Storage Devices
	Touch Screens

	5.3 Embedded Systems
	5.4 Parallel Architectures
	Parallel Computing
	Classes of Parallel Hardware
	Summary
	Ethical Issues: Is Privacy a Thing of the Past?
	Key Terms
	Exercises
	Thought Questions

	4 The Programming Layer
	Chapter 6 Low-Level Programming Languages and Pseudocode
	6.1 Computer Operations
	6.2 Machine Language
	Pep/8: A Virtual Computer

	6.3 A Program Example
	Hand Simulation
	Pep/8 Simulator

	6.4 Assembly Language
	Pep/8 Assembly Language
	Assembler Directives
	Assembly-Language Version of Program Hello
	A New Program
	A Program with Branching
	A Program with a Loop

	6.5 Expressing Algorithms
	Pseudocode Functionality
	Following a Pseudocode Algorithm
	Writing a Pseudocode Algorithm
	Translating a Pseudocode Algorithm

	6.6 Testing
	Summary
	Ethical Issues: Software Piracy
	Key Terms
	Exercises
	Thought Questions

	Chapter 7 Problem Solving and Algorithms
	7.1 How to Solve Problems
	Ask Questions
	Look for Familiar Things
	Divide and Conquer
	Algorithms
	Computer Problem-Solving Process
	Summary of Methodology
	Testing the Algorithm

	7.2 Algorithms with Simple Variables
	An Algorithm with Selection
	Algorithms with Repetition

	7.3 Composite Variables
	Arrays
	Records

	7.4 Searching Algorithms
	Sequential Search
	Sequential Search in a Sorted Array
	Binary Search

	7.5 Sorting
	Selection Sort
	Bubble Sort
	Insertion Sort

	7.6 Recursive Algorithms
	Subprogram Statements
	Recursive Factorial
	Recursive Binary Search
	Quicksort

	7.7 Important Threads
	Information Hiding
	Abstraction
	Naming Things
	Testing
	Summary
	Ethical Issues: Open-Source Software
	Key Terms
	Exercises
	Thought Questions

	Chapter 8 Abstract Data Types and Subprograms
	8.1 What Is an Abstract Data Type?
	8.2 Stacks
	8.3 Queues
	8.4 Lists
	8.5 Trees
	Binary Trees
	Binary Search Trees
	Other Operations

	8.6 Graphs
	Creating a Graph
	Graph Algorithms

	8.7 Subprograms
	Parameter Passing
	Value and Reference Parameters
	Summary
	Ethical Issues: Workplace Monitoring
	Key Terms
	Exercises
	Thought Questions

	Chapter 9 Object-Oriented Design and High-Level Programming Languages
	9.1 Object-Oriented Methodology
	Object Orientation
	Design Methodology
	Example

	9.2 Translation Process
	Compilers
	Interpreters

	9.3 Programming Language Paradigms
	Imperative Paradigm
	Declarative Paradigm

	9.4 Functionality in High-Level Languages
	Boolean Expressions
	Data Typing
	Input/Output Structures
	Control Structures

	9.5 Functionality of Object-Oriented Languages
	Encapsulation
	Classes
	Inheritance
	Polymorphism

	9.6 Comparison of Procedural and Object-Oriented Designs
	Summary
	Ethical Issues: Hoaxes and Scams
	Key Terms
	Exercises
	Thought Questions

	5 The Operating Systems Layer
	Chapter 10 Operating Systems
	10.1 Roles of an Operating System
	Memory, Process, and CPU Management
	Batch Processing
	Timesharing
	Other OS Factors

	10.2 Memory Management
	Single Contiguous Memory Management
	partition Memory Management
	Paged Memory Management

	10.3 Process Management
	The Process States
	The Process Control Block

	10.4 CPU Scheduling
	First Come, First Served
	Shortest Job Next
	Round Robin
	Summary
	Ethical Issues: Medical Privacy: HIPAA
	Key Terms
	Exercises
	Thought Questions

	Chapter 11 File Systems and Directories
	11.1 File Systems
	Text and Binary Files
	File Types
	File Operations
	File Access
	File Protection

	11.2 Directories
	Directory Trees
	Path Names

	11.3 Disk Scheduling
	First-Come, First-Served Disk Scheduling
	Shortest-Seek-Time-First Disk Scheduling
	SCAN Disk Scheduling
	Summary
	Ethical Issues: Privacy: Opt-In or Opt-Out?
	Key Terms
	Exercises
	Thought Questions

	6 The Applications Layer
	Chapter 12 Information Systems
	12.1 Managing Information
	12.2 Spreadsheets
	Spreadsheet Formulas
	Circular References
	Spreadsheet Analysis

	12.3 Database Management Systems
	The Relational Model
	Relationships
	Structured Query Language
	Database Design

	12.4 E-Commerce
	Summary
	Ethical Issues: Politics and the Internet: The Candidate’s View
	Key Terms
	Exercises
	Thought Questions

	Chapter 13 Artificial Intelligence
	13.1 Thinking Machines
	The Turing Test
	Aspects of AI

	13.2 Knowledge Representation
	Semantic Networks
	Search Trees

	13.3 Expert Systems
	13.4 Neural Networks
	Biological Neural Networks
	Artificial Neural Networks

	13.5 Natural Language Processing
	Voice Synthesis
	Voice Recognition
	Natural Language Comprehension

	13.6 Robotics
	The Sense–Plan–Act Paradigm
	Subsumption Architecture
	Physical Components
	Summary
	Ethical Issues: Initial Public Offerings
	Key Terms
	Exercises
	Thought Questions

	Chapter 14 Simulation, Graphics, Gaming, and Other Applications
	14.1 What Is Simulation?
	Complex Systems
	Models
	Constructing Models

	14.2 Specific Models
	Queuing Systems
	Meteorological Models
	Computational Biology
	Other Models
	Computing Power Necessary

	14.3 Computer Graphics
	How Light Works
	Object Shape Matters
	Simulating Light
	Modeling Complex Objects
	Getting Things to Move

	14.4 Gaming
	History of Gaming
	Creating the Virtual World
	Game Design and Development
	Game Programming
	Summary
	Ethical Issues: Gaming as an Addiction
	Key Terms
	Exercises
	Thought Questions

	7 The Communications Layer
	Chapter 15 Networks
	15.1 Networking
	Types of Networks
	Internet Connections
	Packet Switching

	15.2 Open Systems and Protocols
	Open Systems
	Network Protocols
	TCP/IP
	High-Level Protocols
	MIME Types
	Firewalls

	15.3 Network Addresses
	Domain Name System
	Who Controls the Internet?

	15.4 Cloud Computing
	Summary
	Ethical Issues: The Effects of Social Networking
	Key Terms
	Exercises
	Thought Questions

	Chapter 16 The World Wide Web
	16.1 Spinning the Web
	Search Engines
	Instant Messaging
	Weblogs
	Cookies
	Web Analytics

	16.2 HTML and CSS
	Basic HTML Elements
	Tag Attributes
	More About CSS
	More HTML5 Elements

	16.3 Interactive Web Pages
	Java Applets
	Java Server Pages

	16.4 XML
	16.5 Social Networks
	Summary
	Ethical Issues: Gambling and the Internet
	Key Terms
	Exercises
	Thought Questions

	Chapter 17 Computer Security
	17.1 Security at All Levels
	Information Security

	17.2 Preventing Unauthorized Access
	Passwords
	CAPTCHA
	Fingerprint Analysis

	17.3 Malicious Code
	Antivirus Software
	Security Attacks

	17.4 Cryptography
	17.5 Protecting Your Information Online
	Security and Portable Devices
	WikiLeaks
	Summary
	Ethical Issues: Blogging
	Key Terms
	Exercises
	Thought Questions

	8 In Conclusion
	Chapter 18 Limitations of Computing
	18.1 Hardware
	Limits on Arithmetic
	Limits on Components
	Limits on Communications

	18.2 Software
	Complexity of Software
	Current Approaches to Software Quality
	Notorious Software Errors

	18.3 Problems
	Comparing Algorithms
	Turing Machines
	Halting Problem
	Classification of Algorithms
	Summary
	Ethical Issues: Therac-25: Anatomy of a Disaster
	Key Terms
	Exercises
	Thought Questions

	Glossary
	Endnotes
	Index

